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Abstract

Slope ambulation is a challenge for trans-femoral amputees due to a relative lack of knee

function. The assessment of prosthetic ankles on slopes is required for supporting the

design, optimisation, and selection of prostheses. This study assessed two hydraulic ankle-

foot devices (one of the hydraulic ankles is controlled by a micro-processor that allows real-

time adjustment in ankle resistance and range of motion) used by trans-femoral amputees

in ascending and descending a 5-degree slope walking, against a rigid ankle-foot device.

Five experienced and active unilateral trans-femoral amputees performed ascending and

descending slope tests with their usual prosthetic knee and socket fitted with a rigid ankle-

foot, a hydraulic ankle-foot without a micro-processor, and a hydraulic ankle-foot with a

micro-processor optimised for ascending and descending slopes. Peak values in hip, knee

and ankle joint angles and moments were collected and the normalcy Trend Symmetry

Index of the prosthetic ankle moments (as an indication of bio-mimicry) were calculated and

assessment. Particular benefits of the hydraulic ankle-foot devices were better bio-mimicry

of ankle resistance moment, greater range of motion, and improved passive prosthetic knee

stability according to the greater mid-stance external knee extensor moment (especially in

descending slope) compared to the rigid design. The micro-processor controlled device

demonstrated optimised ankle angle and moment patterns for ascending and descending

slope respectively, and was found to potentially further improve the ankle moment bio-mini-

cry and prosthetic knee stability compared to the hydraulic device without a micro-proces-

sor. However the difference between the micro-processor controlled device and the one

without a micro-processor does not reach a statistically significant level.
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Introduction

Walking on sloped surfaces is a common task in daily life. According to gait studies with able-

bodied subjects, the knee joint has been found to be a major adaptor for slope ambulation as it

provides additional flexion and extensor moment in the early and mid-stance phase compared

to level ground walking [1–4]. Currently most trans-femoral amputees (TFAs) use passive

prosthetic knees that do not actively provide extensor moment and are designed to be locked

in nearly full extension from initial contact until the pre-swing phase. Therefore, it is normally

more of a challenge for TFAs to walk on slopes compared to trans-tibial amputees (TTAs) [5].

With the development of prostheses and the needs of amputees, recently more gait studies

have been carried out on the slope walking of TFAs [5, 6]. As the passive prosthetic knees need

to maintain extension during most of stance, the prosthetic ankle joint is crucial to supplement

lower limb movement. However, most studies on the slope ambulation of the TFAs have been

associated with prosthetic knee development and assessment, with limited studies on pros-

thetic ankle function.

The hydraulic ankle-foot device is a passive single axis articulating prosthesis design that

has been recently introduced and become commercially available for lower limb amputees.

More recently, micro-processor controlled hydraulic ankles have been developed and the

micro-processor allows the ankle resistance and range of motion (ROM) to be set with a

mobile app at any time. The function of hydraulic ankles have been investigated in previous

studies [7–14]. Most gait studies were carried out with TTAs and tests have been performed

on level ground [8, 9, 11], slopes [12, 14] and general outdoor walking conditions (including

slopes and stairs) [7]. Two studies involved TFAs and both level ground and cross-slope walk-

ing were investigated [11, 13]. It has been reported that the hydraulic ankle enables increased

walking speed [9, 11], a smoother transfer of plantar centre of pressure [8, 11], a higher bio-

mimicry of ankle resistance [13], and decreased peak internal stresses on the stump [7]. How-

ever, other research reported no significant differences in the torque at the distal end of the

socket in TTAs during slope ambulation when using hydraulic ankle-foot devices compared

with other ankle-foot designs [14]. The results of a questionnaire evaluation study (Seattle

Prosthesis Evaluation Questionnaire) showed improved satisfaction from 9 amputees (3 uni-

lateral TTAs, 3 bilateral and 3 unilateral TFAs) when using a hydraulic ankle-foot device com-

pared with their standard devices [10]. To date, only one study assessed a micro-processor

controlled hydraulic ankle and this was done with TTAs in descending a slope [12]. It was

reported that compared with a fixed hydraulic ankle and a rubber ball-joint ankle-foot device,

when the micro-processor was activated, there were significantly reduced prosthetic shank sin-

gle-support mean rotation velocity, residual knee flexion, residual knee negative work, and

greater negative prosthetic ankle work, which indicated that reduced biomechanical compen-

sations were used when walking down slopes [12]. Overall, more studies on the effects of

micro-processor controlled hydraulic ankle units in slope ambulation and the effect of a

hydraulic ankle in TFAs in general are required to support the optimisation of prostheses

design and selection of prosthetic components.

The pattern of the prosthetic ankle moment has been linked with the walking experience of

amputees using a mathematical model and it was found that a prosthetic ankle moment pat-

tern that is similar to (biomimicing) that of non-amputees could introduce a substantial

decrease in stresses on the residual limb [15]. Therefore the quantified similarity between pros-

thetic ankle moment and biological ankle moment can be used to assess the prosthetic ankle-

foot device. However, probably due to the lack of an appropriate quantification method, so far

there has only been one study that has tried to use Trend Symmetry Index (TSI) to assess dif-

ferent types of prosthetic ankle-foot devices [13].
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The first aim of this research was to investigate changes in kinematic and kinetic data of a

hydraulic ankle in ascending and descending a 5-degree slope in TFAs in comparison to a

rigid ankle. Based on the findings in a previous study [13], it was hypothesised that the hydrau-

lic ankle would provide a better biomimetic ankle moment (more similar to the biological

ankle moment pattern) and a greater ROM in slope walking compared with the rigid ankle.

