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Abstract

Clinical trials are necessary in order to develop treatments for diseases; however, they can

often be costly, time consuming, and demanding to the patients. This paper summarizes

several common methods used for optimal design that can be used to address these issues.

In addition, we introduce a novel method for optimizing experiment designs applied to HIV

2-LTR clinical trials. Our method employs Bayesian techniques to optimize the experiment

outcome by maximizing the Expected Kullback-Leibler Divergence (EKLD) between the a

priori knowledge of system parameters before the experiment and the a posteriori knowl-

edge of the system parameters after the experiment. We show that our method is robust

and performs equally well if not better than traditional optimal experiment design

techniques.

Introduction

Amid the increasing costs of carrying out experiments coupled with a decreasingly generous

funding environment, there is an expanding charge to apply optimization methods to clinical

trial design in order to maximize the amount of information that can be garnered from the

resulting data [1–4]. This is especially true in the case of clinical trials used in biomedical

research. Not only is the monetary cost a principal concern, when the study contains human

subjects, the overall burden to the patient must be also considered. The latter is meticulously

controlled under regulations imposed by the Institutional Review Board (IRB) [5].

With these considerations in mind, this paper focuses on methods which can be used to find

the optimal design criteria that will maximize the information content in an experiment to

gather knowledge about the in vivo dynamics of the Human Immunodeficiency Virus (HIV).

Advances in combination antiretroviral therapy (cART) for treatment of HIV have drastically

reduced Acquired Immune Deficiency Syndrome (AIDS) related mortality rates worldwide [6].

Clinical Analysis has shown that cART is able to suppress viral levels below the limit of detec-

tion; however, complete eradication is not achieved [6–12], most likely due to the presence of

long-lived quiescent infected cells capable of re-seeding the HIV reservoir once treatment is dis-

continued [8–11, 13]. In addition to the long-lived reservoir formed by quiescently infected

T-cells, evidence is mounting for the existence of ongoing replication of HIV within a subset of
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patients treated on cART [14]. This is a controversial topic in HIV research [3, 14–16]. Strong

evidence for a lack of ongoing replication exists. Multiple phylogenetic studies have shown no

longitudinal evolution of HIV in treated patients [17–20]. Intensification studies have been

shown to have no measurable effect on the residual HIV RNA levels in the plasma [21–24].

Conversely, lymphoid biopsy studies have shown dramatically reduced levels of certain antire-

troviral drugs in primary lymph nodes as well as gut-associated tissues; these decreased antiviral

concentrations were associated with increased levels of HIV RNA consistent with localized HIV

replication [25]. Also, one recent study has shown evidence of viral evolution in suppressed

patients [26]. Finally, raltegravir intensification studies have shown transient increases in

2-LTR that are best explained as evidence of localized ongoing HIV replication prior to intensi-

fication [26–29]. Unfortunately, preliminary studies which aimed to test for the presence of bio-

markers of replication yielded inconclusive results [28, 30, 31]. We believe that this was due to

sub-optimal experiment designs, thus the aim of this paper is to explore several experiment

design optimization methods that will allow for more informative results.

These studies have sought to detect on-going replication by intensifying antiretroviral ther-

apy with an integrase inhibitor [28, 30, 31]. In the presence of an integrase inhibitor viral DNA

is unable to integrate into the host genome. Host nuclear enzymes convert this un-integrated

DNA into circles with two long term repeat ends. These converted DNA elements, which are

aptly referred to as 2-LTR circles, serve as a marker of on-going replication [28, 30–32]. In

vivo 2-LTR concentrations are estimated using the polymerase chain reaction (PCR) method

on blood samples drawn from patients under integrase inhibitor intensification. If a high level

of on-going replication is present, a transient increase in the 2-LTR concentration is expected

[28, 30–32]. There will initially be a sharp increase in production of 2-LTR circles as the new

infections are inhibited and 2-LTR circles are formed, but the production will then decrease

since the success rate of infection drastically decreases [28, 30–33]. These 2-LTR circles are

widely thought to be transcriptionally inert, but there is some evidence of low levels of tran-

scriptional and translational activity from them in vitro, potentially even resulting in replica-

tion-competent integrated infections once integrase inhibitors are discontinued [34, 35].

While this is concerning with respect to a possible infection rebound subsequent to discontin-

uing integrase inhibitors, they do not affect the interpretation of the results here because the

integrase inhibitors were applied continuously throughout the experiments [28, 30, 31].

