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Abstract

Obesity is increasingly prevalent and associated with increased risk of developing type 2

diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an

accurate method for determination of body fat volume and distribution. However, quantifying

body fat from numerous MRI slices is tedious and time-consuming. Here we developed a

deep learning-based method for measuring visceral and subcutaneous fat in the abdominal

region of mice. Congenic mice only differ from C57BL/6 (B6) Apoe knockout (Apoe-/-) mice

in chromosome 9 that is replaced by C3H/HeJ genome. Male congenic mice had lighter

body weight than B6-Apoe-/- mice after being fed 14 weeks of Western diet. Axial and coro-

nal T1-weighted sequencing at 1-mm-thickness and 1-mm-gap was acquired with a 7T Bru-

ker ClinScan scanner. A deep learning approach was developed for segmenting visceral

and subcutaneous fat based on the U-net architecture made publicly available through the

open-source ANTsRNet library—a growing repository of well-known neural networks.

The volumes of subcutaneous and visceral fat measured through our approach were

highly comparable with those from manual measurements. The Dice score, root-mean-

square error (RMSE), and correlation analysis demonstrated the similarity between two

methods in quantifying visceral and subcutaneous fat. Analysis with the automated method

showed significant reductions in volumes of visceral and subcutaneous fat but not non-fat

tissues in congenic mice compared to B6 mice. These results demonstrate the accuracy of

deep learning in quantification of abdominal fat and its significance in determining body

weight.

Introduction

Obesity is excessive fat accumulation in the body to the extent that an individual has increased

risk for an array of chronic diseases, including type 2 diabetes (T2D), cardiovascular diseases,

and cancer [1]. It is a growing epidemic in the US and globally. In 2014, 37.7% of adults and

17% of youth aged 2–19 years were obese in the US [2], and 650 million adults aged 18 years or

older were obese worldwide (http://www.who.int/mediacentre/factsheets/fs311/en).
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The diagnosis of obesity has primarily relied on a few anthropometric measurements, such

as body mass index (BMI), waist circumference, or waist-to-hip ratio. A BMI of� 30 kg/m2 is

considered obese, and a BMI of 25 to<30 kg/m2 is defined as overweight. However, these

indirect measurements neither allows for distinguishing fat from skeletal muscle nor distin-

guishing between visceral and subcutaneous fat. Excessive body fat rather than skeletal muscle

is related to both increased plasma levels of free fatty acids and proinflammatory cytokines as

well as endoplasmic reticulum stress, all of which contribute to development of insulin resis-

tance, type 2 diabetes, and atherosclerosis [3]. Central or abdominal obesity has been shown to

be more closely associated with risk of coronary artery disease and type 2 diabetes [4][5].

Thus, there is a medical demand for accurately measuring the amount and distribution of

body fat to better understand its impact on health and disease.

Such imaging modalities as magnetic resonance imaging (MRI) and computed tomography

(CT) can clearly distinguish fat from other tissues and thus allow for accurate measurement of

fat and non-fat tissue amounts [6]. Compared to CT, MRI involves no ionizing radiation and

is more efficient in differentiating fat from non-fat tissues [7][8]. Quantification of body fat

volume using MRI or CT involves analysis of many cross-sectional or longitudinal slices across

the region of interest. Thus, manual measurement of fat volume with MRI or CT images is a

tedious and time-consuming task. To save time and also reduce subjective influences from

observers, several semi-automated algorithms have been developed for quantifying body fat

[9][10][11][12]. However, nearly all of the algorithms are still dependent on expert knowledge

for tuning the features of images and their accuracy and reliability are often low.