The second aim was to investigate the effects of a micro-processor controlled hydraulic ankle

that allows customised adjustments in the adaption to uphill and downhill slope walking. It is

hypothesised that the micro-processor controlled hydraulic ankle would provide further

improved biomimetic ankle moments to adapt to the slope surface than the non micro-proces-

sor version. In addition, the hip and knee kinematics and kinetics on both sides can be affected

by the change of prosthetic foot, with limited previous work on the investigation of the effect

of hydraulic ankle-foot devices on the other lower limb joints in TFAs, the hip and knee angles

and moments were also studied.

Methods

Subjects and prostheses

Amputee subjects were recruited by the prosthetist that cooperated with this research project. No

contact was made between subjects and researchers unless the subjects meet the selection criteria

and agree to participate. The recruited amputee participants met the following inclusion criteria:

1) Unilateral trans-femoral amputees who have finished their whole rehabilitation program; 2)

Over the age of 18; 3) Participants have had a review with their prosthetist within two months

prior to the data collection day and have no outstanding issues with the prosthesis fit or stump; 4)

Participants mobility to be scored as level E or above using the SIGAM tool: "walks 50 metres or

more without walking aids except to improve confidence in adverse terrain or weather" (or equiv-

alent K-Levels K3 and K4); 5) Able to negotiate ramps without any additional walking aids. The

exclusion criteria for an amputee participant includes: 1) Participants with visual, auditory or ves-

tibular impairment that affects balance, walking or the ability to follow and respond to verbal

instructions; 2) Participants with sensitive skin or dermatological problems; 3) Participants

experiencing oedema at the stump; and 4) Participants who are recently, or are currently, involved

in another similar research project studying the function of the prosthetic ankle. Non-amputee

(NA) subjects were recruited from the population around the University of Surrey via invitation

Email sent by the researcher. The non-amputee participants needed to be over 18 and willing to

handle the experimental objects. The exclusion criteria for a non-amputee participant includes: 1)

Participants with visual, auditory or vestibular impairment that affects balance, walking or the

ability to follow and respond to verbal instructions; 2) Participants with known motor impair-

ments or injuries that influence movement; 3) Participants needing mobility aids. Hard copies of

the participant information sheet and consent form were sent to all subjects prior to the data col-

lection. Written consent was collected from each subject before their first walking session.

Five TFA subjects (5 males, age: 42±17 years; weight with prostheses: 107±16 kg; height:

1.83±0.02 m; residual limb length measured from the anterior superior iliac spine to the distal

end of the stump: 0.45±0.07 m) who walked actively with their prostheses on a daily basis par-

ticipated in this research. Except for the prosthetic ankle-foot and the shank tube, participants

used their own prosthetic components during the tests. The details of the subjects normally

used prostheses are summarised in Table 1. Fourteen NA subjects (5 males and 9 females, age:

26±2 years, weight: 68±15 kg, height: 1.69±0.08 m) were investigated in the research to gener-

ate the mean biological ankle moment curve required for the normalcy TSI calculation. Ethical

approval for this study was given by the UK NHS National Research Ethics Service Committee

London (Bloomsbury).
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In the three prosthetic ankle-foot devices tested in this study, the structures below the

“ankle” joint, including carbon toe and heel springs, are the same. One of the prosthetic feet

(Esprit, Blatchford & Sons Ltd., Basingstoke, UK; labelled as FIX for this study) does not have

an articular ankle joint. The other two feet have a hydraulic single axis articular joint that is

adjustable in the ROM in the sagittal plane and in the resistance moment. One of the hydraulic

feet (Elan, Blatchford & Sons Ltd., Basingstoke, UK; labelled as MPC-HY for this study)

includes a microprocessor that could be controlled in real time by the user via their mobile

phone through a Bluetooth connection. The setting of the valve adjuster in the other hydraulic

foot (Echelon, Blatchford & Sons Ltd., Basingstoke, UK; labelled as nMPC-HY for this study)

was undertaken by the prosthetist. During the tests, by changing the settings in the mobile soft-

ware, the MPC-HY foot was separately adjusted in ascending and descending slope to achieve

optimal walking comfort in each walking condition. In line with current practice, the FIX and

nMPC-HY devices were set by the prosthetist for the most comfortable level ground walking

experience and no change was made for slope ambulation. The ankle ROM setting in the

MPC-HY foot is 5.2±0.8 degrees in plantar-flexion and 5.4±0.5 degrees in dorsi-flexion. In

ascending slope, the ankle ROM setting in the nMPC-HY foot is 2.2±0.4 degrees in plantar-

flexion and 8.8±0.4 degrees in dorsi-flexion, while in descending slope, the setting is 8.8±0.4

degrees in plantar-flexion and 2.2±0.4 degrees in dorsi-flexion respectively. The limb setup in

the Linx system (subjects TF3 and TF5) was altered by the prosthetist to allow the knee and

ankle to operate independently as conventional Orion knee and hydraulic ankle-foot devices

respectively.

Data collection protocol

Because of the similarity in nature of the study and the subjects, the protocol of this study was

designed based on the method introduced by van der Linden et al. [16]. The subjects were

asked to wear their common shoes and changed into shorts at the beginning of the tests. Since

the FIX foot differed most from subjects’ normal prosthetic foot, it was used first by the ampu-

tees to maximise familiarisation time, as in addition to dedicated practice time with the new

prosthetic components, subjects also stood/walked during the anthropometric measurement

and marker placement. The alignment and adjustment of the prostheses was agreed by both

the prosthetist and each subject to optimise the walking experience. Subjects were given time

to practice walking in the laboratory until they felt safe and confident with the new prosthetic

component. Anthropometric parameters were then measured with the FIX foot. The methods

introduced by Goldberg were applied to measure the prosthetic segment parameters and the

residual limb parameters for subsquent biomechanical modelling [17].

