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Abstract

Previous studies have shown that folate levels were decreased in patients with type 2 diabe-

tes (T2D) and further lowered in T2D patients with cognitive impairment. However, whether

folate deficiency could cause T2D and subsequent cognitive dysfunction is still unknown.

The present study aimed to explore the effects of chronic folate deficiency (CFD) on glucose

and lipid metabolism and cognitive function in mice. Seven-week-old mice were fed with

either a CFD or control diet for 25 weeks. Serum folate was significantly reduced, whereas

serum total homocysteine was significantly increased in the CFD group. Moreover, CFD

induced obesity after a 6-week diet treatment, glucose intolerance and insulin resistance

after a 16-week-diet treatment. In addition, CFD reduced the hepatic p-Akt/Akt ratio in

response to acute insulin administration. Moreover, CFD increased serum triglyceride lev-

els, upregulated hepatic Acc1 and Fasn mRNA expression, and downregulated hepatic

Cd36 and ApoB mRNA expression. After a 24-week diet treatment, CFD induced anxiety-

related activities and impairment of spatial learning and memory performance. This study

demonstrates that folate deficiency could induce obesity, glucose and lipid metabolism dis-

orders and subsequent cognitive dysfunction.

Introduction

Type 2 diabetes (T2D) is a chronic and progressive metabolic disorder characterized by hyper-

glycemia and insulin insensitivity. Approximately 415 million people aged 20–79 years were

estimated to have diabetes worldwide in 2015 and the number was predicted to rise to 642 mil-

lion by 2040. The global health-care expenditure on diabetes was about 673 billion US dollars

[1]. People with T2D have higher risk of dementia than those without T2D [2]. Therefore, it is

important to identify the potential risk factors of T2D. Subjects with T2D had significantly
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reduced erythrocyte folate levels compared with nondiabetic subjects [2–3]. A case-control

study showed serum folate levels were about 3-fold lower and serum homocysteine levels were

significantly higher in patients with T2D compared with healthy controls [4]. Moreover,

patients with both T2D and mild cognitive impairment had significantly lower levels of folate

compared with patients with T2D and without mild cognitive impairment [5]. Although folate

levels were decreased in patients with T2D and further lowered in patients with T2D with cog-

nitive impairment, it is still unknown whether folate deficiency could cause T2D and subse-

quent cognitive dysfunction.

Folate is an essential vitamin that serves as a source of single carbon units in methionine/

homocysteine cycle by supplying 5-methyltetrahydrofolate for the methylation of homocyste-

ine back into methionine [4,6]. Therefore, decreased methionine and increased homocysteine

may be a secondary consequence of folate deficiency [7]. Decreased methionine can induce

hepatic lipid accumulation by downregulating sterol regulatory element-binding protein

(Srebp1) mRNA and upregulated the expression of acetyl Coenzyme A carboxylase 1 (Acc1)

and fatty acid synthase (Fasn) mRNA which involved in hepatic lipid synthesis [8]. Liver stea-

tosis is a major risk factor of insulin resistance, a risk factor for the development of T2D [9].

Thus, it was speculated that folate deficiency could induce glucose and lipid metabolism

disorders.

Folate deficiency is also a risk factor for the cognitive dysfunction associated with aging

[10]. Previous investigations have combined folate deficiency with other vitamin deficiencies

in an Alzheimer’s disease mouse model and an apolipoprotein E mouse model [11–12]. Other

researchers reported that the vitamin deficiency exacerbated the cognitive impairment [11,13].

A recent study showed that folate deficiency impaired cognition and attention during the nest-

ing test in Ts65Dn mice [14]. However, these studies cannot determine the role of folate in

cognitive function due to other B vitamins that were also deficient in the diet. So far, few stud-

ies have investigated the effects of folate deficiency on the behavior of mouse models.

Previous studies showed that folate deficiency impaired cognitive function through alter-

ations in the protein homocysteinylation [6], methylation status and oxidative stress [15].

However, the mechanism is not fully understood. On the other hand, patients with T2D are

prone to develop cognitive dysfunction [16–17]. Collectively, it was hypothesized that folate

deficiency might cause glucose metabolism disorders and subsequent cognitive dysfunction,

which may be related to insulin resistance.