Due to the expected dynamics in the presence of on-going replication, a dynamic model of

2-LTR concentration is able to quantify the amount of on-going replication [32]. However,

since the IRB imposed strict limitations on the amount of blood that can be drawn from a

patient during a clinical trial, only a few samples can be taken with which to fit the model [30,

32]. In this paper, we introduce a robust, systematic method of experiment design to maximize

the information content under the constraints of the IRB.

Materials and methods

2-LTR model

In order to analyze the data from the Buzon study, Luo et al. developed a mathematical model

of 2-LTR circle production following treatment intensification with an integrase inhibitor [32,

36]. Their model is comprised of a two-state ordinary differential equation. The two states rep-

resent the concentration of 2-LTR circles and the concentration of actively infected CD4+

T-Cells in the blood. The model takes the form:

_y ¼ � ð1 � ð1 � ZIIuIIÞRÞay þ ye

_c ¼ �kIIð1 � ZIIuIIÞRÞay þ kIIZIIuIIRay � dc
ð1Þ
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where y is the concentration of actively infected CD4+ T-Cells and c is the concentration of

2-LTR circles. The term ye, is in an input into the system and represents entry of actively

infected cells from exogenous sources, such as activation of latently infected cells. In both the

integrase intensification study done by Buzon et al. and the similar study done by Hatano

et al., the patients’ viral load had been ART-suppressed for at least six months. From this, it is

safe to assume that the dynamics have reached steady state at the beginning of the experiment

when the integrase inhibitor is first administered. Based on this assumption, the 2-LTR con-

centration in Eq (1) can be simplified as follows:

cðtÞ ¼ cð1Þ þ ðcð0Þ � cð1ÞÞe� dt

þcð1Þ
dZIIRðe� dt � e� að1� ð1� ZIIÞRÞtÞ

ð1 � RÞðað1 � ð1 � ZIIÞRÞ � dÞ

ð2Þ

with a steady state initial value of

cð0Þ ¼
kIIye�R
dð1 � RÞ

ð3Þ

and the final value of

cð1Þ ¼
kIIyeð�þ ZII � �ZIIÞR
dð1 � ð1 � ZIIÞRÞ

ð4Þ

Parameter definitions and units are defined in Table 1.

Measurement error

The noise in the measurement process primarily stems from two sources [37]. The first is the

noise inherent in sampling a volume of blood from the body. This sample is not always an

exact representation of the true blood concentration. Given a small sample size relative to the

total blood volume, the number of particles in the sample follows a Poisson distribution with a

probability mass function (PMF).

Pðnjv� cÞ ¼
ðv� cÞ � e� ðv�cÞ

n!
ð5Þ

Table 1. Model parameter definitions.

Parameter Definition Units

y concentration of infected cells cells/106PBMC

c concentration of 2-LTR circles 2LTR/106PBMC

R probability infected cell infects a target cell in a generation unitless

a death rate of actively infected cells day−1

ye rate of exogenous production of infected infected cells/

106PBMC×Day

ηII Ratio-reduction in R following integrase inhibitor intensification unitless

uII binary variable: 1 when integrase inhibitor is applied and 0 when it is

not

unitless

ϕ Ratio of probability of 2-LTR formation with integrase inhibitor vs.

without

unitless

kII The probability of 2-LTR circle formation when integrase inhibitor is

present

2LTR/ infected cells

δ decay rate of 2-LTR circles day−1

https://doi.org/10.1371/journal.pone.0206700.t001
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where v is the sample volume, c is the true concentration in the blood, and n is the total num-

ber of particles present in the sample.

The second major contributor to measurement noise comes from the quantification pro-

cess. The amount of noise from the quantification process is a function of which technique is

used. The most common technique for quantifying DNA is real time polymerase chain reac-

tion (qPCR). In this method the samples are amplified and then quantified using a labeling

probe. This process gives rise to a qPCR assay probability mass function

PðmjnÞ ¼

(
exp �

ln m � ln
n
v

� �2

2sðnÞ2

0

B
@

1

C
A

ffiffiffiffiffiffi
2p
p

msðnÞ
; m > 0

1; m ¼ 0

0; Otherwise

ð6Þ

where σ(n) = ln10 × 10−0.21−0.24log10n is the equation for the log normal standard deviation of

the qPCR growth process as a function of viral concentration [37].

