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Abstract

Purpose

Several studies have demonstrated the accuracy, precision, and reproducibility of proton

density fat fraction (PDFF) quantification using vendor-specific image acquisition protocols

and PDFF estimation methods. The purpose of this work is to validate a confounder-cor-

rected, cross-vendor, cross field-strength, in-house variant LMS IDEAL of the IDEAL

method licensed from the University of Wisconsin, which has been developed for routine

clinical use.

Methods

LMS IDEAL is implemented using a combination of patented and/or published acquisition

and some novel model fitting methods required to correct confounds which result from the

imaging and estimation processes, including: water-fat ambiguity; T2* relaxation; multi-

peak fat modelling; main field inhomogeneity; T1 and noise bias; bipolar readout gradients;

and eddy currents. LMS IDEAL has been designed to use image acquisition protocols that

can be installed on most MRI scanners and cloud-based image processing to provide fast,

standardized clinical results. Publicly available phantom data were used to validate LMS

IDEAL PDFF calculations against results from originally published IDEAL methodology.

LMS PDFF and T2* measurements were also compared with an independent technique in

human volunteer data (n = 179) acquired as part of the UK Biobank study.

Results

We demonstrate excellent agreement of LMS IDEAL across vendors, field strengths, and

over a wide range of PDFF and T2* values in the phantom study. The performance of LMS

IDEAL was then assessed in vivo against widely accepted PDFF and T2* estimation meth-

ods (LMS Dixon and LMS T2*, respectively), demonstrating the robustness of LMS IDEAL

to potential sources of error.

Conclusion

The development and clinical validation of the LMS IDEAL algorithm as a chemical shift-

encoded MRI method for PDFF and T2* estimation contributes towards robust, unbiased
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applications for quantification of hepatic steatosis and iron overload, which are key features

of chronic liver disease.

Introduction

Hepatic steatosis and iron overload are two key features of chronic liver disease [1]. Quantita-

tive MRI can provide surrogate metrics for these features and, in some cases, predict clinical

outcomes [2]. A healthy liver should contain relatively low amounts of fat, though it is esti-

mated that up to 1 in 3 people worldwide have non-alcoholic fatty liver disease (NAFLD) [3],

and this number is increasing. In the UK Biobank imaging enhancement study, for example,

which aims eventually to include 100,000 nominally healthy participants [4], liver fat was mea-

sured using MRI proton density fat fraction (PDFF) in 4,949 participants (aged 45–73 years)

[5]. The results showed that although the median fat level was 2.11%, a further 19.9% of partic-

ipants had fat levels > 5.5% (the commonly accepted risk level for NAFLD [6]), 9.2% of the

participants (n = 455) had fat levels > 10%, and 84 (1.7%) participants had fat levels > 20%. In

the same cohort, liver iron levels were measured using quantitative T2�-mapping, then con-

verted to liver iron concentration in mg Fe/g dry weight [7]. Preliminary results suggested that

a higher than expected number of participants for a normal population had elevated iron levels

[8]. This is important for healthcare, since iron overload significantly increases the risk of liver

disease, including cirrhosis and cancer, but can be treated effectively once diagnosed. Further-

more, liver fibrosis and inflammation can be quantified using the MR T1 relaxation parameter,

but only after correcting for iron level [9]. For these reasons, multiparametric MRI, combining

T1, T2� and PDFF, has been proposed as a comprehensive method for the non-invasive diag-

nosis of liver disease, to provide early diagnosis, treatment monitoring and an alternative to

the limited method of tissue biopsy [1,2]. Note that T2� measurements can also be reported in

terms of the reciprocal R2� and both have their advantages. In our work, we have adopted T2�

because it has dimensions of time and so is consistent with T1 measurements.

MRI-based quantification of PDFF and iron is well-established and validated. Standard

techniques for measuring PDFF rely on multiecho gradient echo (GRE) imaging with chemical

shift-based methods to decompose the signal from in-phase and opposed-phase images into

fat and water [10,11]. For iron quantification, standard approaches measure T2 relaxation

times using spin-echo imaging [12] or T2� relaxation times [13,14] using multiecho GRE

imaging. T2� relaxometry has the advantage over T2 relaxometry of shorter acquisition times,

so reduced physiological artefacts, such as those resulting from breathing and motion. When

multiecho GRE data are acquired using in-phase and opposed-phase images, they can be used

to derive both T2� and PDFF maps. However, it has been established that for higher levels of

iron, increased T2� decay yields errors in PDFF estimates; similarly, T2� decay is influenced by

higher fat levels, leading to errors in T2� estimates, hence iron quantification [15,16].