The aim of the present study is to investigate the effects of chronic folate deficiency (CFD)

on glucose and lipid metabolism and subsequent cognitive function in mice. Our findings sug-

gested that CFD induced obesity, hypertriglyceridemia, disturbance of hepatic lipid-related

gene regulation, glucose intolerance and insulin resistance. Subsequently, CFD led to anxiety-

related activities and impairment of spatial learning and memory performance, which might

be related to CFD-induced insulin resistance.

Materials and methods

Animals and treatments

Institute of Cancer Research (ICR) mice have been widely used and growing number of

researches were performed in ICR mice aimed to establish metabolic disease model [18–22].

Female ICR (6 weeks old; 20-24g) mice were purchased from Beijing Vital River whose foun-

dation colonies were all introduced from Charles River Laboratories, Inc. (Wilmington, MA,

USA). Mice were ad lib to water and food and housed on a 12-h light/dark cycle (lights on at

7:00 a.m.) in a controlled temperature (20–25˚C) and humidity (50 ± 5%) environment. Mice

were fed with standard animal chow for 7 days to adapt to the environment. Twenty mice
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were randomly divided into two groups of control and CFD (n = 10 per group). Mice were fed

with a standard animal chow (2 mg/kg folic acid) or folate deficient diet (0 mg/kg folic acid,

with 1% succinylsulfathiazole to suppress microbial folate synthesis) for 25 weeks. All diets

were purchased from TROPHIC Animal Feed High-tech Co Ltd (Nantong, Jiangsu, China).

The composition of diets was shown in S1 Table. Percentage distribution of calories was

shown in S2 Table.

Mice were monitored at least twice per day and weighed weekly. At the 16th week after diet

treatment, it was observed that the water intake was increased and the sawdust bedding was

wetter in the CFD group which may be related to impaired glucose homeostasis. Thereafter,

intraperitoneal glucose tolerance (IPGTT) and intraperitoneal insulin tolerance tests (ITT)

were performed at the 16th and 17th week. At the 24th week after diet treatment, persistent

repetitive behaviors, including jumping and backward somersaulting were observed in the

CFD group. Thus, open field, elevated plus maze and Morris water maze were conducted to

test cognitive function. The day after all tests, blood glucose levels were measured with a gluc-

ometer (Roche Accu-Chek Inform) after an overnight fast (23:00–7:00). Thereafter, six mice of

either group were i.p. injected with recombinant insulin (1.0 U/kg) or saline, and sacrificed 5

minutes after insulin injection. Blood was rapidly removed by cardiac puncture and centri-

fuged (4˚C, 3000r/min, 15 min) and serum was stored at −80˚C for biochemical parameters.

The liver, abdominal fat tissues were collected and were either frozen immediately in liquid

nitrogen for real time PCR and immunoblot or fixed in 4% paraformaldehyde for histology.

This study was carried out in strict accordance with the recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were

sacrificed by intraperitoneal injection phenobarbital sodium (50 mg/kg). The protocol was

approved by the Institutional Animal Care and Use Committee of Anhui Medical University

(Protocol Number: LLSC20140088).

Intraperitoneal glucose tolerance and intraperitoneal insulin tolerance

tests

IPGTT was performed after an overnight fast (20:00–8:00) at the 16th week (n = 10 per group).

For IPGTT, glucose (2.0 g/kg) was i.p. injected and blood glucose was drawn from the tail

before the glucose load (0 min time point) and at 15, 30, 60, and 120 min thereafter. After a

week, intraperitoneal insulin tolerance tests (ITT) was performed after 4 h fasting (n = 10 per

group). For ITT, insulin (0.75 U/kg) was i.p. injected and blood glucose levels were measured

at different time points (0, 15, 30, 60, and 120min) after insulin injection [23]. Blood glucose

levels were measured using a glucometer (Roche Accu-Chek Inform).

Behavioral methods and procedures

Open field test. Open field test was conducted to test anxiety-related activities at the 24th

week (n = 10 per group) [24]. The apparatus was 20 × 20 cm with 28 cm high wooden walls.