Traditional optimality methods

The majority of the common measures of optimality focus on maximizing the information

content in a given experiment. This is usually done by optimizing some criteria of the Fisher’s

information [3, 38, 39]:

MðYÞ ¼
Z

@

@Y
log f ðx;YÞ

� �2

f ðx;YÞdx ð7Þ

which can be expressed as a matrix

MðYÞkl ¼ E
@

@Yk
log f ðx;YÞ

� �
@

@Yl
log f ðx;YÞ

� �

jY

� �

ð8Þ

where Θ is a vector containing the HIV 2-LTR model parameters.

The choice of which criteria to optimize can be highly subjective. In this paper we analyze

the outcome of four frequently used design paradigms, A-optimal, D-optimal, T-optimal, and

E-optimal. We then compare them to our novel Expected Kullback-Leibler method.

A-optimal design. The A-optimal method seeks to minimize the trace of M(Θ)−1 and in

doing so minimizes the sum of the variances [3, 40].

minfð1=mÞtraceðMðYÞ� 1
Þg ) T ð9Þ

where T is a vector of n sample points in the study T = [t1, t2, . . ., tn]. This optimization para-

digm is commonly chosen due to its relative mathematical simplicity. In the case of simple lin-

ear models, closed form A-optimal solutions can often be found.

D-optimal design. The D-optimal method is perhaps the most commonly used optimality

criteria and seeks to minimize determinant of the information.

maxfdetðMðYÞ� 1
Þg ) T ð10Þ

In doing so it minimizes the m-dimensional ellipsoid of the maximum region of confidence

for the maximum likelihood estimate of the parameters Θ [3, 40]. This in essence minimizes

the covariance of the parameter estimates.
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T-optimal design. The T-optimal method is another criterion often used due to its rela-

tive mathematical simplicity. This method simply seeks to maximize the trace of the informa-

tion matrix M(Θ).

maxftraceðMðYÞÞg ) T ð11Þ

While this method is straightforward mathematically and computationally simple, it often

leads to unsatisfactory results [3, 40].

E-optimal design. The fourth and final traditional method of optimization that is consid-

ered in this paper is the E-optimal design approach. Similar to the D-optimal design, the E-

optimal technique is a bit more computationally intensive. It seeks to maximize the minimum

eigenvalue of the information matrix M(Θ).

maxlminfðMðYÞÞg ) T ð12Þ

This method is often used as an alternative to the D-optimal method when one more of the

parameters has a relatively large variance in comparison to the other parameters. Graphically,

the E-optimal method minimizes the maximum diameter of the m dimensional ellipsoid

[3, 40].

There are numerous other traditional optimality criteria; however, these four were chosen

to demonstrate how the various methods result in different optimal designs and to compare

common methods to our novel approach.

Expected Kullback-Leibler Divergence (EKLD)

Simulated patient pool. To evaluate a sample schedule, we must evaluate it against a

number of possible patients. The posterior distributions developed by the Luo et al. analysis of

the Buzon data represents the range of possible parameter values possible patients may have

[32, 36].

The multivariate distribution is constructed from a set of five system parameters Θ(A, ϕ, R,

ηII, δ). Parameters R, ϕ, ηII, and δ are exactly established from Eq 1. Parameter A was derived

as an observable parameter which reduces the covariance between other parameters [32, 36].

A �
kIIyeR
d

ð13Þ

In order to evaluate a sampling schedule’s performance across multidimensional multivari-

ate distribution while maintaining computational tractability, we apply an unscented trans-

form to obtain 2N + 1 simulated sigma point patients which maintain the same first and

second moment characteristics as the initial multivariate distribution [41].

Xi ¼

(
m; i ¼ 0

mþ
ffiffiffiffiffiffiffiffi
NSi

p
; 1 � i � N

m �
ffiffiffiffiffiffiffiffi
NSi

p
; N < i � 2N

Xi ¼ ðAi; �i;Ri; ZIIi; diÞ

ð14Þ

where each Xi is the separate set of parameters for each sigma point patient. The μ and Si

terms are the mean of the prior distribution and the ith column of the covariance matrix of the

prior distribution respectively. N is the total number of dimensions in our prior distribution,

which in this case is a five-dimensional distribution.
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The five-dimensional parameter space results in 11 sigma point patients that exhibit a range

of 2-LTR concentration dynamics as illustrated in Fig 1. The transient nature of the dynamics

is evident from the various trajectories.

Markov Chain Monte Carlo (MCMC) Methodology. For each candidate schedule we

construct simulated data based on our models and measurement noise. The posterior distribu-

tions for parameter set Θi are constructed for each patient i using a Markov Chain Monte

Carlo technique. We define c(tk, Θi) as the true concentration measured at sample point k i
using parameter set Θi.