Fifteen markers (11 short base markers and 4 wand markers) were applied to the subject

using a modified Helen Hayes marker placement. The short base markers were placed as fol-

lows: the sacrum (between the left and right posterior superior iliac spines), the ASIS (over the

Table 1. Details of the prostheses normally usedby TA subjects.

ID Prosthetic side Years using prostheses Socket Kneea Foota

TF1 R 13 Carbon outer and pelite inner KX06 EchelonVT

TF2 L 22 Suction with ossur seal in liner KX06 Elan

TF3 R 4 Sealin suction socket Linx Linx

TF4 R 28 Sealin suction socket smart IP Elan

TF5 L 5 Suction with ossur seal in liner Linx Linx

a The brand of all prosthetic knees and feet was Endolite.

https://doi.org/10.1371/journal.pone.0205093.t001
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anterior superior iliac spines), the knee (laterally on the knee joint line on the intact side and

laterally on the rotation centre on the prosthetic side), the ankle (on the lateral malleolus on

the intact side; at the same horizontal level as the lateral malleolus on the shell and aligned

with the centre line of the shank tube on the prosthetic side), and the toes (on the 1st metatar-

sal head and on the 5th metatarsal head on the intact side and the same nominal positions on

the prosthetic side). The thigh wand marker was placed approximately in the middle between

the greater trochanter and knee marker. The shank wand marker was placed approximately in

the middle between the knee marker and lateral malleolus. The subjects were then asked to

stand by a customised foot template, with the medial foot contacting two sides of the template,

to align the thigh wand marker with the greater trochanter and knee marker and align the

shank wand marker with the knee marker and lateral malleolus marker [18].

An 11-camera motion capture system (ProReflex, Qualisys AB, Sweden) with two force

platforms (AMTI, USA, MODEL: BP400600HF-2000) were used to record the kinematic data

(sampling at 120 Hz) and the ground reaction forces (GRFs, sampling at 240 Hz). The slope (5

degrees, 6 m in horizontal length of an inclined surface with 1.5 m level platform at the top

end, 1 m in width) used in this study was designed based on Simon et al’s [19] concept to allow

the floor level mounted force plates to record the GRFs on the slope surface. Fig 1 shows the

schematic of the slope design showing the major dimensions together with photographs of the

final setup of the walkway.

The subject was asked to ascend and descend the slope at a self-selected comfortable walk-

ing speed. Practise time was given and ground marks of appropriate start points were placed

for each subject, so that the subject could make clean single foot contact with each force plate

without posture adjustment. Five successful trials that recorded whole gait cycles (GCs) on

both sides with complete kinematic data and ‘clean’ single foot contacts were collected for

ascending and descending the slope respectively. The prosthetist then attached and adjusted

the nMPC-HY and MPC-HY feet respectively for the subject and the test programme was

Fig 1. (a) Schematic of the slope design with major dimensions (unit: m). (b) Photograph of slope platforms and elements fitted with force plates. (c) One subject

walking on the slope.

https://doi.org/10.1371/journal.pone.0205093.g001
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repeated. Subjects were encouraged to have a rest between tests with the different prosthetic

ankle-foot devices.

A questionnaire used in a previous study [20] to assess prosthetic ankles was answered by

the subjects after the walking tests were completed with all prosthetic ankle-foot devices to

provide a subjective assessment on the overall performance of the three ankle-foot device. The

purposes of the questionnaire assessment were to check 1) if any differences between pros-

thetic ankle-foot devices were noted by subjects; 2) if there was any conflict between subject’s

feedback and biomechanical assessment results; 3) if there was any issue with the prostheses

that could not be indicated in the gait parameters measured in this research.

Data processing

The kinematic data was processed in Qualisys Track Manager (Qualisys, Sweden, version

2.6.682) to label the markers and then exported together with GRF data into Visual3D

(C-Motion, USA, Student Edition, version 5.00.16) for further biomechanical modelling and

relevant calculations. Gaps in the kinematic data that were no more than 10 frames were filled

and the data were low pass filtered at 6 Hz (zero lag, 4th order, Butterworth filter). The GRF

data was not filtered. Individually matched biomechanical models were generated for each

prosthetic ankle-foot with the measured anthropometric data and prosthetic segment parame-

ters [17]. The hip, knee and ankle joint angles in the sagittal plane were calculated and the

ankle angles were normalised to the standing posture recorded with the foot template. This

normalisation method helps to reduce the influence of different shoes used by subjects. The

moments in the sagittal plane were computed using an inverse dynamics approach. The peak

values (marked in Figs 2 and 3) during stance and swing phases were extracted from the GRFs,

joint angles and moment waveforms for further analysis.

It has been reported that a more biomimicry prosthetic ankle moment pattern could intro-

duce a substantial decrease in stresses on the residual limb [15]. The biomimicry of the ankle

moment was generated by comparing the prosthetic ankle moment from each TFA subject

with a mean ankle moment from the non-dominant side of NA group using a method known

as normalcy TSI [21]. TSI compares two waveforms and returns a value between 0 and 1 to

represent the level of similarity. A value of 1 represents perfect trend similarity between the

two waveforms and a lower value indicates less similarity. To calculate normalcy TSI, ankle

moments from each subject were firstly time-normalised to 101 points during the stance phase

and all 101 points were used for comparison. This method has been introduced in the assess-

ment of hydraulic ankle-foot devices and the calculation followed the steps described in a pre-

vious study [13].

