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Abstract

Spatial patterns of radiotracer binding in positron emission tomography (PET) images may

convey information related to the disease topology. However, this information is not cap-

tured by the standard PET image analysis that quantifies the mean radiotracer uptake within

a region of interest (ROI). On the other hand, spatial analyses that use more advanced

radiomic features may be difficult to interpret. Here we propose an alternative data-driven,

voxel-based approach to spatial pattern analysis in brain PET, which can be easily inter-

preted. We apply principal component analysis (PCA) to identify voxel covariance patterns,

and optimally combine several patterns using the least absolute shrinkage and selection

operator (LASSO). The resulting models predict clinical disease metrics from raw voxel val-

ues, allowing for inclusion of clinical covariates. The analysis is performed on high-resolution

PET images from healthy controls and subjects affected by Parkinson’s disease (PD),

acquired with a pre-synaptic and a post-synaptic dopaminergic PET tracer. We demonstrate

that PCA identifies robust and tracer-specific binding patterns in sub-cortical brain struc-

tures; the patterns evolve as a function of disease progression. Principal component

LASSO (PC-LASSO) models of clinical disease metrics achieve higher predictive accuracy

compared to the mean tracer binding ratio (BR) alone: the cross-validated test mean

squared error of adjusted disease duration (motor impairment score) was 16.3 ± 0.17 years2

(9.7 ± 0.15) with mean BR, versus 14.4 ± 0.18 years2 (8.9 ± 0.16) with PC-LASSO. We inter-

pret the best-performing PC-LASSO models in the spatial sense and discuss them with ref-

erence to the PD pathology and somatotopic organization of the striatum. PC-LASSO is

thus shown to be a useful method to analyze clinically-relevant tracer binding patterns, and

to construct interpretable, imaging-based predictive models of clinical metrics.
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Introduction

Pathological processes associated with neurological disorders often develop in distinct spatio-

temporal patterns. These patterns can be imaged with positron emission tomography (PET) or

single-photon emission computed tomography (SPECT) using appropriate radiotracers. How-

ever, traditional quantitative PET and SPECT image analysis metrics, such as the standardized

uptake value (SUV) and non-displaceable binding potential (BPND), are often evaluated as

averages over a specific region of interest (ROI). This approach neglects the spatial distribution

of radiotracer binding, which may be affected by disease within the ROIs. There is thus a grow-

ing realization that better methods of spatial image analysis are needed to achieve a more com-

plete disease characterization and to improve prediction and tracking of disease progression

[1–3]. The primary approach to spatial analysis in the context of these objectives has so far

relied on the use of texture- and shape-based image features [4–8], leaning heavily on the

emerging field of radiomics [9–11]. Following a general radiomics approach, a large number

(between tens and hundreds) of different features are computed from the images within pre-

defined ROIs. The features are then used as inputs to one of the established machine learning

models (neural nets, decision forests, etc.) to predict clinical measures of interest [12–14].

However, investigations that use radiomic features are limited in two aspects. First, PET

and SPECT brain imaging studies often have a relatively small sample size (10 to 50 subjects)

compared to the number of tested features (“large p, small n” problem) [14–17]. The values of

features may likewise depend on internal variables required to define the features, image

reconstruction algorithm and ROI definition criteria [7, 18–21]. This aspect may result in a

very large model-parameter search space and substantially increase the risk of model overfit-

ting, particularly if the employed statistical testing strategy is not robust or valid [22–25]. Sec-

ond, a relatively high complexity and locality of the radiomic features hinders visualization

and biological interpretation of the disease-relevant spatial patterns [26].

In the present work we explore a data-driven approach to the analysis of PET brain images

that aims to overcome the shortcomings described above, i.e. overfitting, optimal feature

search, and interpretability. In contrast to relying on generic radiomic features, our method

identifies disease- and structure-specific spatial patterns of radiotracer binding on a voxel

level, and constructs image metrics optimized for prediction of clinical measures. The method

uses individual-subject voxel values as inputs, and consists of two steps. In the first step, the

high dimensionality of the voxel data is reduced in a blind (i.e. independent of the clinical met-

rics) manner using principal component analysis (PCA). In the second step, several principal

components (PCs) with the highest percent of explained total variance are selected and linearly

combined to predict clinical metrics of interest. The combinations are determined using regu-

larized fitting by the least absolute shrinkage and selection operator (LASSO) [27]. In compari-

son to ordinary multivariate fitting, LASSO selects only those input variables that improve

prediction accuracy; inputs that do not contribute to the accuracy are set to zero. We refer to

this method as the principal component LASSO (PC-LASSO), and to the best of our knowl-

edge, it has not been previously used in the analysis of PET images. The use of sequential

dimensionality reduction and variable selection techniques, wherein PCA is blind and LASSO

is used in conjunction with model cross-validation, reduces the risk of overfitting, and enables

the use of raw data from 103–104 voxels to build predictive models from a much lower number

(10–100) of subjects. The fitted PC-LASSO models can be used to compute PC-LASSO estima-

tors, which capture information in a non-local manner by assigning a weight to each voxel

that quantifies the voxel’s relevance to the predicted clinical metric. The weights can be visual-

ized in the context of the topology of the imaged structure, providing direct information on

the spatial characteristics and evolution of disease.
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We test the PC-LASSO method by applying it to high-resolution PET images of subjects

suffering from Parkinson’s disease (PD), the second most common progressive neurodegener-

ative disorder after Alzheimer’s disease [28]. PD is associated with degeneration of pre-

synaptic dopaminergic terminals in the basal ganglia, while initially inducing a compensatory

response in the postsynaptic neurons [29, 30]. Accordingly, the method is applied to striatal