With a qPCR assay we assume measurement noise consistent with the assay which leads to

measurements as

mik ¼ lnNðlnðcðtk;YÞÞ; ln ð10ÞsðnÞÞ ð15Þ

Applying Bayes theorem, we arrive at the equation

PðYijmikÞ ¼
LðYijmikÞPðYiÞR1

0
PðmikjYiÞPðYÞdY

ð16Þ

Fig 1. Sigma point patient dynamics.

https://doi.org/10.1371/journal.pone.0206700.g001
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However,
R1

0
PðmikjYiÞPðYÞdY is a constant scaling factor of the posterior distribution

[36, 37]. For computational simplicity we simplify and arrive at the equation

PðYijmikÞ / LðYijmikÞPðYiÞ ð17Þ

which has the same form and conserves the KLD [33].

KLD calculation. Calculation of the Kullback Leibler Divergence (KLD) between the five-

dimensional multivariate prior and posterior distributions is done using equation

KLDðTÞ ¼
1

2
log 2

det S2

det S1

� �

� n � trðS� 1

2
S1Þ þ ðm2 � m1Þ

T
S� 1

2
ðm2 � m1Þ

� �

ð18Þ

where (μ1, S1) and (μ2, S2) are the mean vector and covariances matrices of the prior and pos-

terior multivariate distributions respectively and n is the number of dimensions in the distri-

bution [33, 38]. This formula for KLD can be used when both distributions are normal, or, as

in our case, are normalized through transformation. Because the base-2 logarithm is used in

the calculation of the KLD, the result is measured in base-2 units of information (bits).

We should also note that Eq 18 is applicable when all of the parameters are normally dis-

tributed. log(A),log(ϕ),and log(δ) are normally distributed. Parameters ηII and R are trans-

formed using the normal distribution quantile function. The KLD between distributions is

conserved through all transformations [33, 38].

The Expected Kullback Leibler Divergence (EKLD) is estimated by calculating the KLD for

each sigma point patient and multiplying by the probability of the patient occurring based on

the parameter distributions calculated by Luo et al.

EKLDðTÞ ¼
X11

i¼1

KLDðTÞiPðYiÞ ð19Þ

Where i represents a patient from the simulated sigma point patient pool sampled from the

Prior Distribution. Calculating the KLD only the 11 sigma point patients is a simplification

made to make the calculation more computationally feasible. The true EKLD would require

the KLD is calculated and integrated over the entire prior distribution.

EKLDðTÞ ¼
Z

i
KLDðTÞiPðYiÞ ð20Þ

It has been shown the sample schedule order is preserved when KLD is calculated using the

simplified method in lieu of integrating over the entire distribution [42].

Genetic algorithm

The inherent binary nature of time series measurements, taking a sample on a given day or not

in this case, lends itself well to a genetic algorithm optimization method. For such a system, it

is reasonable to assume that closeness of two candidate schedules on a Hamming distance

measure will correlate with closeness on a measure of information gained. To construct the

GA, candidate sample schedules are represented by a chromosome. Each chromosome consists

of genes and each gene is further broken down into base pairs. Each base pair represents a

potential sample day and takes on a binary value, 0 for days at which no sample and 1 for days

at which a sample is taken. The genes combine to form a chromosome with total base pairs

equal to the total number of possible sample days.

The algorithm is run with 20 child chromosomes per generation. The first generation is cre-

ated by randomly selecting the appropriate number of base pairs (sample days) per

HIV 2-LTR experiment design optimization
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chromosome. The corresponding information content is then calculated for each chromosome

by calculating its associated KLD. The chromosomes are then ranked in terms of the relative

fitness by assigning chromosomes yielding higher KLD values a greater fitness level. Chromo-

somes with the highest fitness are then used as the parent solutions to create the children for

the next generation. Children are created through a process of genetic crossovers and muta-

tions [43–45].

Genes are able to crossover to different locations or to the same location between parents.

Point mutations occur after the crossovers to ensure that the chromosome has exactly number

of sample points desired. These mutations occur by bit inversion. This is to ensure that the

algorithm is able to escape local minima.

Results and discussion

Six-point optimal sampling schedule

In the previous integrase inhibitor intensification HIV 2-LTR study done by Buzon et al., a

total of six samples were taken per patient. The samples were taken at day 0, day 14, day 28,

day 84, day 168, and day 336. We chose to find the optimal six-sample schedule, for all of the

optimality criteria, to compare to the schedule used in the Buzon experiment.