Statistical analysis was applied to the extracted peak values and normalcy TSI values using

IBM SPSS (IBM, USA, version 22.0.0.0). The Shapiro-Wilk test was applied to confirm the

normalcy distribution of data. Significant differences between the different prosthetic ankle-

foot devices (3 levels: FIX, nMPC-HY and MPC-HY) were determined by repeated measure-

ments one-way analysis of variance (ANOVA) in ascending slope and descending slope

respectively with post-hoc Tukey tests. The level of significance was set at p = 0.05.

Results

Walking speed and kinematics

The walking speed from each subject with each model of prosthetic ankle-foot device are pro-

vided in Table 2. There was no significant difference found in walking speed in either ascend-

ing slope (p = 0.993) or descending slope (p = 0.254) among the three models of prosthetic

ankle-foot devices.
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The mean curves of the prosthetic side joint angles in the sagittal plane from the 5 TFA sub-

jects are shown in Fig 2 (the data for the intact side is provided in the supporting information),

together with the mean data from the NA group. Table 3 gives the details of the peak values (as

marked in Fig 2) in the joint angles and p-values of one-way repeated measures ANOVA. The

post-hoc results are described in the text when significant differences were found between the

prosthetic ankle-foot devices.

Fig 2. Mean curves of prosthetic side joint angles in the sagittal plane for ascending (left column) and descending (right column) a 5-degree slope. Unit: degrees.

https://doi.org/10.1371/journal.pone.0205093.g002
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In the ascending slope, significant differences were observed in the prosthetic side maxi-

mum dorsiflexion (AA2-P), where the two hydraulic ankles showed significantly greater dorsi-

flexion angle than the fixed ankle (nMPC-HY vs FIX: p = 0.003; MPC-HY vs FIX: p = 0.005;

nMPC-HY vs MPC-HY: p = 0.738).

In the descending slope, significant differences were found in the intact side hip angles

(maximum extension and flexion) and prosthetic side ankle angles (maximum dorsiflexion

Fig 3. Mean curves of prosthetic side lower joint moments in the sagittal plane in ascending (left column) and descending (right column) a 5-degree slope. Unit:

Nm/Kg.

https://doi.org/10.1371/journal.pone.0205093.g003
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and plantarflexion). In detail, on the intact side, when the hydraulic ankles were used, there

was a greater maximum hip extension (HA1-I; nMPC-HY vs FIX: p = 0.027; MPC-HY vs FIX:

p = 0.040; nMPC-HY vs MPC-HY: p = 0.797) and a reduced maximum hip swing flexion

(HA2-I; nMPC-HY vs FIX: p = 0.006; MPC-HY vs FIX: p = 0.003; nMPC-HY vs MPC-HY:

p = 0.665). On the prosthetic side, there was significantly increased maximum plantarflexion

in the hydraulic ankles (AA1-P; nMPC-HY vs FIX: p = 0.003; MPC-HY vs FIX: p<0.001;

nMPC-HY vs MPC-HY: p = 0.124). The nMPC-HY showed a significantly higher dorsiflexion

angle (AA2-P) than the other two prosthetic ankle-foot devices (nMPC-HY vs FIX: p = 0.003;

nMPC-HY vs MPC-HY: p = 0.047), while the difference between the FIX and MPC-HY

(MPC-HY vs FIX: p = 0.119) was not statistically significant.

Kinetics

The mean curves of the prosthetic side sagittal plane joint moments from the 5 TFA subjects

are shown in Fig 3 (the data for the intact side is provided in the supporting information),

together with the mean NA data for reference. Table 4 gives the details of peak values (as

marked in Fig 3) in the joint moment patterns and p-values of one-way repeated measures

ANOVA.

Table 2. Walking speed of each subject with each model of prosthetic ankle-foot device in ascending and descending slope. (unit: m/s).

ID Ascending slope Descending slope

FIX nMPC-HY MPC-HY FIX nMPC-HY MPC-HY

TF1 1.37±0.03 1.28±0.05 1.25±0.05 1.11±0.06 1.14±0.02 1.10±0.05

TF2 1.05±0.06 1.12±0.02 1.19±0.03 1.28±0.05 1.30±0.07 1.23±0.07

TF3 0.85±0.05 0.84±0.03 0.85±0.05 1.12±0.07 1.11±0.10 1.05±0.02

TF4 1.04±0.04 1.00±0.05 1.02±0.05 1.06±0.02 1.00±0.05 1.07±0.02

TF5 1.07±0.02 1.11±0.03 1.13±0.06 1.05±0.05 1.07±0.05 1.06±0.06

Average 1.08±0.20 1.08±0.16 1.08±0.16 1.10±0.10 1.11±0.11 1.10±0.08

NA 1.18±0.14 1.14±0.16�

�The subjects in the non-amputee group were requested to maintain a self-selected constant speed when descending slope.

https://doi.org/10.1371/journal.pone.0205093.t002

Table 3. Peak values in the sagittal plane kinematic waveforms summarised from the 5 trans-femoral subjects and the one-way ANOVA results that compare the

different prosthetic ankle-foot devices in ascending and descending the slope respectively. (unit: degrees; P: prosthetic side; I: intact side).