Due to recent successes, deep learning with convolutional neural nets has gained popularity

in the literature for tackling problems in the areas of image recognition, classification and seg-

mentation [13]. Development of deep learning algorithms relies on neural networks, a compu-

tational architecture that can be trained with a large number of annotated images or data,

identify features from them, and make predictions of other data. ANTsRNet is a collection of

deep learning architecture of neural networks ported to the R language and built on the Keras

neural network [14]. Here, we applied these architectures and other open-source software

packages developed by the Advanced Normalization Tools team (which includes one of the

co-authors) to provide a comprehensive protocol for automatically segmenting abdominal vis-

ceral and subcutaneous fat of mice on MR images. The trained networks provided publicly can

be directly applied to these MR data for conducting objective and expedited measurements of

fat volume in mice.

Materials and methods

Ethics statement

All procedures were performed in accordance with the current National Institutes of Health

guidelines (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-

animals.pdf) and approved by the Institutional Animal Care and Use Committee of the Uni-

versity of Virginia (Assurance #A3245-01, Animal Protocol #3109).

Animals

Apoe knockout (Apoe-/-) mice with a C57BL/6 (B6) genetic background were purchased from

the Jackson Laboratory. Congenic mice, which only differ from B6-Apoe-/- mice in chromo-

some 9 region from 15.6 to 115.6 Mb, were constructed using the classical congenic breeding

method as previously described [15]. The donor chromosome 9 region was derived from

C3H/HeJ (C3H) mice. Mice were fed 14 weeks of Western diet (TD88137, Envigo), stating at 6

weeks of age.
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Magnetic resonance imaging (MRI)

MRI for the abdominal region, which extended from the top of the diaphragm to the bottom

of the pelvic cavity, was performed on a 7T Clinscan system (Bruker, Ettlingen, Germany).

Mice were anesthetized under isoflurane inhalation during imaging and respiratory motion

monitored with an MR-compatible gating system for mice (SA Instruments, Inc., Stony

Brook, NY). Axial and coronal T1-weighted sequencing (20 axial and 18 coronal slices; axial

voxel size = 0.156×0.156×1.000 mm; coronal voxel size = 0.430×0.430×1.000 mm) at 1-mm-

thickness and 1-mm-gap was acquired. Axial 2D images were acquired once with and once

without water filtration, and coronal imaging was performed only under the water filtration

mode.

Manual measurement

The volumes of visceral and subcutaneous fat as well as non-fat tissues were quantified on

water-filtered axial slices using the auto-thresholding function of the Fiji package for ImageJ

[16]. Briefly, MR images (all 35 x 35 mm; Pixel width/height = 0.182291; Voxel depth = 2.0)

were converted to binary ones with fat being white and non-fat black, and the “Analyze Parti-

cles” function was then used to determine the total white area (mm2) on the binary images.

The volume of fat (mm3) was obtained by multiplying each slice’s total area (mm2) by 2

(1-mm slice thickness +1-mm interslice gap), and the total fat volume was the sum of the fat

volumes measured from all consecutive slices. The manual measurement results were used as

the gold standard for comparisons with the automated measurement results.

Automatic measurement

The automated method for body fat quantification consists of steps, including training data

preparation, template-based data augmentation, and fat quantitation. The complete flowchart

of the process is shown in Fig 1.

Training data preparation

Original MR images were converted to the Nifti format and underwent denoising [17] and

bias correction [18] as preprocessing steps to improve image quality. The fat tissue compart-

ment was segmented into subcutaneous and visceral fat based on the peritoneal wall on each

image. Visceral fat is the fat within the contour of the abdominal wall, and subcutaneous fat is

the fat within the abdominal wall covering the abdominal muscles. Manual labeling was per-

formed using the open source segmentation tool [19]ITK-SNAP [19]. 37 water-filtered 2D MR

images from 5 B6 and 3 congenic mice were each manually segmented with fully annotated

area for visceral fat and area for subcutaneous fat and these images formed the core training

data set. Of them, 26 images were obtained from B6 mice and 11 from congenic mice. These

2D images had a dimension of 35 x 35 x 1 mm with a 1mm gap between consecutive images.

They were selected as a diverse and representative set of images spanning the entire abdominal

region and varying in intensity and fat amount.