As can be seen in Fig 2a through Fig 2e the best six-point sample schedules for each opti-

mality criterion are plotted with the 2-LTR concentration curve plotted over an 8-week time

frame. The red diamond markers represent when a sample would be taken under each respec-

tive optimality criterion.

The A-optimality criterion, which seeks to minimizes the sum of the variances of the

parameters, yielded samples at day 0, day 1, day 4, day 9, day 27, and day 28. A sample at day 0

will quantify the initial condition. The sample at day 1 as the concentration is increasing will

allow for information about the rate of 2-LTR production. Next the criterion seeks a point

near the peak and then a point during the decay phase of the 2LTR. the last two points are

close together at the bottom of the curve.

The D-optimality criterion, which seeks to minimize the region of confidence of the maxi-

mum likelihood estimate of the parameters, resulted in a schedule similar to that of the A-opti-

mality criterion. However instead of choosing two points at the bottom of the curve, after the

decay of the 2-LTR concentration, it chose two points close together during the initial rise of

the 2-LTR concentration. The D-optimality criterion chose samples at day 0, day 1, day 2, day

4, day 11, and day 26.

The T-optimality criterion, which seeks to minimize the trace of the information matrix,

returned a schedule with heavy contrast to the other schedules. This criterion yielded samples

points collected around the peak of the 2-LTR curve with consecutive samples at day 1, day 2,

day 3, day 4, day 5, and day 6.

The E-optimality criterion, which seeks to minimize the maximum diameter of the m

dimensional parameter estimate ellipsoid, yielded a sample schedule very similar to that of the

A-optimality criterion, however, this criterion preferred a sample point closer to the peak

instead of during the ascent of the 2-LTR concentration as in the A-optimality schedule. The

E-optimality criterion chose samples at day 0, day 2, day 4, day 10, day 26 and day 27.

Our method, the EKLD, unlike the A, D, and E optimality criterion did not elect to take a

sample at the day 0. Instead the optimal EKLD schedule chose three consecutive points during

the rise of the 2-LTR concentration up to the peak. The samples are then spread out with 1 on

the descent of the concentration, and two at the bottom spaced out by several days. The opti-

mal EKLD sample schedule chose points at day 1, day 2, day 3, day 11, day 27 and day 46.

HIV 2-LTR experiment design optimization
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Buzon et al. in contrast to all of the optimal schedules took six samples that are much more

spread out at day 0, day 14, day 28, day 84, day 168, and day 336. As both the preliminary data

and our model suggests, the majority of the dynamics in the 2-LTR concentration occur within

the first four weeks post-intensification. Only three samples from the schedule used by Buzon

et al., were taken during this period. The other three were taken much later and in fact were

not taken within the 8-week window shown in Fig 2f.

In order to compare the performance of each schedule, we calculate the Expected Kullback-

Leibler Divergence for all of them. Because the EKLD is a Bayesian based global method of

estimating the divergence of the posterior parameter distribution from the prior distribution it

can serve as a fair measure for comparison. The results of this analysis are shown in Fig 3.

Based on the results shown in both Table 2 and Fig 3 the both Expected Kullback Leibler

Divergence based schedule and the D-optimality base schedule yielded significantly more

information than any of the other schedules with a median gain in information of around 3.8

bits for each. The A-optimality and E-optimality based schedules also produced a similar gain

in information of around 3.5 bits for each. The T-optimality based schedule performed

Fig 2. 6 point sample schedules.

https://doi.org/10.1371/journal.pone.0206700.g002
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significantly worse than all of the other optimal schedules with a median gain information of

3.28 bits. As expected all of the optimal schedules vastly outperformed the schedule used by

Buzon et al. Their sample schedule only produced a gain in information of 2.48 bits. Because

KLD is measured on a log scale (bits), this means the EKLD and D-optimal schedules would

produce over 2.5 times more information than the schedule used in the experiments done by

Buzon et al., without any increase in total number of measurements or study cost.

Four-point optimal sampling schedule

In a follow-up study to the Buzon experiment, another integrase inhibitor intensification

experiment was carried out by Hatano et al., however with less samples per patient. In their

Fig 3. 6 point schedule analysis.

https://doi.org/10.1371/journal.pone.0206700.g003

Table 2. Six-point sample schedules.

Samples EKLD

1 2 3 4 5 6

A-optimal 0 1 4 9 27 28 3.51

D-optimal 0 1 2 4 11 26 3.80

T-optimal 1 2 3 4 5 6 3.28

E-optimal 0 2 4 10 26 27 3.52

EKLD 1 2 3 11 27 46 3.83

Buzon 0 14 28 84 168 336 2.48

https://doi.org/10.1371/journal.pone.0206700.t002
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trial Hatano et al., took patient samples earlier in the experiment, however only four samples

were taken. The samples were taken at Day 0, Day 7, Day 14 and Day 56. As a comparison to

the Hatano sample schedule we found the optimal four-point sample schedules for the various

optimality criteria.