PET images obtained with a pre-synaptic and a post-synaptic dopaminergic tracer: 11C–

dihydrotetrabenazine (DTBZ), a marker of the vesicular monoamine transporter type 2

(VMAT2) that reflects the density of dopaminergic terminals, and 11C–raclopride (RAC), a

dopamine D2 receptor antagonist. We tested whether PC-LASSO can a) identify the spatial

progression patterns for DTBZ and RAC, which are expected to be different, and b) predict

clinical metrics from the imaging data better than the mean tracer binding ratio (BR), thus

demonstrating the clinical relevance of the captured patterns.

We first examine and compare the DTBZ and RAC binding patterns captured by PCA. The

robustness and temporal evolution of the patterns are assessed by comparing them between

the less- and more-affected sides of the brain, as well as between images obtained from subjects

at different disease stages. We then combine several PCs using LASSO to construct cross-

validated models of clinical disease metrics: disease duration (DD) and motor impairment

scores. We compare the fit quality and prediction accuracy between the PC-LASSO models

and the mean BR within an ROI. Finally, we analyze the distribution of voxel weights in the

obtained PC-LASSO estimators in the context of PD pathology.

Materials and methods

Subjects and scans

The study included 10 healthy control (HC) subjects and 41 PD subjects combined from dif-

ferent clinical studies, but imaged using the same protocol on the same scanner. All except two

PD subjects had both a DTBZ and a RAC scan; one PD subject lacked a DTBZ scan, and

another lacked a RAC scan. Among the HC group, 6 subjects were scanned with both DTBZ

and RAC, while another 4 subjects only had a DTBZ scan. Although the number of HC sub-

jects was relatively low, their images were only used as part of a larger group that also included

early PD subjects, as elaborated below. All HC and PD subjects underwent a T1-weighted

structural magnetic resonance (MR) imaging scan.

Clinical and population characteristics of the HC and PD groups are listed in Table 1. To

analyze the radiotracer binding patterns in different disease stages, the PD subjects were split

into two sub-groups of approximately equal size according to the DD. The threshold that pro-

duced similarly-sized sub-groups was found to be 3 years. The sub-group with 0� DD� 3

years (N = 22) is referred to as early PD, and the sub-group with DD� 4 years (N = 19) is

referred to as moderate PD. Since chronic intake of dopamine receptor agonist treatment, but

not levodopa, has been shown to affect RAC binding [31], we recorded the agonist levodopa-

equivalent dose (AgLED) for each PD subject.

The severity of movement impairment in the PD subjects was assessed off-medication

(withdrawal period 12 hours) according to the motor subscale of the Movement Disorder

Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS Part III) [32]. The better

(less affected) and worse (more affected) sides were identified for each subject using the total

MDS-UPDRS III scores for the left and right sides. As one of the clinical metrics for image-

based prediction, lateral motor score (LMS) was computed by adding the individual items of

MDS-UPDRS III for the leg (leg rigidity + toe tapping + leg agility) and arm (arm rigidity + fin-

ger tapping + hand movements + pronation/supination) assessments. The LMS was computed

separately for the better and worse sides (Table 2). The tremor MDS-UPDRS III items were
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not included, as tremor is known to have worse correlation with dopaminergic deficit [33, 34].

The study was approved by the University of British Columbia Ethics Board and all subjects

gave informed written consent.

PET and MR image acquisition

PET scans of the PD subjects were performed with anti-Parkinson medication withdrawn at

least 12 hours prior to scanning. Before tracer injection, transmission scans for attenuation

correction were performed over 10 minutes with a rotating 137Cs source. Subsequently, the

subjects were administered 320 ± 34 MBq of DTBZ and 322 ± 34 MBq of RAC via intravenous

injection. PET data were acquired in list mode using a High Resolution Research Tomograph

(HRRT, Siemens, spatial resolution (2.5 mm)3). Acquired coincidence data were binned into

16 temporal frames with frame durations of 1 min (×4 frames), 2 min (×3 frames), 5 min (×8

frames), 10 min (1 frame) (60 minutes in total). Dynamic images were reconstructed using the

3D list-mode ordinary Poisson ordered-subset expectation maximization (OP-OSEM) algo-

rithm [35] with 16 subsets and 6 iterations, and corrections for attenuation, scattered and ran-

dom coincidences. After reconstruction, the images were smoothed using a 2.0 mm (full width

at half-maximum) Gaussian filter to reduce noise, and rigidly frame-to-frame realigned to cor-

rect for possible motion during the scans. The image dimensions were 256×256×207 with

voxel size (1.219 mm)3.

Table 2. Distributions of the clinical metrics for all PD subjects.

Clinical metric Min Max Mean SD

LMS, better side 0 12 3.64 3.04

LMS, worse side 1 17 6.48 4.02

DD (years) 0 16 5.17 4.28

All PD subjects were included. LMS = lateral motor score; DD = disease duration; SD = standard deviation. Greater

LMS corresponds to greater motor impairment.

https://doi.org/10.1371/journal.pone.0206607.t002

Table 1. Population statistics.