The box floor was painted with white lines to form 16 equal squares with a colored box (8 × 5

× 3 cm) in the center of the area. Mice were individually placed in the left corner of a square,

facing the walls and was permitted to explore the environment for 5 min ad lib. The following

parameters were recorded: latency to first entry, peripheral distance, peripheral time, central

distance, total number of squares crossed, the number of rearing, grooming and manure.

Elevated plus maze. Elevated plus maze was conducted to test anxiety-related activities

one day after open field (n = 10 per group) [24]. The apparatus consisted of an x-shaped maze

elevated 80 cm from the floor comprising two opposite enclosed arms (30 cm long, 5 cm wide,

15 cm high), two opposite open arms (30 cm long, 5 cm wide, without edges) and a central
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arena (5× 5 cm). Mice were placed individually in the central arena of the apparatus facing an

open arm and was permitted to explore the environment for 5 min ad lib. Following parame-

ters will be recorded and evaluated: the number of entries in open arms (4-paw criterion),

time spent in open arms, open arm distance, the ratio of open/total arm entry, open/total arm

distance and open/total arm time.

Morris water maze. Morris water maze (MWM) is a behavioral test in which rodents

learn to find a platform hidden in the water. It is often used to test learning and memory per-

formances [20]. It was started at the day after elevated plus maze (n = 10 per group) [24]. The

entire test was completed in 7 days. The circular black water tank was 150 cm in diameter, 30

cm in height, with water 25 cm in depth and 24–26˚C in temperature. A black escape platform

(10 cm diameter, 24 cm high) was positioned in one of the four quadrants of the maze. In the

first six days, mice were tested with 4 trials per day to find the submerged platform during spa-

tial learning trials. On day 7, the platform was removed and spatial memory was test by spatial

probe test. An automated tracking system was used to analysis the latency to find the platform,

swim distance, swim velocity, the percentage of distance in the fifth zone and the time propor-

tion in the 5th zone.

Biochemical parameters

Serum samples were sent to the clinical laboratory of the Second Affiliated Hospital of Anhui

Medical University for testing. Serum folate was measured by chemiluminescent immunoassay

(Simens Immulite2000, UK) using folic acid assay kit (Simens). Total serum homocysteine

was detected by colorimetric method (Beckaman AU5800, USA) using homocysteine assay kit

(Leadman Biochemistry, Beijing). Serum insulin was detected by electrochemiluminescence

immunoassay (Roche Cobase602, Germany) using insulin assay kit (Roche). Serum lipid

parameters were detected by an automatic biochemical analyzer (Beckman AU5800, USA).

Serum nonesterifed fatty acid was determined by colorimetric acyl-CoA synthetase and acyl-

CoA oxidase-based methods. The nonesterifed fatty acid assay kit was purchased from Shang-

hai Kehua Bioengineering Institute (Shanghai, China). Serum total cholesterol was measured

by the cholesterol oxidase method. Serum triglyceride was measured by standard enzymatic

methods. Serum high density lipoprotein (HDL) cholesterol was measured by polyanion poly-

mer/detergent HDL-C assay. Serum low density lipoprotein (LDL) cholesterol was determined

by the homogeneous method. Assay kits of cholesterol, triglyceride, HDL and LDL were pur-

chased from Beckman Coulter Inc. Serum very low density lipoprotein (VLDL) cholesterol

was measured by the Friedewald formula (VLDL = TG × 0.2).

Histology

Liver tissues were fixed overnight at 4˚C in 4% paraformaldehyde. Samples were gradually

dehydrated in ethanol, embedded in paraffin. and then sliced into 4 μm sections. Hematoxy-

lin-eosin (H&E) staining was performed to evaluate hepatic lipid accumulation. Images were

obtained by a microscopy (Olympus DX53, Japan).

Phosphatidylcholine assay

Phosphatidylcholine level in liver tissues was measured by colorimetric using phosphatidyl-

choline assay kit (ab83377, from Abcam, Cambridge, UK). Liver tissues were washed with cold

PBS, resuspended in the assay buffer provided by the kit, and homogenized with a Dounce

homogenizer on ice. Thereafter, samples were centrifuged for 5 min at 4˚C at 12,000 × g to

exclude the insoluble material and collect the supernatant. The supernatant was incubated on

a 96-well plate with the reaction mix for 30 min at room temperature and were protected from
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light. The colorimetric reaction was measured at 570 nm. Optical density was measured using

a microplate reader. Then the concentration of phosphatidylcholine was estimated.