Such confounds are addressed by the IDEAL approach (Iterative Decomposition of water

and fat with Echo Asymmetry and Least-squares estimation), by simultaneously estimating fat

and T2� decay [17,18], to provide iron-corrected PDFF estimates fat-corrected iron quantifica-

tion [19]. The IDEAL technique also embodies use of a more realistic fat spectrum model with

multiple resonant frequencies, enabling more accurate PDFF and T2�. It also facilitates shorter

and more closely-spaced echo times, which is important for reducing motion artefacts and

imaging higher iron levels.

Various studies have demonstrated the accuracy, precision and reproducibility of PDFF

quantification using methods based on the IDEAL approach [20–22]. However, to date, much
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of the published work has used vendor-specific versions of the image acquisition protocol and

PDFF estimation methods (e.g. IDEAL IQ, GE Healthcare or mDIXON Quant, Philips Health-

care). Although in some cases encouraging results were reported across vendors and field

strength, the differences that have been observed have been attributed to differences in the

acquisition and estimation techniques. For example, in a recent study [23], the agreement of

PDFF measurements were determined among readers, two MR scanner vendors, and two field

strengths. PDFF estimation was performed using two different vendor products with the precise

data acquisition protocol and PDFF calculation being specific to each vendor. Although the

results were reported to be highly reproducible across readers, field strengths, and imaging plat-

forms, a number of small but systematic and significant differences in PDFF were observed

between scanner platforms. These were attributed to differences in the pulse sequences and

PDFF calculation. This highlights the need for a liver fat and T2� quantification method that is

standardized across field strength and MR scanner vendor, not least to: facilitate longitudinal

assessment of individuals; characterize disease across larger populations; and to normalize clini-

cal decision making. The overall goal of this work is to both develop and validate such a vendor

neutral, field strength independent (“standardised”) method for liver fat and T2� quantification.

To this end, we licensed and acknowledge the intellectual property for the ‘IDEAL’ method

from the University of Wisconsin [17], which we then implemented in software in-house. In

this paper, we distinguish between the published concept and licensed intellectual property and

the software that we have developed to implement it, and we refer to our software as “LMS
(LiverMultiScan) IDEAL”. LMS IDEAL incorporates some of the methods reported in the refer-

enced publications and a number of novel algorithmic steps, which we have found necessary to

address different confounds resulting from the imaging process. LMS IDEAL has been designed

to use image acquisition protocols that can be installed on most MRI scanners and cloud-based

image processing to provide fast, standardized clinical results, which are consistent for data

acquired on different vendors’ scanners and at different field strengths. We present two studies

to validate LMS IDEAL. First, PDFF values were calculated for publicly available phantom data

and compared with independently calculated and published values using the same phantom

data, which had previously shown excellent results for reproducibility across sites, vendors, field

strengths and image acquisition protocols [24]. Second, LMS IDEAL PDFF and T2� values were

calculated in human volunteer data acquired as part of the UK Biobank data study, and the

results were compared with the PDFF and T2� values estimated in the same participants using a

different, but widely-used “standard” MR imaging protocol and quantification method.

Methods

Calculation of PDFF and T2�

As noted above, the ‘IDEAL’ method, from the University of Wisconsin [17,18] was imple-

mented in-house (LMS IDEAL), to perform simultaneous water and fat decomposition and

estimation of T2� decay in the presence of field (B0) inhomogeneity (see Fig 1 for flowchart).

The most basic version of the IDEAL method [25] fits a signal equation describing the com-

plex-valued data sn at each pixel resulting from multi-echo spoiled gradient echo (SPGR)

images acquired at each echo time tn, as

sn ¼
XM

j¼1

rj ei2pDfjtn

 !

:ei2pctn ðEq 1Þ

where: ρj is the intensity of the jth of M chemical species, with chemical shift (in Hz) of Δfj with

respect to water, and ψ is the local value of the “field map” (Hz). The model fitting proposed in
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the patent and published papers first uses an iterative least squares estimation method to deter-

mine ψ, which is then demodulated from the original signal, and decomposed into estimates

of the two chemical species, water and fat. PDFF values are then calculated by dividing the esti-

mates for fat by the estimate of fat plus water. LMS IDEAL extends the basic version of the

IDEAL method, which estimates a “complex field map” (replacing ψ with ĉ in Eq 1) and

decomposes it into field map ψ and T2� (or 1/R2�) from the real and imaginary parts of ĉ

respectively [18],

ĉ ¼ cþ i=ð2p T2�Þ ðEq 2Þ

Fig 1. Flowchart showing LMS IDEAL.

https://doi.org/10.1371/journal.pone.0204175.g001
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Given a poor starting estimate, large deviations in the B0 field, and/or low SNR, estimation

of the B0 field may converge to the wrong solution. In such a case, the assignment of signal to

water and to fat can be ‘swapped’, resulting in ‘fat/water swaps’ either in individual pixels or,

more usually, in larger contiguous regions. To mitigate this, LMS IDEAL includes the method

based on [26], which initially down-samples the complex echoes then uses a region growing

algorithm to encourage B0 estimates to be similar among neighbouring pixels. This (pseudo-

regularisation) step provides an initial estimate of the B0 field map in a central region of the

image where it is most likely to be reliable, so that the final estimated field map is less likely to

contain artefactual discontinuities across the image and therefore reduces ambiguities in fat

and water estimation.