Peak point

(point-side)

Ascending slope Descending slope

FIX nMPC-HY MPC-HY p value FIX nMPC-HY MPC-HY p value

HA1-P -6.9±2.6 -6.8±3.1 -7.6±2.8 0.303 -7.7±2.4 -8.6±2.3 -9.2±3.3 0.341

HA1-I -8.8±8.0 -10.1±7.7 -10.1±8.5 0.683 -9.6±4.0 -12.0±4.5 -11.7±4.4 0.050�

HA2-P 42.1±4.0 42.3±5.1 41.5±4.2 0.583 31.7±4.0 32.3±3.7 31.3±2.7 0.340

HA2-I 45.5±4.4 45.8±4.6 46.0±5.3 0.765 32.7±4.2 30.4±4.5 30.2±4.9 0.006�

KA1-P 60.0±8.7 61.4±8.3 61.2±7.3 0.409 74.3±5.9 73.2±5.8 71.8±6.5 0.218

KA1-I 52.3±3.7 51.0±4.2 52.4±3.8 0.236 61.2±3.5 61.9±3.1 61.8±2.3 0.586

AA1-P -6.4±2.9 -7.5±1.8 -6.0±2.7 0.307 -7.5±2.9 -10.7±1.8 -12.0±2.4 0.001�

AA1-I -2.0±6.0 -0.7±6.2 -0.8±6.4 0.624 -12.3±4.8 -10.6±5.0 -10.6±5.5 0.330

AA2-P 8.6±2.1 11.1±2.9 10.9±2.6 0.005� 7.6±2.4 10.4±3.1 8.8±2.9 0.011�

AA2-I 6.3±2.5 8.0±3.3 8.2±4.5 0.581 9.5±3.7 9.1±3.3 10.0±4.7 0.882

� p value ≦ 0.05

https://doi.org/10.1371/journal.pone.0205093.t003

Biomechanical assessment of hydraulic ankle-foot devices with/without micro-processor control in slope walking

PLOS ONE | https://doi.org/10.1371/journal.pone.0205093 October 5, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0205093.t002
https://doi.org/10.1371/journal.pone.0205093.t003
https://doi.org/10.1371/journal.pone.0205093


For the ascending slope data, there was no significant difference in the kinetic peak values.

In the descending slope, a significant difference was noted in the prosthetic side maximum

external knee extensor moment (KM1-P), where a significantly higher flexor moment was

found at the prosthetic knee joint when the MPC-HY was used (nMPC-HY vs FIX: p = 0.764;

MPC-HY vs FIX: p = 0.017; nMPC-HY vs MPC-HY: p = 0.027).

Normalcy TSI of the ankle moment

For ascending slope, a significant difference was found in the normalcy TSI of the prosthetic

ankle moment (FIX: 95.0±1.4%; nMPC-HY: 95.9±0.6%; MPC-HY: 96.8±0.7%; p = 0.008),

where the MPC-HY showed a significantly higher TSI value than the FIX (nMPC-HY vs FIX:

p = 0.062; MPC-HY vs FIX: p = 0.002; nMPC-HY vs MPC-HY: p = 0.059).

For descending slope, a significant difference was also found in the normalcy TSI of the pros-

thetic ankle moment (FIX: 92.1±2.0%; nMPC-HY: 94.7±0.7%; MPC-HY: 95.3±0.9%; p = 0.002)

and both of the hydraulic devices showed a significantly higher normalcy TSI than the FIX

(nMPC-HY vs FIX: p = 0.003; MPC-HY vs FIX: p = 0.001; nMPC-HY vs MPC-HY: p = 0.353).

Questionnaire

Table 5 shows the questions used in the questionnaire and summarises the results of the rating

by the 5 TFA subjects. In general, subjects considered that the hydraulic foot offered improve-

ments over the non-hydraulic foot. However, the differences between the nMPC-HY and

MPC-HY was not notable. Two subjects highlighted improved safety with the hydraulic ankles

especially in descending slope in the additional comment area at the end of the questionnaire.

Discussion

The first aim of this study was to assess the hydraulic ankle-foot devices in ascending and

descending slope with TFAs. The second aim of this study was to investigate the effects of

MPC-HY foot in adaption to a slope ambulation. In general, the major benefits of the hydrau-

lic devices, compared with the FIX, are considered to be the improved biomimicry in pros-

thetic ankle moment patterns and the greater ROM for slope adaption as hypothesised. In

Table 4. Peak values in the sagittal plane kinetic waveforms summarised from the 5 trans-femoral subjects and the one-way ANOVA results that compare different

prosthetic ankle-foot devices in ascending and descending the slope respectively. (unit: Nm/Kg; P: prosthetic side; I: intact side).

Peak point

(point-side)

Ascending slope Descending slope

FIX NMPC-HY MPC-HY p value FIX NMPC-HY MPC-HY p value

HM1-P 0.62±0.20 0.64±0.19 0.64±0.18 0.662 0.44±0.14 0.46±0.16 0.42±0.14 0.519

HM1-I 1.14±0.12 1.15±0.12 1.13±0.05 0.947 0.52±0.16 0.64±0.25 0.49±0.25 0.608

HM2-P -0.71±0.28 -0.69±0.25 -0.71±0.26 0.378 -0.95±0.33 -0.99±0.35 -0.97±0.34 0.108

HM2-I -0.33±0.17 -0.24±0.23 -0.23±0.17 0.177 -0.55±0.17 -0.57±0.17 -0.58±0.13 0.271

HM3-P 0.22±0.14 0.22±0.10 0.22±0.08 0.964 0.25±0.05 0.32±0.07 0.23±0.06 0.130

HM3-I 0.83±0.20 0.74±0.17 0.82±0.16 0.343 0.94±0.19 0.90±0.20 0.94±0.21 0.484

KM1-P -0.67±0.12 -0.69±0.07 -0.68±0.11 0.782 -0.33±0.10 -0.34±0.09 -0.41±0.09 0.032�

KM1-I -0.85±0.17 -0.87±0.19 -0.86±0.11 0.839 -0.43±0.22 -0.46±0.22 -0.43±0.23 0.462

KM2-P -0.19±0.22 -0.12±0.04 -0.12±0.03 0.479 -0.19±0.13 -0.13±0.02 -0.12±0.02 0.299

KM2-I -0.35±0.11 -0.37±0.09 -0.41±0.09 0.274 -0.39±0.12 -0.40±0.08 -0.42±0.08 0.519

AM1-P 1.30±0.06 1.33±0.08 1.34±0.10 0.185 1.10±0.12 1.13±0.15 1.10±0.11 0.433

AM1-I 1.61±0.10 1.65±0.08 1.64±0.10 0.055 1.38±0.12 1.42±0.10 1.40±0.08 0.367

� p value ≦ 0.05

https://doi.org/10.1371/journal.pone.0205093.t004
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addition, the hydraulic devices were found to be able to enhance the walking safety in descend-