Immunoblots

The tissues was homogenized in RIPA buffer containing complete-mini protease inhibitor and

cleared by centrifugation. The supernatant was collected for immunoblotting. Protein was sep-

arated using SDS-PAGE and transferred onto a polyvinylidene fluoride membrane. The exper-

iments were carried out as described [25]. The membranes were incubated for 2 hours with

the following antibodies: Akt, p-Akt and β-actin was used as a loading control antibody. After

washing in Dulbecco’s phosphate-buffered saline containing 0.05% Tween 20, the membranes

were incubated with goat anti-rabbit IgG antibody for 2 hours. The membranes were washed

in Dulbecco’s phosphate-buffered saline containing 0.05% Tween 20, followed by signal devel-

opment using an enhanced chemiluminescence detection kit (Pierce Biotechnology, Rockford,

IL, USA). After developing, the X-ray films were scanned and densitometry analyses were per-

formed with NIH Image J software. Antibodies: anti-p-Akt (Ser473), Cell Signaling Technolo-

gies, Danvers, MA, USA, 4060s, rabbit monoclonal 1:2000; anti-Akt, Cell Signaling

Technologies, 4691s, rabbit monoclonal 1:2000; anti-β-actin, Beijing Biosynthesis Biotechnol-

ogy, Beijing, China, bsm-33036M, rat monoclonal 1:1000.

Isolation of total RNA and real-time RT-PCR

Total RNA was extracted using TRI reagent (Invitrogen, Carlsbad, CA, USA). cDNA synthesis

was performed as described [23]. Real-time RT-PCR was performed with a LightCycler 480

SYBR Green Imasterq PCR mix (Roche Diagnostics, Indianapolis, IN, USA) using gene-spe-

cific primers as listed in S3 Table. The amplification reactions were carried out on a LightCy-

cler 480 instrument (Roche Diagnostics). The comparative cycle threshold method was used to

determine the amount of target [26], normalized to an endogenous reference (18s) and relative

to a calibrator using the LightCycler 480 software (version 1.5.0; Roche). All the RT-PCR

experiments were performed in triplicate. The primers were synthesized by Shanghai Sangon

Biological Engineering Technology and Service Company (Shanghai, China).

Statistical analysis

Normally distributed data were expressed as mean ± means of standard error (SEM). The dif-

ferences between two groups were analyzed using independent-samples T-Test. The test data

from the IPGTT, ITT, MWM tasks, and body weight, were analyzed by Repeated Measures

Analysis of Variance (rm-ANOVAs) using Fisher’s least-significant difference test for post hoc

analysis. For immunoblotting, developed films were scanned and band intensities were ana-

lyzed using the public domain NIH Scion Image Program. All analyses were conducted by sta-

tistical software, SPSS 20.0 for Windows. P< 0.05 was considered statistically significant.

Results

Effects of CFD diet on serum folate and total homocysteine levels

Serum folate and total homocysteine levels were examined after a 25-week diet treatment. As

expected, serum folate levels were approximately 5-fold lower in CFD diet-fed mice as com-

pared with controls (57.59 ± 3.09 vs. 9.10 ± 0.89 nmol/L, P<0.001). Serum total homocysteine

levels were increased in CFD diet-fed mice as compared with controls (14.43 ± 0.48 vs.

22.01 ± 2.57 μmol/L, P = 0.012).
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Effects of CFD diet on lipid metabolism in mice

The effect of CFD diet on body weight was evaluated every week. After a 13-week diet treat-

ment, the body weight was significantly increased in the CFD group as compared with controls

(Fig 1A). As shown in Fig 1B, the absolute liver weight was markedly increased in the CFD

group (P<0.001). Accordingly, the liver/body weight ratio was significantly increased in mice

exposed to CFD diet (P = 0.046) (Fig 1C). Moreover, liver sections stained with H&E showed

increased fat vacuoles, and also increased cell size, which related to hepatic lipid accumulation

in the CFD group (Fig 1F). The effects of CFD diet on abdominal fat mass were then analyzed.