A composite binary mask template was then generated from the segmentation maps of the

core training set using the ANTs toolkit (https://github.com/ANTsX/ANTs) [20]. The use of

the manually edited binary masks over the original MR images is due to the lack of correspon-

dence of internal structures within the template cohort and our interest in capturing the global

shape variation between the visceral and subcutaneous fat regions for the purposes of data aug-

mentation (explained in the next sub-section).
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Template-based data augmentation

The need for large training data sets is a well-known limitation associated with deep learning

algorithms [21]. Whereas the architectures developed for such tasks as the ImageNet competi-

tion have access to millions of annotated images, such data access is not always available and

such is typically the case in medical imaging. In order to achieve data set sizes necessary for

learning functional models, various data augmentation strategies have been employed, includ-

ing application of intensity transformations, such as brightening and enhanced contrast, and

simple spatial transformations, such as arbitrary rotations and translations. Regarding the lat-

ter, such transformations are not ideal as they might not reflect what is typically seen in medi-

cal images and might not sufficiently sample the shape-space of the population currently being

studied for generalizability.

In this work, we used a template-based approach whereby image data sampled from the

population was used to construct a representative template that was optimal in terms of both

shape and intensity [20]. In addition to the representative template, this template-building

process yields the transformations to/from each individual image to the template space (Fig 2).

This permits a propagation of the training data to the space of each individual image. In the

simplest case, the training data was used to construct the template and then each individual

training data was propagated to the space of every other individual training data. In this way, a

training data set of size N can be expanded to a data set of size N2. A more complicated use

case could build a template from M data sets (where one would expect M> N). Transforma-

tions between the training data and the template could then be used to propagate the training

data to the spaces of the individual members of the template-generating data for an augmented

data set size of M x N.

Fig 1. Flowchart illustrating the major steps employed in segmentation and quantification of subcutaneous and

visceral fat in MR images. MR images were first converted to a format compatible with the ANTs software packages

(NifTI; .nii.gz), and then processed for denoising and bias correction. 37 representative original MR images and their

corresponding segmentation images from B6 mice and congenic mice were used for establishing the core training

dataset. A novel data augmentation strategy was used to increase the number of training images from 37 to 60,552,

which were used to train a U-net-based architecture. A testing dataset consisting of 60 MR images from 3 B6 mice was

run through the model to test for accuracy of the method.

https://doi.org/10.1371/journal.pone.0204071.g001
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We used 37 MR images thus permitting 372 = 1,369 possible deformable shapes which comprise

the first level of augmented data that can be further augmented by more conventional strategies

(e.g., brightness transformations, translations, etc.). The second level of augmented data created

two horizontal flip images per level one image as well as 36 rotation images per flip image. In this

way we augmented the 1,369 first-level images to 98,568 second-level images (1,369 � 2 � 36).

We implemented tailored batch generators to implement this data augmentation strategy

and to generate the data batches per epoch on the fly. Although slower, this avoids the problem

of loading all training data in memory during learning. Specific parameters from training can

be found in the scripts we wrote for the project available in our bitbucket.org repository

[https://bitbucket.org/atg3qz/unet_fat_mri/src].

U-net for segmentation of abdominal fat in MRI

U-net is a well-known convolutional neural network architecture for voxelwise classification

labeling [https://arxiv.org/abs/1505.04597]. It has been employed in various segmentation

applications such as MRI of the knee [22], brain tumors in PET imaging [23], and histology

images [24]. We combined U-net with our template-based data augmentation scheme

described in the previous section for segmenting abdominal fat and subsequent quantification.