LMS IDEAL also incorporates a model that assumes that the spectrum of fat has several

prominent peaks [15,16]. The model can be adjusted to approximate the spectrum for liver fat,

which is required for human imaging, or for peanut oil, which is typically used in fat phan-

toms. For consistency with the published data, the (human) liver fat model comprises six

peaks with frequency shifts relative to the water peak (ppm) of 0.6, -0.5, -1.95, -2.60, -3.4 and

-3.8 and relative amplitudes of 0.047, 0.039, 0.006, 0.12, 0.7 and 0.088 [27]. Conversely, the pea-

nut oil phantom model also comprises six fat peaks which are corrected for room temperature

by adjusting the frequency shifts relative to water by 0.1ppm (this assumes 22˚C), resulting in

frequency shifts (ppm) of 0.5, -0.49, -2.04, -2.7, -3.5, and -3.9, and relative amplitudes of 0.048,

0.039, 0.004, 0.128, 0.694 and 0.087 [24,27].

Performing IDEAL model fitting to the complex-valued data results in estimates of fat and

water which cover the entire range of possible PDFF values (from 0% to 100%). However, the

accuracy of such estimates depends on the consistency of phase information across the

acquired echoes. Since LMS IDEAL was implemented to be used with data acquired on differ-

ent vendors’ scanners, the accuracy of the phase data can not always be guaranteed. The nega-

tive impact of inconsistent phase information can be removed by discarding the phase

information from the data and estimating the IDEAL model using just the magnitude of the

data (as described in [28]). It has been reported that model fitting to magnitude only informa-

tion restricts estimates of PDFF values to the the range [0%, 50%], which can result in ambigu-

ity between fat and water estimates. For this reason, based on [28], LMS IDEAL uses the initial,

full PDFF range estimates of fat and water resulting from the complex-valued data estimation

steps (including the region growing to avoid discontinuities in the field map) as starting esti-

mates for model fitting using the magnitude of the data. The two sets of water and fat estimates

(from the complex and magnitude model fitting) are then combined so that values closer to

50% are weighted towards the complex estimates and values closer to 0% and 100% are

weighted towards the magnitude results [28]. Furthermore, to address the effect of a positive

noise bias for low PDFF values, as a result of the magnitude data estimation steps, LMS IDEAL
includes the approach described in [29], where, rather than trying to estimate the fat parameter

as an independent signal component from the water, the model is adjusted to estimate the

combined fat plus water signal, and the estimated water parameter is subtracted from the

result.

Finally, the LMS IDEAL complex-valued data estimation steps were implemented to allow

for bipolar readout gradients, as well as the more typically used monopolar readout gradients.

For bipolar readout gradients, inconsistent phase information will have an opposite effect on

odd and even echoes resulting in spatially varying estimates of water and fat across the image.

To address this, model fitting in LMS IDEAL is modified by additionally including a signal

modulation, which is equal and opposite in consecutive echoes (as described in [30]). This

enables a pixelwise phase error map to be estimated, to which a single linear function can be

fitted across the image to correct for the effect of the bipolar readout gradient.
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The LMS IDEAL version used in this study was implemented in Matlab (The MathWorks,

Inc.) with executable mex-files, consisting of compiled C++ routines using ITK libraries

(www.itk.org).

PDFF in publicly available phantom data

We downloaded 28 sets of publicly-available phantom data (http://dx.doi.org/10.5281/zenodo.

48266) [24], which were acquired using one phantom at six sites, covering: 3 vendors (GE

Healthcare, Siemens and Philips); 2 field strengths (1.5T and 3T); and 2 protocols. One of the

six sites had two sets of data (one at the beginning of the phantom study and one at the end),

to give (6+1)x2x2 = 28 sets of data in total. The phantom consisted of 11 vials with oil/water

concentrations: 0%, 2.6%, 5.3%, 7.9%, 10.5%, 15.7%, 20.9%, 31.2%, 41.3%, 51.4%, 100%. The

data from each system, and for each protocol, involved 6 echoes of complex-valued multi-echo

gradient echo MR images, as well as the PDFF map calculated by the authors and used to

report published PDFF values, (referred to here as the Reference PDFF map).