Abdominal fat mass was significantly increased in mice fed with CFD diet (P = 0.016). As

revealed in (Fig 1D). Correspondingly, the abdominal fat weight/body weight ratio was

markedly elevated in the CFD group (P = 0.019) (Fig 1E). In addition, serum triglyceride

(P<0.001) and VLDL cholesterol levels (P<0.001) were significantly increased in the CFD

group compared with controls (Table 1).

To explore the mechanism of hepatic lipid accumulation in the CFD group, phosphatidyl-

choline level and genes for fatty acid synthesis and lipid transport in the liver tissues were then

analyzed. Phosphatidylcholine level was significantly reduced in CFD group (P = 0.013) (Fig

1G). Fasn (P<0.001) and Acc1 (P = 0.022) were significantly upregulated in the liver tissues of

CFD diet-fed mice (Fig 1H). The expression of Cd36 and ApoB mRNA were significantly

downregulated in the CFD group (P = 0.005; P = 0.010, respectively) (Fig 1I).

Effects of CFD diet on glucose metabolism

The effects of CFD on glucose tolerance and insulin tolerance were analyzed using IPGTT and

ITT at the 16th and 17th week after diet treatment. As shown in Fig 2A, CFD diet-fed mice

had significantly higher blood glucose levels at 0, 60, 120 minutes following glucose injection

as compared with control mice (P = 0.043; P = 0.044 and P = 0.049, respectively). As shown in

Fig 2B, CFD diet-fed mice had significantly higher percent basal glucose levels at 30 and 60

minutes following insulin injection as compared with control mice (P = 0.035; P = 0.047,

respectively). Compared with control mice, CFD diet-fed mice presented a significant eleva-

tion of glucose area under the curve (AUC) during the IPGTT and inverse AUC during ITT

(P = 0.015 and P = 0.046, respectively) (Fig 2A and 2B). The glucose levels in ITT were showed

in S1 Fig. The tests showed CFD induced glucose intolerance and insulin resistance.

As shown in Table 1, the fasting blood glucose levels were significantly higher in the CFD

group as compared with control group (P = 0.022). Of interest, there was a significant reduc-

tion in serum insulin levels in CFD group as compared with control group (P = 0.005). Fur-

thermore, the hepatic p-Akt levels were increased in response to insulin challenge. However,

the hepatic p-Akt/Akt ratio was significantly decreased in CFD-diet fed mice (P = 0.003) (Fig

2C). The results showed CFD induced hyperglycemia and inhibited hepatic insulin pathway.

Effects of CFD diet on cognitive behaviors

Open filed test. The effects of CFD on anxiety-related activities were detected by open

field test and elevated plus maze in the 24th week after diet treatment. In the open-field test,

the peripheral time (P = 0.032) and the number of grooming (P = 0.020) were significantly

increased in CFD diet-fed mice, whereas CFD diet had little effect on the latency to the first

grid crossing (P = 0.128), central distance (P = 0.184) and peripheral distance (P = 0.375). In

addition, no significant difference was observed in the number of squares crossed (P = 0.326),

rearing (P = 0.260) and manure (P = 0.287) (Table 2).

Elevated plus maze. In the elevated plus maze, the distance in the open arms (P = 0.008),

open/total distance ratio (P = 0.008) and open/total arm entries ratio (P<0.001) were
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Fig 1. Effects of CFD diet on lipid metabolism in mice. ICR mice were fed with either a CFD or control diet for 25 weeks. Mice were weighed every week. (A) Body

weight (n = 10 per group). (B) Liver weight. (C) Liver weight/body weight ratio (n = 7 per group). (D) Abdominal fat weight (n = 7 per group). (E) Abdominal fat

weight/body weight ratio (n = 7 per group). (F) Liver sections were stained with hematoxylin and eosin (original magnification, ×200) (n = 3 per group). (G) Hepatic

phosphatidylcholine level (n = 7 per group). (H) Hepatic lipid-related genes were examined by real-time RT-PCR (n = 3 per group). Hepatic fatty acid synthesis genes,