ANTsRNet, an open-source repository for deep learning architectures

We also introduced ANTsRNet [https://github.com/ntustison/ANTsRNet], a collection of

well-known deep learning architectures ported to the R language. ANTsRNet is built using the

Fig 2. Example MR images showing data augmentation strategy. We introduced a novel data augmentation strategy

for training through ANTs-based template construction. A template was created from the training data segmentation

images where the red area includes visceral fat and the foreground designates regions of subcutaneous fat. 37 images

were used to create such a template that permitting 372 = 1369 possible deformable shapes which are further

augmented by random horizontal flipping and randomized rotation.

https://doi.org/10.1371/journal.pone.0204071.g002
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Keras neural network library [14] (available through R) and is highly integrated with the

ANTsR package, the R interface of the ANTs toolkit. Consistent with other ANTs-based soft-

ware offerings, ongoing development is currently carried out on GitHub using a well-com-

mented coding style, thorough documentation, and self-contained working examples. One

such architecture is the well-known U-net architecture [https://arxiv.org/abs/1505.04597]

where we have replaced the cross-entropy loss function with a multi-label Dice function based

on previous work [http://hdl.handle.net/10380/3141].

Input and testing nifti images are all of size 192 × 192, as is the template, such that no

resampling is required. I/O from the disk to the ANTsRNet software is handled by antsRead-

Image/antsWriteImage functions available as part of ANTsR. During data augmentation, the

antsApplyTransforms program was used to transform a randomly chosen image/segmentation

mask pair to a randomly chosen target in the training cohort. During data augmentation, a

digital “coin toss” was used to randomly flip the image/segmentation pair in a left-right direc-

tion followed by a randomly chosen rotation angle between 0 and 359 degrees. These latter

operations were handled by the magick package in R. Specific parameters for the 2-D U-net

architecture for both models are as follows:

• Adam optimization:

� learning rate = 0.0001.

� optimization function: Dice coefficient.

• Number of epochs: 40.

• Convolution layers:

� -kernel size: 3×3.

� -activation: rectified linear units (ReLU).

� -number of filters: doubled at every layer starting with N = 32.

• Max pooling layers:

� size: 2×2.

� stride length: 2×2.

• Upsampling/transposed convolution (i.e., deconvolution) layers:

� kernel size: 2×2.

� stride length: 2×2.

� activation: rectified linear units (ReLU).

Training took approximately 1.5 hours. After model construction, prediction per image

(after preprocessing) takes < 1 second per image. Both model construction and prediction uti-

lized a NVIDIA Titan Xp GPU. Both training and prediction are handled by custom-built R

scripts available as part of the Bitbucket repository associated with this work.

Fat quantification with segmented images

The novel segmentation images were evaluated for accuracy for quantitation of visceral and

subcutaneous fat using the Fiji package. To measure visceral fat, the segmentation image was

used as a template to generate a contour, which was then overlapped onto the original MR

image to outline the region containing visceral fat (Fig 3). The outlined area was made binary
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with visceral fat to the black color and other components to white. The “Create Selection” tool

was then used to generate a contour perfectly outlining the visceral fat component. The

‘Restore Selection” tool applied to place this selection onto the original MR image, giving an

exact outline of the visceral component in the image. This selected area was copied and pasted

to a new image (all images 35 x 35 mm; Pixel width/height = 0.182291; Voxel depth = 2.0), and

the area of the image was measured in the same manner as described above under “Manual

measurement”. To quantify subcutaneous fat, the “Make Inverse” tool was used to select the

inverse of the visceral component and the selected area was again pasted to a new image.

Statistical analysis

Comparisons were made between the automated and manual methods in quantification of vis-

ceral and subcutaneous fat as well as between B6 and congenic mice for differences in body

weight and fat volume. The Dice score, generated from the ANTs Utilizes Software package,

and the root-mean-square error (RMSE) were used for comparing the similarity of the values

of fat volumes measured by the manual and automatic methods in the same set of MR images.

Correlation analysis was performed to determine the correlation of visceral or subcutaneous

fat volumes measured by the two methods. For comparisons of fat volumes between congenic

and control mice at multiple slices, two-way ANOVA was conducted. When the F value was

significant (P< 0.05), Student’s t-test was performed to determine differences between the

groups. T-test was also used to determine the difference in body weight between the 2 groups

of mice. Differences were considered statistically significant at P< 0.05.