ing slope by helping maintain prosthetic knee stability, which will be discussed later. The use

of the micro-processor allowed the subject to achieve optimised setting of prosthetic ankle

resistance and ROM to adapt to inclined surfaces. The optimisation resulted in the differences

in prosthetic ankle angle and moment patterns that can be observed from Fig 2 and Fig 3.

However, in most of the assessed parameters, the differences between MPC-HY and

nMPC-HY do not reach a statistically significant level.

A higher normalcy TSI value of the prosthetic ankle moment indicates a better similarity

between prosthetic and biological patterns. In both ascending and descending slope, the

MPC-HY showed a significantly higher prosthetic ankle moment TSI than the FIX. The

nMPC-HY also provided significantly higher normalcy TSI than the FIX in descending slope

(p = 0.003), and the p value in ascending slope is very close to the statistically determinant sig-

nificance level (p = 0.062). This result generally agrees with a previous study that investigated

the performance of a hydraulic ankle-foot device, in which the nMPC-HY was found to be

able to create a significantly higher normalcy TSI in the prosthetic ankle moment than the FIX

across a range of level and camber ground conditions [13]. It can be noticed from the ankle

Table 5. Results from the questionnaire that assessed the overall performance of the prosthetic ankle-foot devices

by the 5 TFA subjects. (1: strongly disagree; 2: disagree; 3: neutral; 4: agree; 5: strongly agree).

Questions FIX nMPC-HY MPC-HY

1. The current ankle adds noticeable weight to my prosthesis. 2.2±1.1 2.8±1.5 2.8±1.5

2. If I have pain in my residual limb, this ankle reduces it. 1.4±0.5 4.0±0.8� 4.3±1.2��

3. This ankle increases comfort during walking. 1.2±0.4 4.4±0.5 4.6±0.5

4. This ankle makes my prosthesis harder to swing as I walk. 2.6±1.1 1.8±0.4 2.0±1.2

5. This ankle enables me to walk longer distances. 1.2±0.4 4.4±0.5 4.2±0.8

6. This ankle increases the effort to walk. 4.8±0.4 1.4±0.5 1.6±0.5

7. I am able to walk faster with this ankle. 2.0±1.0 4.4±0.5 4.2±0.8

8. Walking feels smoother with this ankle. 1.2±0.4 4.6±0.5 4.6±0.5

9. This ankle makes me feel like I am stepping into a hole. 1.8±1.0� 2.0±1.2� 1.5±1.0�

10. This ankle reduces twisting between my socket and residual limb. 1.6±0.9 3.8±0.8 3.6±0.9

11. This ankle increases my comfort during standing. 1.2±0.4 4.0±1.2 3.6±1.7

12. This ankle decreases stability during standing. 4.2±0.8 2.6±1.8 2.0±1.7

13. This ankle makes me feel unstable during walking. 4.0±0.7 1.4±0.5 1.2±0.4

14. This ankle allows me to be more active. 1.4±0.5 4.2±0.8 3.6±1.5

15. This ankle enables me to turn easier. 1.6±0.9 4.2±0.8 4.0±1.0

16. It is easier for me to walk up an incline with this ankle. 2.0±1.2 4.4±0.5 4.8±0.4

17. It is easier for me to walk down an incline with this ankle. 1.0±0.0 4.4±0.5 4.6±0.5

18. This ankle makes it easier for me to walk on uneven ground. 1.6±0.9 4.4±0.5 4.6±0.5

19. This ankle provides too much motion. 1.4±0.9 1.4±0.5 1.4±0.9

20. This ankle doesn’t provide enough motion. 4.6±0.9 1.2±0.4 2.4±1.3

21. This ankle makes my prostheses feel less rigid. 1.2±0.4 3.2±1.5 3.2±1.6

22. This ankle makes me feel like I’m walking up hill. 2.5±1.9� 1.8±1.0� 2.0±1.2�

23. This ankle makes me feel like I’m walking down hill. 3.5±2.0� 1.8±1.0� 2.0±1.2�

24. This ankle makes me stub my toe more during swing. 2.8±0.5 2.0±1.0 1.6±0.9

25. Overall, this ankle provides me with greater comfort. 1.4±0.5 4.4±0.5 4.4±0.5

26. I like having this ankle in my prosthesis. 1.0±0.0 4.8±0.4 4.8±0.4

� One subject rated NA (not applicable) in this question.