HC

(RAC)

HC

(DTBZ)

early PD

(DD� 3 years)

moderate PD

(DD� 4 years)

N 6 10 22 19

Sex M = 3, F = 3 M = 7, F = 3 M = 13, F = 9 M = 12, F = 7

Age (years) 48.6 ± 17.9 48.4 ± 19.0 60.9 ± 9.3 62.6 ± 7.9

Disease duration

(years)

na na 2.1 ± 1.0 8.7 ± 3.8

H&Y ×N na na 1×3 1.5×1 2×18 1×4 1.5×1 2×11 2.5×1 3×2

Total

MDS-UPDRS III

na na 16.5 ± 8.3 22.7 ± 12.1

MoCA na na 27.8 ± 1.4 28.3 ± 1.3

Agonist status

(mean AgLED)

na na OFF = 15 ON = 7 (155.4 ± 102.6) OFF = 5 ON = 14 (177.6 ± 92.8)

The six HC subjects for which RAC images were acquired (first column) are included in the DTBZ HC group (second column). The age difference between the early PD

and moderate PD groups was not statistically significant (p = 0.52). Likewise, there were no significant differences in the MoCA scores (p = 0.29) and the male-to-female

ratio (p� 1 according to the Fisher exact test). The calculation of the mean agonist levodopa-equivalent dose (AgLED, in mg/day) excluded subjects who were not on

agonist therapy. H&Y = Hoehn and Yahr score; MoCA = Montreal cognitive assessment score.

https://doi.org/10.1371/journal.pone.0206607.t001
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MR images were acquired using a T1-weighted Turbo Field Echo sequence (TR 7.7 millisec-

onds) on a Philips Achieva 3T scanner. The acquired MR image dimensions were 256×256×
170 with voxel size (1.0 mm)3. Post-acquisition, the MR images were resampled using trilinear

interpolation to match the PET voxel size (yielding new dimensions 211×211×140 voxels). All

subcortical structures included in the analysis were automatically segmented from the MR

images using Freesurfer 6.0 [36].

Segmentations of the left and right putamen and caudate were used for the main part of the

analysis. The ventral striatum (VS) regions, also segmented by Freesurfer (labeled as the

accumbens area), are more closely related to the executive rather than motor function. There-

fore, they were combined with the caudate segmentations to reduce the number of analyzed

regions.

Computation of parametric PET images

DTBZ and RAC images averaged over 30–60 min post-injection were rigidly co-registered to

the corresponding subject’s MR images, using the SPM 12 software (www.fil.ion.ucl.ac.uk/

spm/); the quality of the registration was visually inspected for each subject. Following co-

registration, parametric BR images of DTBZ and RAC were computed for each subject, by

dividing the voxel values in the respective activity images by the mean activity in a reference

region. Freesurfer segmentation of the cerebellum (gray and white matter) was used to define

the reference region for RAC. Segmentation of the occipital cortex, produced by masking the

Freesurfer segmentation of the cortex, was used to define the reference region for DTBZ.

We used parametric images of BR rather than more commonly used BPND, since the BR

can be readily computed from static as well as dynamic scans. In a preliminary study, the pro-

posed method was applied to parametric BR as well as BPND images, obtained using the simpli-

fied reference tissue model (SRTM2) [37, 38]; the results were found to be very similar. This

was expected, since the BR (measured after the tracer equilibration) has been previously

shown to be highly correlated with BPND values [39]. In addition, BR is often used as the out-

come in imaging studies with AV-133, the 18F-labelled version of 11C-DTBZ [40]. In principle,

PC-LASSO can be applied to different types of parametric images, since it primarily works

with covariance patterns rather than absolute voxel values.

Adjustment of disease duration

We found that for DTBZ, the mean BR in the putamen was better fitted against DD by an expo-

nential function, rather than by a linear function, in agreement with previously reported results

reported with BPND [41]. Thus, to enable the use of linear fits produced by LASSO, we linear-

ized DD to obtain an adjusted DD (aDD) computed as aDD = exp(−0.17 × DD), followed by

re-normalization between min(DD) = 0 years and max(DD) = 16 years. The coefficient −0.17

years-1 was found from the exponential fit of the mean DTBZ BR against DD. The re-normali-

zation was applied to make aDD increase with disease progression, within the same range as

DD. This facilitated the interpretation of the results (scatter plots and prediction errors).

Processing and PCA of PET images

The pipeline for processing of DTBZ and RAC parametric BR images is schematically illus-

trated in Fig 1. For each subject, the segmented (and co-registered) MR and BR images were

separated into left and right sides, and each side was processed separately. Examples of MR

images, striatum segmentations, and PET images for one of the PD subjects are shown in

Fig 2A. On each side, the MR image-defined segmentations of the putamen and caudate were

combined to generate a single labeled volume that was warped to a common striatal template

Voxel-based analysis of brain PET images: Visualization and quantification of neurodegeneration patterns
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(Fig 2B) using 3D diffeomorphic mapping [42]. The resulting transformation was saved and

applied to the respective BR image. Thus, the left and right striatal BR images of all HC and PD

subjects were warped to a common labeled reference space (Fig 2C). The PD images were fur-

ther sorted into better and worse brain sides, contralateral to the less and more clinically-

affected body sides.