Fig 3. Flowchart showing major steps in automated quantification of visceral and subcutaneous fat. Images were

created using the Fiji package of ImageJ. All MR images were set to the dimensions of 35x35 mm, a pixel width and

height of 0.182291, and a voxel depth of 2. 1) Make the visceral segmentation image binary (outside = black, visceral

component = white), and use the “Create Selection” tool to generate a selection perfectly outlining the visceral

component. 2) Use the ‘Restore Selection” tool to place this selection on the original MR image, giving an exact outline

of the visceral component. 3) Copy and paste this selected area to a new image, making sure it is the same dimensions

as the original MR image to ensure accurate quantification (all images 35 x 35 mm; Pixel width/height = 0.182291;

Voxel depth = 2.0). 4) Threshold the image to make a binary image in which the fat is one color and everything else is

another. 5) Quantify this new image by using the “Analyze Particles” tool. 6) On the original MR image with the

visceral fat component selected (from 2), use the “Make Inverse” tool to obtain the subcutaneous fat component. 7–9)

Repeat the same quantification process as seen in 3–5.

https://doi.org/10.1371/journal.pone.0204071.g003
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Results

Phenotypic difference in body weight

Chromosome 9 congenic mice were genetically identical to B6-Apoe-/- mice except for the

chromosome 9 region (15.6–115.6 Mb), which was replaced with the C3H genome [15]. After

being fed 14 weeks of Western diet, male congenic mice displayed significantly lighter body

weight than B6-Apoe-/- mice (30.67 ± 1.05 vs. 38.81 ± 2.66 g; P = 0.0021; n = 7 and 17, respec-

tively) (Fig 4). This result confirmed the existence of W10q13, a locus for body weight on

mouse chromosome 9 we previously mapped in an intercross derived from B6-Apoe-/- and

BALB/cJ-Apoe-/- mice [25].

Manual Measurement of body fat

MRI scans were performed within one week before mice were euthanized. Noticeable differ-

ences in subcutaneous and visceral fat amounts between congenic and B6-Apoe-/- mice could

be seen on MR images and gross anatomic examination (Fig 5). To quantify the differences,

the volumes of subcutaneous and visceral fat were measured on 4 representative slices (1 slice

at the level of liver, 2 at kidney, 1 at pelvic) spanning the abdominal region for congenic and

B6-Apoe-/- mice (4 mice per group). Congenic mice had a subcutaneous fat volume of

284.0 ± 72.4 mm3/slice, significantly smaller than the volume of 627.5 ± 29.9 mm3/slice in

B6-Apoe-/- mice (p = 0.0046) (Fig 6). The visceral fat volume was also significantly smaller in

congenic mice (554.6 ± 70.3 mm3/slice) than in B6 mice (1045.6 ± 136.4 mm3/slice)

(p = 0.019). In contrast, non-fat tissue volume was comparable between congenic and

B6-Apoe-/- mice (2603.8 ± 66.6 vs. 2597.7 ± 189.5 mm3/slice).

Automatic measurement of visceral and subcutaneous fat

A modified deep learning approach with a novel template-based data augmentation strategy

was employed. The U-net model was trained with axial MR images spanning the entire

abdominal region of mice. We then applied the learned U-net model to analysis of 60 water-fil-

tered evaluation MR images from three B6 mice that were previously quantified manually to

generate corresponding probability image sets designating subcutaneous and visceral regions.

Automatic segmentations of visceral and subcutaneous fat for either water-filtered or

Fig 4. Body weight (g) of male congenic and B6-Apoe-/- mice fed a Western diet. Results are means ± SE of 7 B6 and

17 congenic mice after 14 weeks of Western diet. � P< 0.05 vs. B6 mice.

https://doi.org/10.1371/journal.pone.0204071.g004
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unfiltered slices generated from corresponding probability images were highly consistent with

the manually generated segmentations of the same input images (Figs 7 and 8). These segmen-

tation images were then used to generate the regions of interest on the original MR slices for

quantifying both visceral and subcutaneous fat volumes.