We used our in-house implementation of LMS IDEAL, with a 6-peak peanut oil fat model

corrected for room temperature (see previous section), to calculate LMS IDEAL PDFF maps

for the 28 sets of phantom data, which each consisted of 3 slices. Circular regions of interest

(ROIs) of approximately 19.5mm diameter were placed manually on each vial (by CH) in the

middle slice and copied to all slices of the LMS IDEAL PDFF maps to calculate PDFF statistics.

The same ROIs were used to compute statistics from the Reference PDFF maps. Linear regres-

sion was computed for all PDFF statistics against the expected oil/water concentrations.

Comparison of PDFF and T2� methods using UK Biobank data

Single slice abdominal MR images were acquired from the UK Biobank cohort at the UK Bio-

bank Imaging Centre in Stockport, using a Siemens 1.5T MAGNETOM Aera. In a subset of

the participants, (N = 179), two different imaging protocols were used to calculate PDFF and

T2�, as shown in Table 1. Protocol1 data were used to calculate PDFF and T2� maps using

LMS IDEAL (as described above). Protocol 2 data were used to calculate PDFF maps using the

3-point Dixon method [11] and T2� maps using a standard T2� decay-curve fitting method to

measure the temporal relaxation rate of signal at each voxel (LMS Dixon and LMS T2� respec-

tively). For quantification of each PDFF and T2� map, 3 circular ROIs of 15 mm diameter

Table 1. Image acquisition protocols used to calculate PDFF and T2� in UK Biobank cohort.

Parameter Protocol1 Protocol2

PDFF Maps calc. using:

LMS IDEAL

LMS Dixon

T2� Maps calc. using: LMS T2�

FOV (cm2) 44x40 40x40

Matrix 128x116 160x160

Voxel size (mm2) 1.7x1.7 2.5x2.5

Slice thickness (mm) 10 6

Flip angle (˚) 5 20

TR (ms) 14 27

Pixel bandwidth (Hz/px) 1565 710

Number of averages 6 2

Number of echoes 6 10

First TE (ms) 1.2 2.38

Echo spacing (ms) 2 2.38

Breath-hold duration (s) 9.7 (1.6 / measure) 8.7

https://doi.org/10.1371/journal.pone.0204175.t001
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were placed manually on each map (by CH), within the right lobe of the liver, and carefully

avoiding vessels and image artefacts. Mean values were calculated from the ROI pixels and

compared between the two techniques for both PDFF and T2�. The UK Biobank has approval

from the North West Multi-Centre Research Ethics Committee (MREC), and obtained written

informed consent from all participants prior to the study.

Results

PDFF in publicly available phantom data

The LMS IDEAL PDFF values are plotted in Fig 2 against expected oil/water concentrations;

Table 2 presents linear regressions with 95% confidence intervals. The linear regression results

are in excellent agreement between LMS IDEAL PDFF and Reference PDFF, with a small

reduction in either the r2 or increase in deviation of slope from 1, or intercept from 0 for LMS
IDEAL PDFF. For example, for LMS IDEAL PDFF and Reference PDFF respectively, mean r2

= 0.998 and 0.999; mean slope = 0.970 and 0.995; mean absolute intercept = 0.72, and 0.26.

Fig 2. LMS IDEAL PDFF values versus gold standard values.

https://doi.org/10.1371/journal.pone.0204175.g002
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From the plotted results in Fig 2, the small deviations appear to arise from the lowest PDFF

value at the oil/water concentration of 0% and the one between 51.4%.

Comparison of PDFF and T2� methods using UK Biobank data

The comparison between the two measures of PDFF are shown in Fig 3, top left. They show

excellent correlation between the two protocols (r2 = 0.99), with regression slopes and inter-

cepts = 1.19 and 0.45 respectively. LMS IDEAL PDFF is consistently higher than LMS Dixon

PDFF, and is a function of PDFF: see the Discussion for an explanation of this. However, after

correcting for the systematic difference using the regression slope, the Bland-Altman plot (Fig

3, bottom left) shows mean difference = 0.38% and 95% limits of agreement = [-0.61 1.37] %.

The comparison between the two measures of T2� are shown in Fig 3, top right. The results

show a correlation r2 = 0.9, and regression slopes and intercepts = 0.95, 1.46 respectively. The

Table 2. Comparison of PDFF values using LMS IDEAL and Reference PDFF from Hernando et al., 2016.