PCA was applied to the voxel BR data in the common space, separately for voxels in the

putamen and caudate, and separately for the better and the worse brain sides. Each voxel in

the common space was treated as a variable, and voxel BRs corresponding to different subjects

were treated as observations. PCA finds orthogonal axes in the original variable space, termed

PC loadings, that are aligned with the directions of greatest variance in the data. The following

decomposition of the BR data into K PCs was performed:

!fn ¼
XK

k¼1

snk
!ok ð1Þ

where
!fn is the vector of voxel BR values of the n-th subject, !ok is the vector of voxel

weights in the k-th PC, and snk are the PC scores, quantifying the projections of the original

data onto the new basis !ok . In other words, PC scores snk quantify the relative contribution of

the k-th PC to the BR values of the n-th subject. Vectors !ok are the orthogonal PC loadings

that define the contribution of each voxel to the PCA-defined basis functions.

Spatial analysis of PC loadings

PC loadings obtained from PCA of all PD subjects were analyzed. The spatial patterns in voxel

weights, captured by the PC loadings, were visually examined in the putamen and caudate.

The better-side patterns were compared to the worse-side patterns. PC scores for each subject

corresponding to these loadings/patterns were used in the multivariate PC-LASSO fits to

obtain PC-LASSO models of aDD and LMS.

Fig 1. Schematic illustration of the image processing and analysis pipeline. Parametric PET images of the left and right striatum were warped to a common

space using an MR-derived striatal template. In the common space, the images were re-sorted according to the better (less clinically affected) and worse sides,

and used in PCA to obtain side-specific PC loadings and PC scores. The PC loadings and scores in the putamen and caudate were analyzed separately. LASSO

was used to obtain the fitting coefficients between the PC scores and clinical PD metrics—aDD and LMS. Using the fitting coefficients, the PC loadings were

linearly combined to obtain the PC-LASSO estimators.

https://doi.org/10.1371/journal.pone.0206607.g001
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To assess the consistency of the patterns in different disease stages, PCA was additionally

applied to the DTBZ and RAC caudate and putamen images of three subject sub-groups:

1. mixed HC and PD with DD� 2 years (N = 11 PD + 6 HC for RAC, 12 PD + 10 HC for

DTBZ)

2. early PD (DD� 3 years, N = 22)

3. moderate PD (DD� 4 years, N = 19)

The mixed HC/PD sub-group was constructed with the intention to capture the patterns of

tracer binding associated with the onset of clinical disease. It consisted of the HC subjects, and

Fig 2. Examples of striatum images and segmentations in subject-native and common spaces. A: Segmented MR image, DTBZ and RAC images in the native space

for a PD subject. B: Rendering of the striatal template from two views. To generate the template, Freesurfer segmentations of the MR images of the putamen and caudate

in the HC subjects were rigidly co-registered and averaged (N = 10, one side chosen randomly from each subject). C: Comparison of DTBZ and RAC BR images in the

subject-native and common spaces (PD subject, same as A). AP = anteroposterior, LM = lateromedial, IS = inferosuperior.

https://doi.org/10.1371/journal.pone.0206607.g002
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a subset of subjects from the early PD sub-group (with DD up to two years). Only one brain

side (left or right) was used from each HC subject, chosen randomly. The age difference

between the HC and PD subjects in the sub-group was not statistically significant (p > 0.1).

One PD subject in the mixed sub-group was on agonist therapy—that subject was excluded

from the PCA of RAC images. The early and moderate PD sub-groups (Table 1) were intended

to capture the patterns of tracer binding at later stages of the disease.

PC-LASSO models for clinical metric prediction

Following the analysis of PC loadings, we used LASSO-based fitting with cross-validation to

combine multiple PCs in a model optimized for prediction of clinical disease metrics. For a

general set of input (predictor) and output (predicted) variables, LASSO finds a vector of fit-

ting coefficients b̂ such that

b̂ ¼ arg min
b

1

2

XN

n¼1

ðyn � b0 �
XJ

j¼1

xnjbjÞ
2
þ l
XJ

j¼1

jbjj

 !

ð2Þ

where N is the number of samples, xnj are the input (independent) variables, J is the number of

input variables, yn is the outcome (dependent) variable, b0 is the intercept, and λ is a non-nega-

tive regularization parameter. Compared to the regular least squares fitting, regularization that

partially restricts overfitting is achieved through the inclusion of the term l
PJ

j¼1

jbjj. The choice

of λ controls the degree of regularization. Large λ forces the terms with small βj to go to zero.

With λ ! 0, LASSO becomes identical to regular multivariate least-squares fitting, and with

λ ! 1 all but the constant (β0) terms are eliminated. LASSO is particularly well-suited for

problems with a small sample size and a large number of independent variables.

The models that were fitted to the data using LASSO had the general form

yn ¼ b0 þ
XJ

j¼1

snjbj ð3Þ

where the PC scores snj obtained from PCA of all available PD subjects are used instead of the

variables xnj; n represents the subject index, and j represents the PC number. The PCs were

numbered (ranked) in a descending order according to their variance-accounted-for (VAF).

Based on the initial analysis of PC loadings, it was determined that large clusters of voxels with

similar weights were only present in the top 5 PCs; loadings of PC6 and onwards resembled

random noise. Thus, to make the number of pre-optimization independent variables constant

in different tested models, only the scores of the top 5 PCs were used as LASSO inputs (J = 5).

The variable yn represents the predicted clinical metric; we fitted separate models to predict

aDD, better-side LMS and worse-side LMS (Table 2). With aDD, we tested better-side and

worse-side PC scores as the input variables. In the models of better and worse LMS, PC scores

from the corresponding contralateral side of the brain were used as inputs. All models with

RAC data included age and AgLED as covariates. The total number (train+test) of samples in

the cross-validated fitting was equal to 40 for both tracers.