Comparative analyses were performed to verify the accuracy of the automated method

through multiple metrics, including Dice’s similarity coefficient, RMSE, correlation coeffi-

cient, and real measurement results. We analyzed 43 slices that had not been included in the

original training set and calculated Dice coefficient values measuring the level of overlap

between the manual and automatic segmentation results. The average Dice coefficient value

was 0.968 ± 0.00267 (Min = 0.919, Max = 0.987) (S1 Data). The volumes of visceral fat mea-

sured from sequential water-filtered slices were comparable between the two measurements

(Fig 9A). The total visceral fat volume measured by the automated method was also compara-

ble to the volume achieved by the manual method (5463 ± 625 vs. 5331 ± 642 mm3; p = 0.890)

(Fig 9B). Correlation analysis showed an extremely high agreement in measurements made by

the two methods (R2 = 0.99; p = 9.8E-64) (Fig 9C). The RMSE values supported this close cor-

relation (S1 Data).

The volumes of subcutaneous fat measured on sequential water-filtered slices were also

comparable between the two measurements (Fig 10A). The total subcutaneous fat volume

Fig 5. Representative MR images of congenic and B6-Apoe-/- mice fed a Western diet. Axial MR slices at the levels

denoted by the red (A) and green lines (B) across the coronal slice (C). D, gross examination of abdominal fat. Tope

roll: B6-Apoe-/- mice; bottom: congenic mice.

https://doi.org/10.1371/journal.pone.0204071.g005

Fig 6. Fat and non-fat volumes of congenic and B6-Apoe-/- mice measured manually using axial MR slices. Results

are means ± SE of 4 mice per group. � P = 0.012.

https://doi.org/10.1371/journal.pone.0204071.g006
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from auto-segmentation was also similar to the volume obtained from the manual method

(3571 ± 141 vs. 3617 ± 122 mm3; P = 0.533) (Fig 10B). Correlation analysis shows a high agree-

ment in measurement results achieved from the two methods (R2 = 0.96) (Fig 10C).

The automated method also applied to measurement of fat volumes on unfiltered MR slices,

though they had not been used to train the algorism. The Dice coefficient for the corresponding

unfiltered images still shows a high degree of overlap with manual segmentations with a value

Fig 7. The accuracy of deep learning in deriving the area containing visceral fat at three different levels: pelvic,

kidney and liver on MR images. Prediction of the segmentation in the red area by deep learning is highly consistent

with the input data. The red area is where visceral fat is included. Auto: prediction made by deep learning; manual: the

red line is drawn with ImageJ and the area within the red line is used as input for visceral fat.

https://doi.org/10.1371/journal.pone.0204071.g007

Fig 8. The accuracy of deep learning in deriving the area containing subcutaneous fat at three different levels:

Kidney and liver on MR images. The red area is where subcutaneous fat is located. Auto: prediction made by deep

learning; manual: the red line is drawn with ImageJ and the area outside the red line is used as input for subcutaneous

fat.

https://doi.org/10.1371/journal.pone.0204071.g008
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Fig 9. Comparison between the automated and manual measurements in quantification of visceral fat. A, The

volumes of visceral fat on 20 sequential axial slices from the tail root (slice 1) to the diaphragm (slice 20) of B6-Apoe-/-

mice measured by manual (black) and deep learning (water filtered = solid; unfiltered = dashed). B, the total fat

volume of B6-Apoe-/- mice measured by manual (black) and deep learning (grey; water filtered = solid, unfiltered =

dashed). C, Correlation analysis of visceral fat volumes on water-filtered MR slices measured with the two methods.