LMS IDEAL PDFF 1.5T

Protocol 1

Reference PDFF 1.5T

Protocol 1

Site R2 Slope, [95% CI] Intercept, [95% CI] R2 Slope, [95% CI] Intercept, [95% CI]
1 0.998 0.96, [0.93 0.99] 0.72, [-0.54 1.99] 0.999 1.00, [0.97 1.03] 0.24, [-0.85 1.32]

2 0.999 0.97, [0.95 0.99] 1.48, [0.67 2.29] 1.000 1.02, [1.01 1.04] 0.69, [0.08 1.31]

3 0.999 0.98, [0.95 1.00] 0.58, [-0.40 1.56] 0.999 1.03, [1.01 1.05] -0.43, [-1.26 0.40]

4 0.997 0.98, [0.93 1.02] -0.28, [-1.90 1.35] 0.996 1.00, [0.95 1.04] -0.57, [-2.28 1.14]

5 0.996 0.99, [0.94 1.03] 0.61, [-1.16 2.37] 0.999 1.00, [0.98 1.03] 0.40, [-0.58 1.38]

6 0.998 0.98, [0.95 1.01] 0.25, [-0.94 1.45] 0.998 0.99, [0.96 1.03] -0.05, [-1.36 1.25]

LMS IDEAL PDFF 1.5T

Protocol 2

Reference PDFF 1.5T

Protocol 2

Site R2 Slope, [95% CI] Intercept, [95% CI] R2 Slope, [95% CI] Intercept, [95% CI]
1 0.998 0.94, [0.91 0.98] 0.84, [-0.48 2.17] 0.998 1.02, [0.99 1.05] 0.11, [-1.10 1.33]

2 1.000 0.96, [0.95 0.97] 1.10, [0.58 1.62] 0.999 1.02, [1.00 1.04] 0.83, [0.08 1.57]

3 0.998 0.98, [0.95 1.01 0.50, [-0.68 1.68] 1.000 1.01, [0.99 1.02] -0.83, [-1.47–0.19]

4 0.996 0.99, [0.95 1.04] 0.48, [-1.29 2.24] 0.998 0.97, [0.94 1.01] 0.06, [-1.16 1.29]

5 0.998 0.97, [0.94 1.00] 1.36, [0.20 2.52] 1.000 0.98, [0.97 0.99] 0.80, [0.37 1.23]

6 0.998 0.96, [0.92 0.99] 0.31, [-0.99 1.61] 0.995 1.0, [0.96 1.06] -0.67, [-2.66 1.31]

LMS IDEAL PDFF 3T

Protocol 1

Reference PDFF 3T

Protocol 1

Site R2 Slope, [95% CI] Intercept, [95% CI] R2 Slope, [95% CI] Intercept, [95% CI]
1 0.996 0.96, [0.91 1.00] 0.41, [-1.30 2.11] 0.999 1.00, [0.97 1.03] 0.02, [-1.10 1.14]

2 1.000 0.98, [0.97 1.00] 0.95, [0.42 1.48] 0.999 1.01, [0.99 1.03] 0.81, [-0.00 1.62]

3 0.999 0.98, [0.96 1.00] 0.86, [0.11 1.62] 0.999 1.01, [0.99 1.03] 0.23, [-0.67 1.12]

4 0.997 0.98, [0.94 1.02] 0.25, [-1.28 1.77] 0.998 0.97, [0.94 1.01] 0.30, [-0.92 1.53]

5 0.999 0.97, [0.95 0.99] 1.40, [0.57 2.23] 1.000 1.00, [0.99 1.01] 0.79, [0.31 1.27]

6 0.997 0.95, [0.91 0.99] 0.71, [-0.72 2.14] 0.997 0.98, [0.94 1.02] -0.19, [-1.63 1.24]

LMS IDEAL PDFF 3T

Protocol 2

Reference PDFF 3T

Protocol 2

Site R2 Slope, [95% CI] Intercept, [95% CI] R2 Slope, [95% CI] Intercept, [95% CI]
1 0.999 0.97, [0.94 0.99] 0.40, [-0.57 1.38] 0.999 0.98, [0.96 1.00] 0.42, [-0.35 1.20]

2 0.998 0.98, [0.95 1.02] 0.51, [-0.88 1.90] 1.000 0.98, [0.97 0.99] 0.43, [-0.12 0.98]

3 0.999 0.97, [0.95 0.99] 1.36, [0.65 2.07] 0.999 0.97, [0.95 1.00] 1.06, [0.11 2.01]

4 0.997 0.95, [0.91 0.99] 0.59, [-0.98 2.15] 0.999 0.96, [0.94 0.98] 0.87, [0.12 1.62]

5 0.999 0.98, [0.95 1.00] 1.00, [-0.03 2.02] 0.999 0.98, [0.97 1.00] 0.73, [0.05 1.41]

6 0.998 0.96, [0.93 0.99] 0.95, [-0.33 2.22] 0.997 0.97, [0.93 1.01] 0.28, [-1.19 1.76]

https://doi.org/10.1371/journal.pone.0204175.t002
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T2� values are in excellent agreement as demonstrated in the Bland-Altman plot (Fig 3, bottom

right) with mean difference = 0.34 ms, and 95% limits of agreement = [-2.78 3.46] ms. Further-

more, there was no statistical evidence for difference between the two protocols for T2� values

using either of the fat models.