Model optimization and fitting was performed using search over λ ranging from 0 to λmax

in 100 steps, where λmax produced an intercept-only model (βj� 0). For each tested λ, the data

were randomly divided 500 times into training and test sets using 0.3 holdout ratio: 70% of the

data were used for training, and 30% for testing. The mean cross-validated mean squared error

(MSE) in the test sets was measured (MSEtest). For λ that produced the lowest mean MSEtest

(λmin), MSE on the entire data was measured (MSEall). MSEtest was used to estimate the degree
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of overfitting and predictive accuracy for the unseen (future) data. MSEall was used as a metric

of model fit to the available data. Robustness of the LASSO fits corresponding to λmin was

assessed from the means and standard deviations of the term coefficients βj.
The MSEs of the PC-LASSO models of aDD and LMS given by Eq 3 were compared to

those of 1) a linear model that only included the mean BR values, and 2) a constant model that

included only the intercept β0. The constant model was included in the analysis to obtain refer-

ence MSE values that indicate a lack of meaningful outcome prediction. To assess the robust-

ness of the PC-LASSO models, we analyze the LASSO trace plots of the fitting coefficients and

MSEtest (i.e. their values as functions of λ). We compare the predicted-versus-actual (PVA)

plots between the mean BR and PC-LASSO models, and provide the values and significance

levels of the fitting coefficients βj for aDD and LMS.

Computation of PC-LASSO estimators

Since both PCA and LASSO are linear in nature, the LASSO-fitted combinations of PC scores

that predict clinical metrics can be transformed back to the space of the original variables, i.e.

voxels. Indeed, using the orthogonality of PCs and Eq 1, a LASSO-fitted linear model given by

Eq 3 can be expressed as

yn ¼ b0 þ
XJ

j¼1

ð
!fn �
!ojÞbj ð4Þ

¼ b0 þ ð
!fn �~vÞ ð5Þ

where the vector ~v ¼
PJ

j¼1

bj
!
oj is termed the PC-LASSO estimator for the predicted clinical

metric. PC-LASSO estimators represent weighted combinations of input voxels that optimally

(i.e. with minimum cross-validation error) explain the outcome variables, e.g. clinical metrics

of disease. Although the signs of PC loadings and scores are not uniquely determined in PCA,

in PC-LASSO estimators the sign is determined in the process of model fitting. We visualize

and interpret the spatial distribution of voxel weights in the PC-LASSO estimators of aDD and

LMS, to gain new insight into the functional patterns associated with PD.

Results

Analysis of PC loadings computed using all PD subjects

DTBZ PC loadings in the putamen and caudate are visualized in Fig 3A in the order of

decreasing VAF. Loadings of PCs with relatively high VAF contained large clusters of voxels

with similar weights, while loadings with low VAF had more heterogeneous weight distribu-

tions. PC1 had much greater VAF compared to other PCs, and the respective loadings con-

tained only positive voxel weights; thus, mathematically it represents a weighted mean, and

describes a global variance in the tracer binding. PC2 loadings contained both positive and

negative weights, and captured antero-posterior gradient in the putamen and infero-superior

gradient in the caudate. Patterns reflected by PC3 loadings combined antero-posterior and

infero-superior gradients. Patterns in the loadings of PC4 and PC5 were more intricate; PC5

in the caudate had prominent voxel weights in the ventral striatum region.

In the putamen, the difference between the better and worse side PC loadings (Fig 3A)

reflected the disease asymmetry: the worse-side patterns can be seen as more progressed bet-

ter-side patterns. For example, in the PC2 loadings, on the worse side the positive/negative
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weight boundary was shifted towards the anterior putamen (inferior caudate) compared to the

better side. There were no similar side-to-side differences in the caudate PC loadings, possibly

indicating that the asymmetry was not present or was less pronounced in the caudate.

Patterns captured by the RAC PC loadings were different from the DTBZ patterns, with the

possible exception of PC1 (Fig 3B). For example, patterns captured by DTBZ PC2 and 3 in the

putamen could not be found among the RAC PC loadings; the gradient direction in the RAC

PC2 loadings was different compared to DTBZ. Also in contrast to DTBZ, the disease asym-

metry was not clearly manifested in the RAC PC loadings on the better and worse sides.

PC loadings computed in different disease stages

Better-side DTBZ PC loadings computed in different subject sub-groups are visualized in

Fig 4. The figure demonstrates that PCA produced generally similar PC loadings in different

sub-groups of subjects, albeit with observable variations. In the putamen, VAF by the PC1’s in

Fig 3. Maximum intensity projections of the better- and worse-side PC loadings, obtained from PCA of all PD subjects.

Putamen and caudate loadings were computed separately, and ordered according to VAF expressed in percent. Positive and negative

weights were projected separately and combined into a single composite image using different color scales. Color intensity reflects

weight magnitude normalized to the maximum absolute value. Loadings with inverted color scales are equivalent. A: DTBZ PC

loadings. B: RAC PC loadings.

https://doi.org/10.1371/journal.pone.0206607.g003

Voxel-based analysis of brain PET images: Visualization and quantification of neurodegeneration patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0206607 November 5, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0206607.g003
https://doi.org/10.1371/journal.pone.0206607


the sub-groups consistently decreased with disease progression, while VAF by PC2–5

increased. The voxel weight distributions in the loadings of PC1, 2 and 3 were found to pro-

gressively change as a function of disease stage. For example, in the mixed HC/PD sub-group,

PC1 loading had greater weights in the posterior putamen (superior caudate), while in early

and moderate PD, the region with higher weights shifted towards the anterior putamen (infe-

rior caudate); in the putamen PC3 loadings, the ventral region became increasingly more

involved, while the magnitude of the antero-posterior gradient decreased.