Fig 4a through Fig 4e show the best four-point schedules for all of the optimality criteria

plotted with the 2-LTR concentration curve over an 8-week time frame with the sample points

denoted by the red diamond marker.

The best four-point schedule under the A-optimality criterion is shown in Fig 4a with sam-

ples taken at day 1, day 4, day 5 and day 12. In the six-sample schedule for the A-optimality cri-

terion a sample was taken at day 0; however, this sample was not present in the four-sample

optimal solution for this criterion. The six-sample optimal also chose two points toward the

bottom of the 2-LTR concentration curve. The four-sample optimal, on the other hand, con-

tained more points around the peak of the curve and one capturing the decay of the 2-LTR

concentration on the downslope.

Fig 4. 4 point sample schedules.

https://doi.org/10.1371/journal.pone.0206700.g004

HIV 2-LTR experiment design optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0206700 November 8, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0206700.g004
https://doi.org/10.1371/journal.pone.0206700


For the D-optimality criterion, the best four-point schedule is shown in Fig 4b with samples

taken at day 0, day 2, day 6, and day 12. This criterion kept the sample at day 0 that was present

in the six-sample optimal; however, similar to the A-optimality criterion schedule, the four-

sample schedule did not include the points that were selected further out in the schedule. This

criterion instead focuses on the initial concentration, a point on near the peak, and two points

on the descending side.

The best four-point schedule under the T-optimality criterion is shown in Fig 4c with sam-

ples taken at day 2, day 3, day 4, and day5. This sample schedule is very similar to the six-sam-

ple optimal for this criterion. All of the samples are taken consecutively around the peak. The

difference between the six-sample optimal and the four-sample optimal are that first and last

points of the six-sample optimal, taken at day 1 and day 6 respectively, are removed for the

four-sample solution.

For the E-optimality criterion, the best four-point schedule is shown in Fig 4d with sample

points taken at day 0, day 3, day 5 and day 46. This criterion also keeps the sample at day 0 that

was present in the six-sample optimal. Unlike the schedules selected by the other optimality

criterion, the E-optimality criterion chose a point that was relatively late in the experiment at

day 46. Because the E-optimality criterion focuses on minimizing the maximum diameter of

the ellipsoid this suggest that there exists some information about at least one of the parame-

ters at later time points in the experiment, which might have a relatively large variance when

compared to the other parameters.

The best four-point schedule using the EKLD method is shown in Fig 4e with samples at

day 1, day 2, day 15 and day 16. The EKLD method also similar to the A and D criterion did

not choose point later in the experiment four the four-point optimal, where it had selected

points relatively late in the experiment in the six-sample optimal at day 27 and day 46. Instead

the EKLD optimal schedule has two points consecutive points on each side of the curve, with

the points on the descending side of the curve toward the bottom, where the dynamics display

a high degree of curvature.

The schedule used by Hatano et al. in their experiment is shown in Fig 4f. In their experi-

ment samples were taken at day 0, day 7, day 14 and day 56. Similar to the E-optimal solution,

the sample schedule used by Hatano et al. takes samples at the day 0 and a sample later in the

experiment. One key difference however, is that the remaining two samples are taken near the

peak of the 2-LTR concentration dynamics in E-optimality solution, whereas they are taken

after the peak in the Hatano et al. experiment.

In order to compare the schedules against one another we calculated the EKLD for all of

them as a fair measure of information gain. The results of this analysis are illustrated in the bar

graph in Fig 5.

Based on the results shown in Table 3 and Fig 5, the EKLD schedule yielded a significantly

greater gain in information than any of the other schedules with an information gain of 3.16

bits. This is in contrast to the analysis done for the six-sample optimal where the D-optimality

criterion produced a schedule that produced a similar gain in information as that of the EKLD

schedule.