�� Two subjects rated NA (not applicable) in this question.

https://doi.org/10.1371/journal.pone.0205093.t005
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moment in ascending slope (see Fig 3 left column third row) that during the dorsiflexion

period (from about 25% to 45% of GC, the ankle moves from a neutral position to near maxi-

mum dorsiflexion), the hydraulic ankles had concave resistance patterns that are similar to the

biological curve exhibited by the NA group, while the FIX showed a convex pattern as in a con-

ventional rigid ankle [15, 22, 23]. A similar difference in the prosthetic ankle moment patterns

between nMPC-HY and FIX was also observed from the figures reported in a previous study

with the TTAs [9]. Pitkin presented a study with a mathematical model that linked the pros-

thetic ankle resistance moment with the stresses on the residual limb in the TTAs, which

reported a substantial decrease in residuum stresses when a bio-mimicing ankle moment pat-

tern was generated [15]. TFAs were hypothesised to be able to receive similar benefits from

biologically compliant prosthetic ankles and knees [15]. Therefore, with a more bio-mimicing

ankle moment pattern, the hydraulic ankle theoretically improved the socket comfort for pros-

theses users. However, there was not a consistent conclusion from the two previous studies

that analysed the internal stresses applied to the residual limb in the TTAs when comparing

nMPC-HY with other rigid ankle-foot devices, as one study reported significantly reduced

internal stresses at residual limb [7] while the other study reported no significant difference in

the torque at the distal end of the prosthetic socket [14]. In this study, the questionnaire

included a question relating to the internal stresses (Table 5 question 10) and the subjects con-

sidered that the hydraulic ankles helped to reduce the socket-stump twisting, which could sup-

port Pitkin’s hypothesis with TFAs. A future study that directly monitors the internal stresses

in the socket is suggested to confirm this benefit from the hydraulic ankle-foot devices.

The ankle joint ROM was determined from the maximum ankle angles during stance in

this study. Except for the maximum plantarflexion (AA1-P) in ascending slope (probably due

to the uphill ground condition that reduced the requirement for the maximum plantarflexion),

the hydraulic devices reached significantly greater peak ankle angles compared with the FIX.

Therefore, it was generally considered that the hydraulic ankle devices could adapt to a slope

surface better by providing a larger ROM as required. This finding was also supported by the

subjects’ feedback in the questionnaire (Table 5 question 16 and 17). In the previous study on

level and camber walking, nMPC-HY had also been found to be able to produce a significantly

higher maximum dorsiflexion and plantarflexion angle compared to the FIX [13].

Another improvement of the hydraulic ankles was found in the prosthetic knee moment

during downhill walking. As shown in Fig 3 (second row right column), a very low internal

knee flexor moment (equals to the external knee extensor moment) close to zero on the pros-

thetic side occurred at about 24% of GC when the FIX was used, while the hydraulic ankles

facilitated a greater knee flexor moment during the whole mid-stance phase. This could be an

explanation for the comments from the subjects regarding the strongly improved feeling of

safety with the hydraulic ankles in downhill walking in this study. The passive prosthetic knee

remains in maximum extension during mid-stance (Fig 2 middle row), therefore the internal

knee flexor moment is a reaction moment to neutralise the extension moment created by the

external forces. As the passive knee could not actively provide an extensor moment, if the

external loads cause a flexion moment to the knee joint during mid-stance, there is a risk of

knee collapse, which is more likely to happen in descending slope compared to level walking.

So it is believed that subject’s experience on downhill walking safety is affected by the sensor

feedback on knee moment and the hydraulic ankles therefore help to enhance the safety feel-

ing. However, with limited experimental and theoretical study relevant to this finding, consid-

ering there might be other characteristics of the prosthetic ankle-foot device that caused the

change in prosthetic knee moment, such as the location difference in simulated ankle rotation

axis, future work is suggested to confirm the specific feature in the prosthetic ankle-foot device

that is linked to the prosthetic knee moment.
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The difference between the two hydraulic ankle-foot devices was the application of a micro-

processor, which allowed the MPC-HY to realise customised setting for slope adaption. The

timing (as a percentage of GC) when the prosthetic ankle reached maximum plantarflexion,

neutral position, and maximum dorsiflexion was generally the same between the two hydraulic

devices (Fig 2 third row), while the difference in the prosthetic ankle moments during the dor-

siflexion progress can be observed from the corresponding curves. When walking up a slope,

as illustrated in Fig 3 (third row left column), from about 15% to 32% of GC, the MPC-HY

provided less plantarflexor moment compared with nMPC-HY to make rolling at the ankle

joint easier. The plantarflexor moment then increased to be the same as nMPC-HY to support

lifting the body up and through push-off. When walking down the slope, as expected, the

MPC-HY foot showed higher plantarflexor moments during the entire roll-over process.

MPC-HY reached the maximum plantarflexor moment earlier than nMPC-HY and main-

tained the maximum plantarflexor moment for a longer period. This corresponds to the

reduced maximum dorsiflexion angle (AA2-P) found in the MPC-HY compared to the

nMPC-HY (p = 0.047). The MPC-HY showed higher normalcy TSI in the prosthetic ankle

moment of the three ankle-foot devices in both ascending and descending slope, which poten-

tially indicated a better mimicry of a biological ankle function. MPC-HY also enabled a signifi-

cantly greater maximum external knee extensor moment (KM1-P) than the nMPC-HY in

descending slope (p = 0.027). Therefore, it is considered that the customisation of settings

helped to enhance the benefits of the hydraulic ankle. However, despite the improvements

observed in the kinetic patterns and some peak values, the difference between the MPC-HY

and nMPC-HY was not very notable by subjects according to the questionnaire results. This

was probably because the conservative activities tested in this project were readily accomplish-

able by the nMPC-HY foot without changing the plantarflexor moment. A steeper slope might

have better demonstrated the performance of MPC-HY foot. One advantage of the real time

control function is that the TFAs can adjust the prostheses to adapt to different shoes and

ground conditions (e.g. increase the stiffness of ankle for a wet and slippery surface) without

assistance from prosthetist, which was considered to improve the convenience of using pros-

theses and life quality. Therefore, for the prosthesis user, the choice between MPC-HY and

nMPC-HY should be based on individual demands such as outdoor activities and the required

frequency of adjustment in prostheses.