With RAC, voxel weight patterns in the PC loadings were also similar between different

sub-groups (S1 Fig). However, in contrast to DTBZ we did not observe a gradual change in

RAC PC loadings with disease progression.

Performance and analysis of PC-LASSO models

The measured values of MSEtest and MSEall for the DTBZ putamen models (constant, mean

BR and PC-LASSO models) are summarized in Table 3. When putamen DTBZ data were used

as the model inputs, PC-LASSO models of aDD and better-side LMS outperformed the mean

BR and constant models. The largest improvement provided by PC-LASSO, compared to the

mean BR, was in MSEall on the worse side of putamen (mean BR MSEall = 18.3, PC-LASSO

MSEall = 13.4). Although it is known that MSEall has a tendency to diminish with greater

Fig 4. Maximum intensity projections of the better-side DTBZ PC loadings, obtained from PCA of subject sub-

groups at different stages of the disease. The PCs are ordered according to VAF expressed in percent (shown in the

corners). PC loadings in the putamen and caudate were computed separately. The first rows of the putamen and caudate

loadings (mixed HC+PD) capture patterns associated with the initial onset of clinical PD symptoms. The second rows

(early PD) represent stage of the disease shortly after symptom onset. The third rows (moderate PD) correspond to later

stage of the disease.

https://doi.org/10.1371/journal.pone.0206607.g004
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number of independent variables, the fact that MSEtest of PC-LASSO was also lower implies

that the optimized model was not overfitted. In the caudate, the MSEtest of all models were

similar (Table 4).

When RAC data were used as the model inputs, the prediction errors were similar between

the PC-LASSO, mean BR and constant models, indicating that very little aDD and LMS-

related information, if any, is captured by this tracer in general.

We examined in detail three fitted DTBZ PC-LASSO models with lower MSEtest compared

to that of the mean BR and constant models:

1. aDD predicted from the better-side PC 1, 3, and 4 scores in the putamen (scores that were

reatined as inputs by LASSO)

2. aDD predicted from the worse-side PC 1–5 scores in the putamen

3. better-side LMS predicted from the contralateral PC 1, 2, and 4 scores in the putamen

These three models had the general form given by Eq 3 with different input variables, coeffi-

ents and predicted variables. Trace plots of the fit coefficients βj and MSEtest against λ for the

three considered DTBZ PC-LASSO models are shown in Fig 5. The MSEtest of the mean BR

and constant models are plotted for reference. Distinct global minima were observed in the

MSEtest of all three PC-LASSO models; these minima were located at non-zero values of λ, and

were considerably lower than the MSEtest measured with the mean BR, PC1 scores alone, or

constant models. With large values of λ, only the PC1 scores were retained.

The PVA data plots for the PC-LASSO models and the respective mean DTBZ BR models

are shown in Fig 6. The plots demonstrate that the PC-LASSO models indeed fit the data better

than the mean BR. Improvement of the aDD fit with PC-LASSO was observed over the entire

range of actual aDD values. Improvement of the LMS fit was primarily observed in the interme-

diate range (2–6) of LMS; the high actual LMS values (LMS> 6) were severely under-estimated.

Table 3. Prediction MSEs of DTBZ-based models (PUTAMEN).

Predicted

metric

Input

brain side

Input: Constant Input: Mean BR Inputs: PC1-5 scores (LASSO)

MSEtest MSEall MSEtest MSEall MSEtest MSEall Retained terms

aDD b.s. 21.6 ± 0.24 20.2 16.3 ± 0.17 14.3 14.4 ± 0.18 10.9 PC[1,3,4]

aDD w.s. 20.3 ± 0.26 18.3 18.3 ± 0.29 13.4 PC[1,2,3,4,5]

b.s. LMS x-lat. 9.8 ± 0.16 9.3 9.7 ± 0.15 8.7 8.9 ± 0.16 7.3 PC[1,2,4]

w.s. LMS x-lat. 17.1 ± 0.28 16.1 18.8 ± 0.30 16.1 17.4 ± 0.27 16.1 none

The first two columns specify the predicted clinical metric (dependent variables) and the side of the brain from which the imaging data (independent variables) were

taken. The last column specifies which terms were retained after optimization. The mean values and standard errors of MSEtest from 500 test sets are shown. A square

root of the MSEs provides the absolute values of prediction errors. b.s. = better side; w.s. = worse side; x-lat. = contralateral.

https://doi.org/10.1371/journal.pone.0206607.t003

Table 4. Prediction MSEs of DTBZ-based models (CAUDATE).