Discussion

This study replicated results from previous work in a reproducible, controlled phantom exper-

iment, and tested LMS IDEAL in a large number of human volunteers over a range of PDFF

and T2� values. The phantom experiment suggests that LMS IDEAL is a standardized, con-

founder-corrected estimator of PDFF, which can be used across different vendors and field

strengths. Limitations of phantom design and inter-acquisition variability, including effects of

temperature and parameters of the acquisition protocols [24] are beyond the scope of this

study. Sites 5 and 6 presented higher deviation in slope and intercept that can be attributed to

differences in the approach to correct for bipolar readouts [24, 30].

Fig 3. Comparison of PDFF and T2� methods using UK Biobank data.

https://doi.org/10.1371/journal.pone.0204175.g003
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The LMS Dixon and LMS IDEAL PDFF values measured from in vivo data show excellent

correlation with systematic differences, which can be explained by differences in the acquisi-

tion protocol, and also by specific aspects of the model used to calculate PDFF values. The flip

angle is the protocol parameter most likely to lead to PDFF differences (20˚ for Dixon versus

5˚ for IDEAL). This should decrease IDEAL PDFF relative to Dixon PDFF, the opposite of

what is observed. The PDFF differences were then assessed using a single-peak fat model to

calculate LMS IDEAL PDFF values, which is more similar to the LMS Dixon fat model. The

resulting LMS IDEAL PDFF values were systematically lower than LMS DIXON PDFF values

(results not shown). This may be attributable to the difference in flip angle (see e.g. (15)). The

reduction in LMS IDEAL PDFF values using the single-peak fat model compared to the six-

peak model can be attributed to a smaller contribution of the signal to the fat component ~1.5

(approx. 30% reduction). Summarising, the systematic difference between LMS Dixon and

LMS IDEAL is attributable to different fat models, which leads to an under-estimation of

PDFF for LMS Dixon that is then partly compensated by the increased flip angle for the LMS

Dixon protocol. The LMS IDEAL T2� and LMS T2� results were in excellent agreement. Once

all data has been acquired for the UK Biobank cohort, the LMS IDEAL acquisition protocol

will have been used to acquire images in around 100K subjects. Further work is required to

extend the phantom cross-vendor, cross field strength results to in-vivo data.

The results of this validation study demonstrates the potential for LMS IDEAL to be used as

a standardised clinical tool for non-invasive quantification of biomarkers for liver diseases,

which in turn enables applications in longitudinal clinical trials with multicenter participation.

Acknowledgments

This research has been conducted using the UK Biobank Resource under application 9914 and

access to these data was facilitated by Steve Garratt, UK Biobank, Stockport, UK and Jimmy

Bell, University of Westminster, London, UK. We would also like to acknowledge Scott

Reeder, University of Wisconsin, for helpful discussions during the protocol set up.

Author Contributions

Conceptualization: Chloe Hutton, Michael Brady.

Formal analysis: Chloe Hutton.

Investigation: Chloe Hutton, Matteo Milanesi.

Methodology: Chloe Hutton, Michael L. Gyngell, Matteo Milanesi.

Software: Chloe Hutton, Michael L. Gyngell.

Supervision: Michael Brady.

Validation: Chloe Hutton, Alexandre Bagur.

Visualization: Chloe Hutton, Alexandre Bagur.

Writing – original draft: Chloe Hutton.

Writing – review & editing: Michael L. Gyngell, Matteo Milanesi, Alexandre Bagur, Michael

Brady.

References
1. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, et al. Multiparametric mag-

netic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014; 60:69–77. https://doi.

org/10.1016/j.jhep.2013.09.002 PMID: 24036007

Validation of a standardized MRI method for liver fat and T2* quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0204175 September 20, 2018 10 / 12

https://doi.org/10.1016/j.jhep.2013.09.002
https://doi.org/10.1016/j.jhep.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24036007
https://doi.org/10.1371/journal.pone.0204175


2. Pavlides M, and Banerjee R. Multiparametric magnetic resonance imaging predicts clinical outcomes in

patients with chronic liver disease. J Hepatol. 2016; 64:308–315. https://doi.org/10.1016/j.jhep.2015.

10.009 PMID: 26471505

3. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic

fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology.

2016; 64:73–84. https://doi.org/10.1002/hep.28431 PMID: 26707365

4. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access

Resource for Identifying the causes of a wide range of complex diseases of middle and old age. PLoS

Med. 2015; 12:e1001779. https://doi.org/10.1371/journal.pmed.1001779 PMID: 25826379.