Each dot represents on axial MR slice. R2 and P values are shown in the figure. D, Correlation analysis of visceral fat

volumes on unfiltered MR slices measured with the two methods.

https://doi.org/10.1371/journal.pone.0204071.g009

Fig 10. Comparison between the automated and manual measurements in quantification of subcutaneous fat. A,

The volumes of subcutaneous fat on 20 sequential axial slices from the tail root (slice 1) to the diaphragm (slice 20) of

B6-Apoe-/- mice measured by a manual (black) or automated method (water filtered = solid; unfiltered = dashed). B,

the total subcutaneous fat volume of B6-Apoe-/- mice measured by a manual (black) or automatic method (water

filtered = solid; unfiltered = dashed). C, Correlation analysis of subcutaneous fat volumes on water-filtered MR slices

measured with the two methods. Each dot represents a slice. R2 and P values are shown in the figure. D, Correlation

analysis of subcutaneous fat volumes on unfiltered MR slices measured with the two methods.

https://doi.org/10.1371/journal.pone.0204071.g010
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of 0.962 ± .00467 (Min = 0.772, Max = 0.990), however the overlap is slightly worse than with

water-filtered images. The total visceral fat volume was slightly higher than the volume mea-

sured manually on water-filtered slices (6232 ± 834 vs. 5331 ± 642 mm3; p = 0.565) (Fig 9). Cor-

relation analysis showed a high degree of correlation between the results achieved from the two

measurements (R2 = 0.95; p = 8.5E-3(. The total subcutaneous fat volume was 3606 ± 117 mm3,

comparable to the volume of 3571 ± 141 mm3 measured manually on water filtered slices

(P = 0.816). A significant correlation between the manual measurement made on water-filtered

images and the automated measurement made on unfiltered images was observed (R2 = 0.8278;

p = 4.9E-24). A small mismatch in the measurement results was observed in slices acquired at a

higher location where the liver was located, though the difference was not significant.

Differences between congenic and B6-Apoe-/- mice in subcutaneous and

visceral fat

The automated method was used to measure fat volumes on axial water-filtered slices acquired

from congenic and B6-Apoe-/- mice (n = 4 per group). Congenic mice had less subcutaneous

and visceral fat than B6-Apoe-/- mice in most slices scanned (Fig 11). The differences were

more significant in the lower half of the abdominal region for visceral fat. The total visceral fat

volume of congenic mice was reduced by 48.8% relative to the volume of B6 mice (2652 ± 465

vs. 5183 ± 523 mm3; p = 0.011). The subcutaneous fat volume of congenic mice was reduced

by 37.1% (2184 ± 363 vs. 3471 ± 141 mm3; p = 0.016).

Discussion

An increasing prevalence of central obesity and its close association with cardiovascular dis-

ease and type 2 diabetes demands a reliable technique for abdominal fat quantification. MRI is

the most effective imaging modality currently used for detecting the fat tissue in vivo, but

Fig 11. Comparison between congenic and B6-Apoe-/- mice in visceral (A) and subcutaneous fat volumes (B)

measured by the automated method on water filtered MR slices. MR slices span from the pelvic cavity (slice 1) to the

top of the liver (slice 20). Results are means ± SE of 4 mice per group on each slice. C, The total volume of visceral and

subcutaneous fat in the abdominal region of congenic and B6-Apoe-/- mice. � P< 0.05.

https://doi.org/10.1371/journal.pone.0204071.g011
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quantifying fat volume from numerous slices remains a challenge. In this study, we developed

a deep learning-based method for measurement of abdominal fat using MR images obtained

from two mouse strains that differed markedly in body weight on a high fat diet. Volumes of

visceral and subcutaneous fat and non-fat tissues measured by the algorithm have shown a

high degree of consistency with those achieved by a manual method. Moreover, we have found

that body fat rather than non-fat tissues accounts for the difference between the two strains in

body weight.