Out of all of the schedules from the traditional optimality methods, the schedule from D-

optimality criterion produced the highest gain in information for the six-sample method; how-

ever, with four samples the A-optimality method yielded the highest gain in information with

3.04 bits. The E-optimality schedule produced the next highest median gain in information

with 2.9 bits but was not significantly different than the expected gain in information from the

D-optimality which had a median gain in information of 2.82 bits. The T-optimality criterion

again produced the worse performing of all of the optimal solutions with a median informa-

tion gain of 2.69 bits.
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Even though there is a significant difference in the expected information gain for the vari-

ous optimal schedules they all once again performed better than the ad hoc schedule that was

used in the experiment done by Hatano et al., which yielded a gain in information of only 2.43

bits. This shows that there is value in performing the optimization prior to carrying out the

experiment. The EKLD schedule will on average yield about 1.65 times more information than

the Hatano et al. schedule using the same amount of data points.

Measurement uncertainty and information content

In the previous analysis we have assumed that measurements will be taken and quantified

using a qPCR assay, the most commonly used assay in the quantification HIV DNA. There is

Fig 5. 4 point schedule analysis.

https://doi.org/10.1371/journal.pone.0206700.g005

Table 3. Four-point sample schedules.

Samples EKLD

1 2 3 4

A-optimal 1 4 5 12 3.04

D-optimal 0 2 6 12 2.82

T-optimal 2 3 4 5 2.69

E-optimal 0 3 5 46 2.90

EKLD 1 2 15 16 3.16

Hatano 0 7 14 56 2.43

https://doi.org/10.1371/journal.pone.0206700.t003
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however, another more accurate assay which is gaining popularity among the biomedical com-

munity. This new technique is known as a droplet digital polymerase chain reaction (ddPCR)

assay [46, 47]. It uses microfluidics to perform PCR amplification on thousands of tiny drop-

lets. The droplets are run through a machine and either test positive for the presence of DNA

or negative. Using Poisson statistics this assay is accurately estimate the DNA concentration,

especially at low copy numbers where the qPCR method fails. The primary source of noise in

this method is not in the assay but in taking the initial blood sample. The difference in mea-

surement accuracy between the qPCR assay and ddPCR assay is illustrated in Fig 6. The 95

percent prediction interval for each method is shown for the nominal patient 2-LTR concen-

tration curve with the qPCR error shown in green and the ddPCR error shown in red.

For measurement noise consistent with a ddPCR quantification assay, measurement noise

is defined as
mikðtkÞ ¼ PoissðliÞ;

li ¼ N 1 � e
� cðtk ;YiÞ�v

N

� � ð21Þ

where N is the number of droplets, c is the true concentration and v is the sample volume.

Using this simulated data, we then use an MCMC technique to find posterior distributions

for each parameter set Θi. The posterior distributions from previous analyses were the basis

for the uninformative prior distributions P(Θi). The likelihood function for our MCMC

Fig 6. qPCR vs. ddPCR measurement error.

https://doi.org/10.1371/journal.pone.0206700.g006
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calculation takes the form

LðYijmikÞ ¼ fLN mikðtkÞ;N 1 � e
� cðtk ;YiÞ�v

N

� �� �
ð22Þ

where fLN denotes the probability mass function of the Poisson distribution function [33, 46].

We can then calculate the EKLD under the assumption of measurement uncertainty consis-

tent with a ddPCR assay. Fig 7 illustrates EKLD of the six-point sample schedules with ddPCR

measurement noise. We still find that EKLD based schedule provided the highest median

expected gain in information with 6.62 bits. This equates about seven times more information

about the parameters when using a ddPCR assay versus using a qPCR assay for this schedule.

The D-optimality criterion-based schedule is the still next best performing schedule with a

median expected gain in information of 6.5 bits which provides 6.47 times more information

that using a qPCR assay for this schedule. The T-optimal based criterion, which yielded the

smallest gain information among all of the optimal schedules for the six-point analysis with a

qPCR assay, now provides a greater gain in information than the A and E optimality criterion-

based schedules. The T optimality criterion-based schedule provides a median expected gain

in information of 6.46 bits with the ddPCR assay. For this schedule the ddPCR assay provides

approximately nine times more information than the qPCR assay.

The A and E Optimality criterion which provided a similar gain in information with a

qPCR assay still perform similarly with the ddPCR assay; however, for both the expected

median information gain has increased to 6.24 bits. This results in 6.66 and 6.58 times more

Fig 7. 6 point ddPCR schedule analysis.

https://doi.org/10.1371/journal.pone.0206700.g007
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information when using the ddPCR assay versus using the qPCR assay for the A optimality cri-

terion schedule and E Optimality criterion schedule respectively. The Schedule used by Buzon

et al. remains the worst schedule of them all in terms of expected information gain. This sched-

ule results in a median expected information gain of 3.36 bits with a ddPCR assay which is

about 1.84 times more information than would have been provided if a qPCR assay was used.