5. Willman H, Kelly M, Garratt S, Matthews PM, Milanesi M, Herlihy A, et al. Characterisation of liver fat in

the UK Biobank cohort. PLoS One. 2017; 12:e0172921. https://doi.org/10.1371/journal.pone.0172921

PMID: 28241076

6. Browning JD, Szczepaniak LS, Dobbins RL, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of

hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology. 2004;

40:1387–1395. https://doi.org/10.1002/hep.20466 PMID: 15565570

7. Wood J. Estimating tissue iron burden: current status and future prospects. Br. J. Haematol. 2015;

170:15–28. https://doi.org/10.1111/bjh.13374 PMID: 25765344

8. Mckay AG, Wilman HR, Kelly M, Milanesi M, Bell J, Philips L, et al. Liver Iron overload within a UK

based population by sex. J Hepatol. 2017; 66:S172.

9. Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: the

competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1

(shMOLLI-T1) in the liver. J Magn Reson Imaging. 2017; 45:450–462. https://doi.org/10.1002/jmri.

25392 PMID: 27448630

10. Dixon WT. Simple Proton Spectroscopic Imaging. Radiology. 1984; 153:189. https://doi.org/10.1148/

radiology.153.1.6089263 PMID: 6089263

11. Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn

Reson Imaging. 1991; 1:521–530. PMID: 1790376

12. St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, et al. Noninvasive mea-

surement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;

105:855–861. https://doi.org/10.1182/blood-2004-01-0177 PMID: 15256427

13. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping

accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell

disease patients. Blood. 2005; 106:1460–1465. https://doi.org/10.1182/blood-2004-10-3982 PMID:

15860670

14. Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysi-

cal mechanisms using a Monte Carlo model. Magn Reson Med. 2011; 65:837–847. https://doi.org/10.

1002/mrm.22657 PMID: 21337413

15. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, et al. Relaxation Effects in

the Quantification of Fat using Gradient Echo Imaging, Magn Reson Imaging. 2008; 26: 347–359.

https://doi.org/10.1016/j.mri.2007.08.012 PMID: 18093781

16. Yu H, Shimakawa A, McKenzie CA, Brodksy E, Brittain JH, Reeder SB. Multiecho water-fat separation

and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;

60:1122–1134. https://doi.org/10.1002/mrm.21737 PMID: 18956464

17. Reeder SB, McKenzie C, and Pineda A. Water-fat separation with IDEAL gradient-echo imaging. J

Magn Reson Imaging. 2007; 25:644–652. https://doi.org/10.1002/jmri.20831 PMID: 17326087

18. Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, et al. Multiecho reconstruction for

simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging. 2007; 26:1153–

1161. https://doi.org/10.1002/jmri.21090 PMID: 17896369

19. Hernando D, Levin YS, Sirlin CB, Reeder SB. Quantification of liver iron with MRI: state of the art and

remaining challenges. J Magn Reson Imaging. 2014; 40:1003–1021. https://doi.org/10.1002/jmri.24584

PMID: 24585403

20. Hines CD, Frydrychowicz A, Hamilton G, Tudorascu DL, Vigen KK, Yu H, et al. T(1) independent, T(2)

(*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accu-

rate and precise measure of hepatic steatosis. J Magn Reson Imaging. 2011; 33:873–881. https://doi.

org/10.1002/jmri.22514 PMID: 21448952

21. Tyagi A, Yeganeh O, Levin Y, Hooker JC, Hamilton GC, Wolfson T, et al. Intra- and inter-examination

repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for

estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdom

Imaging. 2015; 40:3070–3077. https://doi.org/10.1007/s00261-015-0542-5 PMID: 26350282

Validation of a standardized MRI method for liver fat and T2* quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0204175 September 20, 2018 11 / 12

https://doi.org/10.1016/j.jhep.2015.10.009
https://doi.org/10.1016/j.jhep.2015.10.009
http://www.ncbi.nlm.nih.gov/pubmed/26471505
https://doi.org/10.1002/hep.28431
http://www.ncbi.nlm.nih.gov/pubmed/26707365
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
https://doi.org/10.1371/journal.pone.0172921
http://www.ncbi.nlm.nih.gov/pubmed/28241076
https://doi.org/10.1002/hep.20466
http://www.ncbi.nlm.nih.gov/pubmed/15565570
https://doi.org/10.1111/bjh.13374
http://www.ncbi.nlm.nih.gov/pubmed/25765344
https://doi.org/10.1002/jmri.25392
https://doi.org/10.1002/jmri.25392
http://www.ncbi.nlm.nih.gov/pubmed/27448630
https://doi.org/10.1148/radiology.153.1.6089263
https://doi.org/10.1148/radiology.153.1.6089263
http://www.ncbi.nlm.nih.gov/pubmed/6089263
http://www.ncbi.nlm.nih.gov/pubmed/1790376
https://doi.org/10.1182/blood-2004-01-0177
http://www.ncbi.nlm.nih.gov/pubmed/15256427
https://doi.org/10.1182/blood-2004-10-3982
http://www.ncbi.nlm.nih.gov/pubmed/15860670
https://doi.org/10.1002/mrm.22657
https://doi.org/10.1002/mrm.22657
http://www.ncbi.nlm.nih.gov/pubmed/21337413
https://doi.org/10.1016/j.mri.2007.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18093781
https://doi.org/10.1002/mrm.21737
http://www.ncbi.nlm.nih.gov/pubmed/18956464
https://doi.org/10.1002/jmri.20831
http://www.ncbi.nlm.nih.gov/pubmed/17326087
https://doi.org/10.1002/jmri.21090
http://www.ncbi.nlm.nih.gov/pubmed/17896369
https://doi.org/10.1002/jmri.24584
http://www.ncbi.nlm.nih.gov/pubmed/24585403
https://doi.org/10.1002/jmri.22514
https://doi.org/10.1002/jmri.22514
http://www.ncbi.nlm.nih.gov/pubmed/21448952
https://doi.org/10.1007/s00261-015-0542-5
http://www.ncbi.nlm.nih.gov/pubmed/26350282
https://doi.org/10.1371/journal.pone.0204175