The statistical tests used in this research were not based on a prior assessment of a clinically

significant change. This was because a definition of a clinically significant difference for the

primary outcome measure (ankle moment TSI) was not available in the literature. Besides, the

gait of amputees is formed during their rehabilitation programme and often will not be

changed to reach a clinically significant difference in a short period. In this research all subjects

finished their tests in a single experiment day whereas a number of the studies on prosthetic

component evaluation allow only up to 4 weeks fitting and acclimatisation. Furthermore, most

subjects that have been recruited to the studies that test different prosthetic components are

good walkers which may limit room for a clinically significant improvement. However it is

anticipated that the results from this work can be used to help inform (power) calculations to

determine the number of volunteers required for future studies.

The main limitation of this study is that the research approach is more commonly used in

NA, while the differences between NA and TFA is not negligible. The chosen marker set in

this research is normally applied to the NA. Unlike specific running prostheses, where the

markers can be directly placed on the mechanical structure, most of the mechanical structure

in conventional prosthetic ankle-foot devices is covered by the foot shell and shoes during the

walking. The detailed motion and deformation of the underlying mechanical structure there-

fore is not recorded or observed. In most of the kinematic studies in prosthetics, the markers
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on the prosthetic side are placed in the same positions as the intact side, accepting, for exam-

ple, that the actual rotation centre of the prosthetic ankle joint is not exactly the same as that of

the biological ankle. Another limitation of this research is the modelling method used in the

inverse dynamics calculation. Some assumptions made in the conventional inverse dynamics

approach, such as the rigid body assumption, were not entirely applicable to the prostheses. In

addition, although the segment parameters on the prosthetic side were measured separately,

some compromises had to be made during modelling. For example, the hydraulic body above

the ankle rotation axis cannot be separated from the “foot” part, therefore the centre of mass

and moments of inertia of the prosthetic shank segment cannot be directly measured. There-

fore the prosthetic foot segment parameters in the hydraulic devices was considered to be the

same as the FIX and the hydraulic body was modelled as a rigid cylinder with uniform density

when calculating the prosthetic shank segment parameters. Some prostheses-specific models

have been developed to calculate prosthetic ankle power in energy storing foot devices [24],

however, to the authors’ knowledge, so far there is no published work that reports an improved

calculation of prosthetic ankle moments.

There are some other potential issues in the experiment design.The TFA subjects who par-

ticipated in this study are experienced and able walkers who were considered able to adapt to

new prosthetic ankle-foot devices in a relatively short period. So the tests with different pros-

thetic ankle-foot devices were finished in one day for each subject and this helped to reduce

the potential errors caused by marker displacement and environment change. However, long

term use of a different prosthetic component may further change the gait of patients and there

is little research on the accommodation time of prostheses [25]. Additionally, the test sequence

of the three prosthetic ankle-foot devices was designed to maximise the practise time for the

foot that differed most from the subject’s common prosthesis. A random test sequence may

better reflect the result. Fatigue is normally considered as a problem for a unified test sequence.

However considering sufficient rest time was given to the subjects in this research, the test

sequence should not be a serious issue The GRF data was not filtered therefore the noise may

influence the result. In the calculation of normalcy TSI, a reference group with gender and age

matching subjects and controlled speeds is suggested. Although subjects were given more time

to practice with the FIX device and did not use their usual prosthetic ankle-foot devices during

the test, 3 of the 5 subjects’ usual prostheses contain hydraulic ankle-foot devices, which may

influence the results of this study. Besides, in order to reduce the fitting time, subjects used

their usual prosthetic knee during the test, which may also affect the results. Considering the

non-blind experimental design and the use of an invalidated questionnaire, the results from

the questionnaire were only used to provide additional interpretation of comparative bio-

mechanical performance for the three prosthetic ankle-foot devices.

A relatively small number of subjects participated in this study, therefore the capability of

the statistical method (repeated measures ANOVA) is insufficient to reach a conclusive deter-

mination and the statistical results in this study are intended to provide indicative analysis

only. Further study with an increased number of TFA subjects is required to test the findings.

Involvement of other brands and models of hydraulic ankle-foot device is needed to confirm

the usual features of hydraulic ankles.

Conclusion

In conclusion, according to the statistical results, the hydraulic ankle-foot devices (with or

without micro-processor control) showed a relatively better bio-mimicking of the ankle

moment, a slightly increased ROM, and enhanced walking safety (preventing knee collapse)

compared to the FIX in 5 degrees slope ambulation with TFAs. The MPC-HY permits
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customised changes in the hydraulics and ROM settings for ascending and descending slope

respectively, however, the quantified differences found in the data between the MPC-HY and

nMPC-HY were not generally perceived by the subjects. Overall, it is suggested that the

hydraulic ankle-foot devices show a potential to provide better and safer adaption to slope sur-

faces, which may improve the walking experience of active TFAs with outdoor walking

requirements. The micro-processor controlled device is perhaps more compatible with users

that have demands for frequent adjustment of their prosthetic ankle resistance and ROM, e.g.

in more demanding conditions (e.g. slope inclination/declination) than used in this study.

Supporting information

S1 Fig. Mean curves of intact side joint angles in the sagittal plane for ascending (left col-

umn) and descending (right column) a 5-degree slope. Unit: degrees.

(TIF)

S2 Fig. Mean curves of intact side lower joint moments in the sagittal plane in ascending

(left column) and descending (right column) a 5-degree slope. Unit: Nm/Kg.

(TIF)

S1 Dataset. Time-normalised sagittal plane lower joint (hip/knee/ankle) angles and

moments from five trans-femoral amputee subjects. A set of five trails from each subject in

two walking conditions (ascending and descending a 5-degree slope) with three types of pros-

thetic ankle/foot (Echelon/Esprit/Elan). All data have been time-normalised to 101 points over

stance phase and exported to excel files.
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