In this study, we trained the modified U-net network with 37 original MR images spanning

the abdominal region of mice. Despite the limited number, the algorithm has shown a better

performance than the prior best automatic method for quantification of visceral and subcuta-

neous fat using MR images [12]. We calculated the Dice coefficient value to determine the

overlap between the new algorithm and the manual method in the measurement of visceral fat

with the same set of MRI slices. Our results have shown a high similarity between the two

methods in quantifying visceral fat, by achieving an average Dice value of 0.968. Pearson’s cor-

relation analysis was performed to evaluate the consistency of subcutaneous and visceral fat

volumes measured by the two methods. The correlation coefficient of the values obtained from

the two methods was 0.99 for visceral fat quantification and 0.96 for subcutaneous fat quantifi-

cation made on water-filtered MR images. Correlation may not be a perfect measure of simi-

larity because a predictor that consistently predicts half of the actual weight, would yield a

correlation coefficient similar to the one when the predictor exactly predicts the actual weight.

In contrast, the root mean square error (RMSE) does not suffer from this caveat. The small

differences between values from the two methods demonstrate the effectiveness of deep learn-

ing in quantifying abdominal fat (S1 Data). To evaluate performances of the algorithm at dif-

ferent segmentation locations, we compared the volume values of visceral and subcutaneous

fat on each of the sequential MRI slices as well as the total fat volumes obtained from the two

methods. The automatically obtained fat volumes have shown a high consistency with those

obtained manually.

We also applied the algorithm to the quantification of visceral and subcutaneous fat vol-

umes on unfiltered MR images acquired from mice. Though the network had not been trained

with unfiltered MR images, the results achieved still showed a high level of consistency with

those achieved manually for both visceral and subcutaneous fat. Automated segmented images

had an average Dice coefficient of 0.962 compared to manually-generated counterparts. The

correlation coefficient of the fat volume results on individual slices was 0.95 for visceral fat and

0.83 for subcutaneous fat. However, we did find that the total visceral fat volume had a slightly

larger value than the manual measurement and the correlation coefficients of the fat volume

results with respect to the comparison between the two measurement methods were smaller

relative to those achieved from water filtered MR images. A possible explanation for the gap in

fat volume quantification is that the algorithm had not been trained with unfiltered MR

images, which have a less clear contrast between the fat and non-fat tissue compared to water

filtered MR images. It’s also noteworthy that the automated and manual measurement results

were not made from the same MR images but the images from two separate scans at compara-

ble locations.

We observed that adipose tissue rather than non-fat tissues underlies the difference between

congenic and B6-Apoe-/- mice in body weight on the Western diet. Indeed, congenic mice had

a ~50% reduction in visceral fat volume and ~40% reduction in subcutaneous fat compared to

the B6 mice but there was no reduction in non-fat tissue volume. The congenic mice were con-

structed to verify a locus initially mapped in an intercross between B6 and C3H Apoe-/- mice

and then replicated in at least four independent crosses [26][27][28][29]. The congenic strain

was highly resistant to atherosclerosis [15]. As obesity is a major risk for atherosclerosis, the
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reduction in abdominal fat could contribute to the resistance of congenic mice to atherosclero-

sis. Because congenic mice had reductions in both visceral and subcutaneous fat, this result

does not allow for judging which type of fat might contribute to their resistance to

atherosclerosis.

In addition, we have found that the pattern of fat distribution differed in the two strains:

visceral fat mostly accumulated in the lower half of the abdomen in B6-Apoe-/- mice whereas

the visceral fat of congenic mice more evenly distributed in longitudinal direction. B6-Apoe-/-

mice showed much more subcutaneous fat accumulation in the distal end of the abdomen

compared to congenic mice.

In summary, the use of deep learning can accurately quantify visceral and subcutaneous fat

of mice on MR images. The next logical step is to determine whether this new approach can be

applied to humans. Nevertheless, because of the anatomical and biochemical similarities

between the mouse and the human, we are confident that this algorithm should be applicable

to quantification of abdominal fat in humans.
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