Predicted

metric

Input

brain side

Input: Constant Input: Mean BR Inputs: PC1-5 scores (LASSO)

MSEtest MSEall MSEtest MSEall MSEtest MSEall Retained terms

aDD b.s. SAME AS PUT 18.0 ± 0.20 16.0 18.1 ± 0.19 16.0 PC[1]

aDD w.s. 17.9 ± 0.23 16.1 17.5 ± 0.22 13.5 PC[1,2,5]

b.s. LMS x-lat. 9.8 ± 0.15 8.8 9.8 ± 0.18 9.3 none

w.s. LMS x-lat. 18.7 ± 0.30 16.1 17.1 ± 0.26 16.1 none

b.s. = better side; w.s. = worse side; x-lat. = contralateral.

https://doi.org/10.1371/journal.pone.0206607.t004
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The cross-validated mean values, standard deviations, and significance levels (p-values) of

the fit coefficients βj, obtained with λ = λmin, are plotted in Fig 7. The mean values of the coeffi-

cients obtained from the training sets agree well with the values that were determined using

the entire data. As indicated by the relative magnitudes of the means and standard deviations

in Fig 7, the fit coefficients were consistent between different training sets. Interestingly, the

contribution of PC4 in the model 3 was more significant than that of PC1. This may imply that

the severity of motor impairment in PD is associated with neurodegeneration in specific sub-

regions of the putamen, rather than in the entire structure.

DTBZ PC-LASSO estimators of aDD and LMS

The PC-LASSO estimators for aDD and LMS, corresponding to the three considered DTBZ

models fitted on all data, are visualized in Fig 8. The better putamen estimator for aDD con-

tained positive weights primarily in the anterior region, while negative weights were located in

the interior and posterior regions. The worse putamen estimator for aDD featured negative

weights in the anterior putamen, and positive weights in the posterior putamen—opposite to

the corresponding better-side estimator for aDD. The estimator for the better-side LMS fea-

tured a positive-to-negative gradient in the ventral-to-dorsal direction.

Discussion

Robustness and clinical relevance of patterns captured by the PC loadings

One of the main findings obtained with PCA was that tracer binding patterns captured by the

PC loadings were generally similar between different sub-groups of subjects. This provides evi-

dence that the patterns were robust and inherent to the disease, and are thus very likely to be

Fig 5. Trace plots of the coefficients βj and cross-validated MSEtest for the best three PC-LASSO models. The coefficients βj were fitted using the entire data.

For comparison, the MSEtest produced by the mean BR and constant models are indicated by dashed horizontal lines. λmin denotes the location of the global

minimum in MSEtest (indicated by vertical lines).

https://doi.org/10.1371/journal.pone.0206607.g005
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found in other PD cohorts. Comparison of DTBZ PC loadings between the sub-groups on a

finer level uncovered the spatial evolution of patterns as a function of disease stage.

The pattern captured by PC1 describes a global, but not uniform, decrease in tracer bind-

ing. From the analysis of VAF it follows that in early disease, the majority of the variance

between the subjects is explained by this pattern. The pattern of PC2 captured the antero-pos-

terior gradient in DTBZ binding that develops in PD. The gradients captured by PC3, PC4 and

PC5 describe variances of tracer binding in various directions that may be related to individual

differences in disease progression. Although the gradient patterns of PC2 and higher order

PCs reflected a much smaller component of variance compared to PC1, according to the VAF

values they become more prominent with disease progression.

The difference between the better- and worse-side DTBZ PC loadings in the putamen was a

reflection of the well-known asymmetrical nature of PD. Surprisingly, no corresponding side

difference was found in the caudate loadings (Fig 3A). This suggests that the spatiotemporal

progression of neurodegeneration may be symmetrical in the better and worse sides of the cau-

date, at least during the symptomatic stages of the disease.

Although it is very well known that pre- and post-synaptic processes respond differently to

the disease, PCA was able to identify more accurately the spatial differences between the

DTBZ and RAC binding alterations. Voxel-wise comparison of DTBZ and RAC second PCs in

Fig 6. Predicted clinical metrics plotted against the actual metrics. The mean BR model predictions are shown on the top, and the PC-LASSO model

predictions are shown on the bottom.

https://doi.org/10.1371/journal.pone.0206607.g006
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the putamen shows that pre- and post-synaptic functional gradients differ in terms of spatial

localization. The predominant DTBZ gradient was in the antero-posterior direction, while the

predominant RAC gradient was in the infero-superior direction (Fig 3).

In contrast to DTBZ, the binding patterns of RAC did not change with disease progression.

These observations indicate that compensatory upregulation of the D2 receptor density may

not exactly match the spatial localization of the dopaminergic terminal loss. The superior puta-

men is known to be primarily involved in the leg motor control [43]; it is thus possible to spec-

ulate that the limited spatial extent of the D2 receptor density upregulation, localized mostly in

the superior putamen as captured by the putamen RAC PC2, is partially responsible for the

fact that most new PD diagnoses are made based on the impairment of arm (but not leg)

movement.

Performance and biological interpretation of the PC-LASSO estimators

In terms of the clinical metric prediction error, PC-LASSO models provided an improvement

over the mean BR models when using DTBZ imaging data, but not when using RAC. The fact

that PC-LASSO did not always outperform the mean BR or constant models demonstrates

that a greater number of independent variables did not automatically produce better predic-

tion accuracy, and validates the method as being resistant to overfitting.

The DTBZ PC1 score appeared to be the strongest single predictor of aDD and LMS as it

was the only term retained at higher values of λ. However, the final optimized models fitted

using λmin (with lowest MSEtest and MSEall) retained non-zero terms for PC2–5, i.e. terms that

were different in meaning (and orthogonal) to PC1. This implies that the scores of PC2–5 had

independent explanatory value while capturing clinically-relevant tracer distribution patterns.