Acc1, Fasn. (I) Hepatic lipid transport genes, Pparγ, Cd36, ApoB. All data were expressed as mean ± SEM. �P< 0.05, ��P< 0.01. Abbreviation: Acc1, acetylCoenzyme A

carboxylase 1; Fasn, fatty acid synthase; Pparγ, peroxisome proliferator-activated receptor; Cd36, cluster of differentiation; ApoB, apolipoprotein B.

https://doi.org/10.1371/journal.pone.0202910.g001
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significantly decreased in CFD diet-fed mice. However, there was no significant difference in

number of entries (P = 0.207) and time spent in open arms (P = 0.161). Moreover, open/total

arm time ratio was not affected by CFD diet (P = 0.089) (Table 3). These results showed that

CFD diet induced anxiety-related activities.

Morris water maze. The effects of folate deficiency on learning and memory performance

were detected by MWM after a 24-week diet intervention. In MWM, the learning perfor-

mances in the first six days were analyzed. The latency to platform shortened progressively

daily for all mice combined (F = 10.906, P<0.001) (Fig 3A). The latency to find the platform

(F = 4.640, P = 0.045) was longer in the CFD group than control group (Fig 3A). The results

showed that there was no significant difference in swim velocity between two groups,

(F = 0.149, P = 0.704), and days (F = 0.030, P = 1.000) (Fig 3B). Moreover, the number of

entries in zone 5 was increased daily in both two groups (F = 18.174, P<0.001) (Fig 3C). How-

ever, there was no significant difference in the number of entries in zone 5 between two groups

(F = 0.479, P = 498) (Fig 3C). Spatial memory was then assessed on day 7. As shown in Fig 3D,

the latency in the CFD group was significantly increased (P = 0.007). However, there was no

significant difference on swim velocity (P = 0.348) and entries in zone 5 (P = 0.098) between

the two groups (Fig 3E and 3F). These results suggested that folate deficiency impairs the abil-

ity of learning and memory in CFD mice.

Discussion

Previous studies have shown lower folate levels and higher homocysteine levels in patients

with T2D as compared with non-diabetic subjects [27–29]. A cohort study showed that dietary

folate intake was inversely associated with risk of T2D for women, not for men [30]. Moreover,

T2D patients with cognitive decline predispose to have lower folate levels compared with T2D

patients without cognitive decline [5]. However, whether folate deficiency could cause glucose

metabolism disorders and subsequently impaire cognitive function in female is still unknown.

Therefore, the present study explored the effects of CFD on glucose and lipid metabolism and

cognitive function in female ICR mice. Interestingly, our data showed that CFD induced obe-

sity, insulin resistance, and subsequent cognitive dysfunction.

The present study showed that obesity occurred after treatment of folate deficient diet in

mice. CFD also led to lipid metabolism disorders. It was recognized that folate and phosphati-

dylcholine metabolism are inter-related. An animal study showed that folate deficiency

Table 1. Circulating parameters of lipids and glucose metabolism.

Control

(n = 6)

CFD

(n = 6)

P
value

Fasting blood glucose (mmol/L) 5.55±0.17 6.67±0.41� 0.022

Serum insulin (pmol/L) 7.60±0.75 4.02±0.71�� 0.005

Serum triglycerides (mmol/L) 0.66±0.04 1.51±0.14�� 0.004

Serum nonesterifed fatty acid (mmol/L) 1.25±0.16 1.47±0.24 0.189

Serum total cholesterol (mmol/L) 3.34±0.34 2.97±0.31 0.215

Serum HDL cholesterol (mmol/L) 2.55±0.26 2.32±0.22 0.238

Serum LDL cholesterol (mmol/L) 0.75±0.09 0.62±0.13 0.231

Serum VLDL cholesterol (mmol/L) 0.13±0.01 0.30±0.03�� 0.005

�P< 0.05

��P< 0.01. Abbreviation: HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density

lipoprotein.