The assay specific information content is shown for each six-point schedule in Table 4.

Fig 8 illustrates the EKLD of the four-point sample schedules with ddPCR measurement

noise. Again, we see that there is a sizable increase in the amount of information gained for

each schedule. The EKLD based schedule still has the highest median expected gain in infor-

mation with a median expected information gain of 6.02 bits. When compared to the amount

of information gain expected from the qPCR assay for this schedule, the ddPCR assay will pro-

vide approximately 7.24 times more information about the parameters. The A-optimality crite-

rion schedule, as in the qPCR analysis, still has the second highest median expected gain in

Table 4. Six-point sample schedules EKLD.

Schedules

EKLD D T A E Buzon

qPCR 3.83 3.80 3.28 3.51 3.52 2.48

ddPCR 6.62 6.50 6.46 6.24 6.24 3.46

https://doi.org/10.1371/journal.pone.0206700.t004

Fig 8. 4 point ddPCR schedule analysis.

https://doi.org/10.1371/journal.pone.0206700.g008
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formation when using the ddPCR assay with a median expected gain in information of

5.83 bits. This schedule provides 6.91 times more information when using the ddPCR assay

versus using the qPCR assay.

The other three schedules, on the other hand, perform slightly differently assuming ddPCR

measurement noise. Now the T-optimality criterion schedule, which was the worst performing

of the optimal schedules, out performs the D and E optimality criterion schedules with an

expected gain in information of 5.5 bits. There will be approximately seven times more infor-

mation gained in the experiment when using the ddPCR assay vs. the qPCR assay for this

schedule. The D optimal criterion-based schedule yields an expected information gain of

5.37 bits, which results in 5.87 times more information using the ddPCR assay vs. the qPCR

assay. The E optimal schedule is now the worst performing of the optimal schedules providing

a median expected information gain of 5.1 bits. Using the ddPCR assay will provide about

4.6 times more information about the parameters vs. using the qPCR assay. The schedule used

by Hatano et al. remains the worst performing schedule overall with a median expected infor-

mation gain of 3.68 bits with a ddPCR assay. About 2.38 times more information will be pro-

vided if the experiment uses a ddPCR assay instead of a qPCR assay. The assay specific

information content is shown for each four-point schedule in Table 5.

Conclusion

The intent of this paper is to introduce our novel Expected Kullback-Leibler Divergence

(EKLD) method for optimal experiment design. We demonstrate its utility by using it to opti-

mize HIV 2-LTR experiments and compare the results to optimal designs using traditional

methods. Our results demonstrate that all of the optimization methods provided a greater

expected gain in information than the ad hoc schedules used in the two previous studies done

by Hatano et al. and Buzon et al. The EKLD based schedules consistently outperformed the

other optimal schedules; however, it did not always provide a significant gain in information

over other optimal schedules. Even so, due to the Bayesian nature of our analysis and the inclu-

sion of the a priori parameter information, we believe it provides a more exhaustive analysis of

optimal experiment design [3, 5].

HIV 2-TLR trials can serve as a critical procedure to use to determine if and to what extent

ongoing viral replication is occurring within treated HIV(+) patients. This knowledge is essen-

tial as it will guide the individualized patient treatment of the disease. In order for the proce-

dure to useful, it must garner the maximum amount of information about the patients’

replication as possible [2]. This drives the need to optimize the trial with analyses such as those

presented in the paper. The results of our analysis show that sample times, number of samples,

and sample assay all have a large effect on the amount of information that the experiment will

provide.

In general, monetary cost and patient burden are two of the main concerns when conduct-

ing any clinical trial. Our method can easily be extended to other clinical trials. A recent review

paper of a study of clinical trials stated that each additional month for phase III clinical trials

translates into a median $671,000 spent [1, 2]. In our analysis we showed that the optimal

Table 5. Four-point sample schedules EKLD.

Schedules

EKLD D T A E Hatano

qPCR 3.16 2.82 2.69 3.04 2.90 2.43

ddPCR 6.02 5.37 5.50 5.83 5.10 3.68

https://doi.org/10.1371/journal.pone.0206700.t005
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four-point EKLD based sample schedule provided approximately 1.6 times more information

than a schedule used by Buzon et al. and only took 4 samples over a 16-day period, whereas

the Buzon et al. experiment spanned 336 days and took 6 samples. A great deal more informa-

tion was provided with fewer samples and in less time. This would translate to a great deal of

cost savings for the experiment and a sizable reduction in overall burden to the patient.
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