Similarly to individual PC loadings, the obtained DTBZ PC-LASSO estimators for aDD

and LMS (Fig 8) can be spatially interpreted. Taking into consideration the signs of the fit coef-

ficients (Fig 7), it follows that on the better side of putamen, greater aDD is associated with

increasing antero-posterior gradient, whereas on the worse side, it is associated with

Fig 7. The mean values, standard deviations, and p-values of the fit coefficients βj. The means and standard deviations (error bars) were obtained from

500 training sets. The coefficients that were fitted on all available data are plotted for comparison. Values of p< 0.05 are highlighted with bold font.

https://doi.org/10.1371/journal.pone.0206607.g007
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decreasing gradient. The latter is likely a reflection of the tracer binding floor effect in moder-

ate-to-advanced disease.

Another observation of interest is that according to the putamen PC-LASSO estimator for

the LMS, motor impairment in limbs is associated with the magnitude of the ventral-to-dorsal

gradient in DTBZ binding. The found association between the ventral-to-dorsal gradient and

limb motor scores appears to be consistent with the known striatal somatotopy in healthy state,

wherein the forelimb and hindlimb cortical regions project to the ventral-to-dorsal putamen

[43]. The lack of accurate PC-LASSO predictions for higher LMS values likely implies that

DTBZ (and RAC) imaging data only provide a partial characterization of the neural circuitry

that is responsible for motor function. Notwithstanding this limitation, the PC-LASSO estima-

tors for aDD and LMS visually demonstrate how different properties of the same PET image

(in this case gradients along different directions) may be related to different clinical metrics.

Method limitations and future work

There are several limitations to the proposed method. First, LASSO was used to fit linear mod-

els, while the DTBZ binding is known to change non-linearly as a function of disease progres-

sion [44]. To overcome this limitation, we computed aDD for model fitting; however, the

appropriate model for linearizing other disease metrics, or binding of other tracers, may not

Fig 8. Voxel weight distributions in the DTBZ-based PC-LASSO estimators of aDD and better-side LMS in the putamen. Caudate is shown for spatial

reference. The estimators were computed using βj that were fitted on all data. Front view at the top, back view at the bottom. A = anterior; P = posterior.

https://doi.org/10.1371/journal.pone.0206607.g008
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always be known a priori. Second, PCA does not uniquely determine the sign of !ok in Eq 1.

This property may complicate identification of similar PC loadings obtained in different data-

sets. In future work, it would be beneficial to establish a metric of similarity between PC load-

ings that could account for possible sign differences, as well as small differences in voxel

weights (e.g. between better and worse sides). We envision the use of some form of clustering

to group similar PC loadings together. Third, the study was performed on cross-sectional data,

which are not optimal when investigating disease progression. Other limitations of the method

are the facts that it requires non-rigid image registration, and may only be applicable to tracers

that have consistent/reproducible binding patterns.

Various modifications of the PC-LASSO pipeline can be envisioned. Our rationale for

using PCA here was that, among similar techniques, it is most general, and is well-suited to

capture intensity gradients through the inclusion of both positive and negative voxel weights.

PCA loadings are orthogonal by construction, and the corresponding scores are expected to

be uncorrelated, which makes LASSO appropriate to perform regularized fitting. However,

depending on the application, PCA in principle can be replaced with another linear

dimensionality reduction technique, such as sparse and/or generalized PCA [45, 46] or non-

negative matrix factorization [47]. While the linearity of PCA did not pose an obstacle in

our work, a non-linear dimensionality reduction method (e.g. kernel PCA) may also be

used where it is required. In turn, LASSO can be replaced with logistic LASSO, group LASSO,

elastic net, ridge regression, or a more sophisticated non-linear machine learning algorithm.

It would be of interest to compare the predictive accuracy of PC-LASSO models to that of

frequently-used local radiomic features in different imaging scenarios; given that we only had

a limited number of subjects available, such comparison was beyond the scope of this work.

Future work could also include the use of PC-LASSO or similar method to predict disease pro-

gression in large longitudinal imaging study with multiple tracers. A larger number of subjects

will also allow for a direct comparison of predictive performance between the PC-LASSO

models and most frequently used radiomic features.

Conclusion

We propose a novel data-driven method to construct models that predict clinical disease met-

rics from imaging data. The method is comprised of voxel-wise PCA followed by LASSO, and

readily allows incorporation of clinical covariates at the same level as the voxel data. We

applied PC-LASSO to the analysis of dopaminergic PET tracer binding in the striatum of PD

subjects. The PC loadings obtained in different groups of subjects revealed predominant

voxel-level binding patterns associated with the initial symptom onset and disease progression.

The constructed DTBZ PC-LASSO models had lower cross-validated error of clinical metric

prediction than the mean BR, confirming that patterns captured by the PC loadings are dis-

ease-related and offer additional explanatory and predictive power. The PC-LASSO estimators

captured information in a non-local manner, and hence enabled data-driven visualization and

interpretation of spatial patterns manifested in the images. The method is applicable to a vari-

ety of PET and SPECT imaging studies that focus on basal ganglia as well as other brain struc-

tures, including combination of data acquired with different tracers.

Supporting information

S1 Fig. Better-side RAC PC loadings at different stages of the disease. The PCs are ordered

according to VAF expressed in percent (shown in the corners). PC loadings in the putamen

and caudate were computed separately.
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