https://doi.org/10.1371/journal.pone.0202910.t001
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Fig 2. Effects of CFD on glucose metabolism in mice. Mice were fed with a CFD or control diet. (A) Blood glucose and area under the glucose curve during IPGTT

after a 16-week diet treatment (n = 10 per group). (B) Percent basal glucose levels and the inverse integrated area under the glucose curve during ITT after a 17-week diet

treatment (n = 10 per group). (C) Hepatic p-Akt/Akt protein ratio (n = 3 per group). Data were expressed as mean ± SEM. �P<0.05, ��P< 0.01. Abbreviation: IPGTT,

intraperitoneal glucose tolerance test; ITT, intraperitoneal insulin tolerance test; p, phosphorylated.

https://doi.org/10.1371/journal.pone.0202910.g002
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decreased flux through phosphatidylethanolamine N-methyltransferase, an enzyme that syn-

thesizes phosphatidylcholine via the methylation of phosphatidylethanolamine [31]. Phospha-

tidylcholine is a major component of VLDL, which transport triglycerides out of liver [32].

Therefore, decreased phosphatidylcholine levels would lead to the reduction of VLDL in the

liver tissues and the accumulation of hepatic triglycerides [33]. The present study showed

increased serum triglycerides and VLDL levels. In cystathionine beta-synthase-deficient mice,

an animal model for hyperhomocysteinemia, elevated serum homocysteine levels inhibited

intravascular VLDL lipolysis, resulting in elevated serum VLDL levels [34]. Previous studies

demonstrated that lower phosphatidylcholine promoted Srebp1 proteolytic maturation and its

target gene expression, including Acc1 and Fasn, two rate-limiting enzymes for fatty acid syn-

thesis [35–37]. In agreement with these results, Yu X et al. showed that folate supplement

decreased the expression of Fasn mRNA [38]. However, CFD decreased the fatty acid trans-

porter Cd36 mRNA [39]. These results suggested that CFD increased hepatic fatty acid synthe-

sis whereas limited lipid transporting out of the liver. Moreover, histopathology showed that

hepatic lipid accumulation, a known determinant of insulin resistance, was observed in the

CFD group. These results suggested that CFD induced lipid metabolism disorders, which may

be related to insulin resistance.

CFD diet-fed mice showed glucose intolerance and insulin resistance. Moreover, CFD sig-

nificantly decreased serum insulin levels. A vitro study demonstrated that folate deficiency

Table 2. The performance in the open field test.

Control

(n = 10)

CFD

(n = 10)

P
value

Latency (s) 35.12±8.75 55.29±14.83 0.128

Peripheral distance (m) 38.99±3.33 40.43±2.94 0.375

Peripheral Time (s) 275.91±4.54 286.33±2.66� 0.032

Central distance (m) 5.24±0.91 3.99±0.99 0.184

Squares crossed 28.10±3.97 25.10±5.22 0.326

Grooming 10.20±1.60 15.80±1.96� 0.020

Rearing 23.50±3.06 26.80±4.00 0.260

Manure 2.60±0.62 2.20±0.33 0.287

Data were expressed as mean ± SEM.

�P< 0.05 as compared with controls.

https://doi.org/10.1371/journal.pone.0202910.t002

Table 3. The performance in elevated plus maze.

Control

(n = 10)

CFD

(n = 10)

P
value

Open arm entries 16.80±1.95 14.72±1.55 0.207

Open arm distance (m) 0.20±0.03 0.11±0.02�� 0.008

Open arm time (s) 101.60±14.93 82.42±11.54 0.161

Open/total arm entries 0.47±0.15 0.16±0.02�� <0.001

Open/total arm distance 0.25±0.04 0.13±0.02�� 0.008

Open/total arm time 0.47±0.06 0.36±0.04 0.089

Data were expressed as mean ± SEM.

�P< 0.05

��P< 0.01 as compared with controls.

https://doi.org/10.1371/journal.pone.0202910.t003
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condition could trigger oxidative-nitrosative stress, and subsequent endoplasmic reticulum

stress in the insulin-producing pancreatic islets RINm5F cells [40]. These events resulted in

apoptosis of RINm5F cells, as well as impairment of the biosynthesis and the secretion of insu-

lin. Insulin signaling plays an important role in hepatic glucose metabolism. Insulin binds to

insulin receptors and then triggers the activation of phosphoinositide 3-kinase, which in turn

triggers the activation of Akt kinase. Lower phosphorylation of Akt can decrease glycogen con-

tent by inhibiting glycogen synthase through the activation (inhibition of phosphorylation) of

GSK3β [41]. The present study showed hyperhomocysteinemia in the CFD group. Elevated

homocysteine levels led to increased levels of its metabolite homocysteine thiolactone [42].