22. Artz NS, Haufe WM, Hooker CA, Hamilton G, Wolfson T, Campos GM, et al. Reproducibility of MR-

based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in

obese subjects. J Magn Reson Imaging. 2015; 42:811–817. https://doi.org/10.1002/jmri.24842 PMID:

25620624

23. Serai SD, Dillman JR, Trout AT. Proton Density Fat Fraction Measurements at 1.5- and 3-T Hepatic MR

Imaging: Same-day agreement among readers and across two imager manufacturers. Radiology.

2017; 284:244–254. https://doi.org/10.1148/radiol.2017161786 PMID: 28212052

24. Hernando D, Sharma SD, Aliyari Ghasabeh M, Alvis BD, Arora SS, Hamilton G, et al. Multisite, multi-

vendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T

and 3T using a fat-water phantom. Magn Reson Med. 2017; 77:1516–1524. https://doi.org/10.1002/

mrm.26228 Epub 2016 Apr 15. PMID: 27080068

25. Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, et al. Multicoil Dixon chemical species separa-

tion with an iterative least-squares estimation method. Magn Reson Med. 2004; 51:35–45. https://doi.

org/10.1002/mrm.10675 PMID: 14705043

26. Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ. Field map estimation with a region growing

scheme for iterative 3-point water-fat decomposition. Magn Reson Med. 2005; 54:1032–1039. https://

doi.org/10.1002/mrm.20654 PMID: 16142718

27. Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS. In vivo characteriza-

tion of the liver fat 1H MR spectrum. NMR Biomed. 2011; 24:784–90. https://doi.org/10.1002/nbm.1622

PMID: 21834002

28. Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, et al. Combination of complex-

based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction.

Magn Reson Med. 2011; 66:199–206. https://doi.org/10.1002/mrm.22840 PMID: 21695724

29. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imag-

ing: correction of bias from T(1) and noise. Magn Reson Med. 2007; 58:354–364. https://doi.org/10.

1002/mrm.21301 PMID: 17654578

30. Peterson P, Svensson J, Månsson S. Relaxation effects in MRI-based quantification of fat content and

fatty acid composition. Magn Reson Med. 2014; 72:1320–1329. https://doi.org/10.1002/mrm.25048

Epub 2013 Dec 10. PMID: 24327547

Validation of a standardized MRI method for liver fat and T2* quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0204175 September 20, 2018 12 / 12

https://doi.org/10.1002/jmri.24842
http://www.ncbi.nlm.nih.gov/pubmed/25620624
https://doi.org/10.1148/radiol.2017161786
http://www.ncbi.nlm.nih.gov/pubmed/28212052
https://doi.org/10.1002/mrm.26228
https://doi.org/10.1002/mrm.26228
http://www.ncbi.nlm.nih.gov/pubmed/27080068
https://doi.org/10.1002/mrm.10675
https://doi.org/10.1002/mrm.10675
http://www.ncbi.nlm.nih.gov/pubmed/14705043
https://doi.org/10.1002/mrm.20654
https://doi.org/10.1002/mrm.20654
http://www.ncbi.nlm.nih.gov/pubmed/16142718
https://doi.org/10.1002/nbm.1622
http://www.ncbi.nlm.nih.gov/pubmed/21834002
https://doi.org/10.1002/mrm.22840
http://www.ncbi.nlm.nih.gov/pubmed/21695724
https://doi.org/10.1002/mrm.21301
https://doi.org/10.1002/mrm.21301
http://www.ncbi.nlm.nih.gov/pubmed/17654578
https://doi.org/10.1002/mrm.25048
http://www.ncbi.nlm.nih.gov/pubmed/24327547
https://doi.org/10.1371/journal.pone.0204175