Homocysteine thiolactone could inhibit insulin receptor tyrosine kinase activity, which

resulted in decreased phosphatidylinositol 3-kinase activity, and attenuate the phosphorylation

of Akt [43–44]. In conclusion, CFD caused insulin resistance in mice.

Several epidemiological reports demonstrated that T2D was a strong predictor for anxiety

and memory deficits in older adults [45–46]. The Whitehall II cohort study of 5653 partici-

pants showed that midlife people with T2D had a 45% faster decline in memory, a 24% faster

decline in the global cognitive score in early old age [46]. An animal experiment showed that

escape latency of type 2 diabetic mice was significantly longer in the MWM test [47]. In the

APP/PS1 transgenic mice model of Alzheimer disease, glucose tolerance and insulin sensitivity

were impaired 6–7 months prior to amyloid plaque pathogenesis and cognitive dysfunction

Fig 3. The effect of CFD diet on learning and memory performance. MWM was conducted to test learning and memory performances after a 24-week diet treatment.

(A-C) Learning performance was examined on the first six days. (A) The latency to find the platform. (B) Swim velocity. (C) Entries in zone 5. (D-E) Memory

performance was assessed on day 7. (D) The latency to find the platform. (E) Swim velocity. (F) Entries in zone 5. All data were expressed as mean ± SEM (n = 10 per

goup). �P< 0.05, ��P< 0.01. Abbreviation: MWM, Morris water maze.

https://doi.org/10.1371/journal.pone.0202910.g003
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[48]. In the present study, the peripheral time and the number of grooming were significantly

increased in the CFD group in the open-field test. In the elevated plus maze, percentage of

open/total arm entries was significantly decreased in the CFD group compared with controls.

In MWM, the latency to find the platform was longer in the CFD group than control group.

Glucose is the main brain energy substrate which can alter glutamate-glutamine cycle homeo-

stasis in hippocampus. Glutamate homeostasis can affect the neuron and neighboring astro-

cytes. The dysfunction in hippocampus could cause behavior deficits [49]. In conclusion, this

study showed that CFD diet induced anxiety related activities, and impairment in spatial learn-

ing and memory which may related with insulin resistance.

The present study had several limitations. First, this study focused on the effects of CFD

diet on glucose and lipid metabolism and cognitive function in female mice, but it could not

explore gender difference. Second, succinylsulfathiazole intake was reported to modify the

intestinal microbiome, including reduction of Lactobacillus and Coliform and upregulation of

Enterococci and Yeastlike organisms in Sprague-Dawley rats [50]. Changes in intestinal micro-

biome have been closely associated with glucose and lipid metabolism. However, the causality

has not been proven yet [51]. In addition, administration of Enterococcus faecium WEFA23

can improve key markers of metabolic syndrome, including obesity, hyperlipidemia, hypergly-

cemia, and insulin resistance [52]. Probiotic Lactobacillus gasseri SBT2055 (LG2055) showed

beneficial influence on metabolic disorders [53]. Therefore, it is uncertain what effect succinyl-

sulfathiazole-induced microbiome modification had on glucose and lipid metabolism in this

study. Further research is required to clarify the potential influence of the altered microbiome.

In summary, the present study investigated the effects of CFD on glucose and lipid metabo-

lism and cognitive function in female ICR mice. CFD induced obesity, lipid metabolism disor-

ders, insulin resistance and inhibited the insulin signaling. Moreover, CFD increased anxiety

related activities and impaired the ability of spatial learning and memory. The present study

provided the evidence that CFD could cause glucolipid metabolism disorders, and subsequent

cognitive dysfunction, which might be related to CFD-induced insulin resistance. Future stud-

ies are needed to investigate the effect of folic acid supplementation on lipid and glucose

metabolism.
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