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Abstract

Microbial consortia execute collaborative molecular processes with contributions from indi-

vidual species, on such basis enabling optimized molecular function. Such collaboration

and synergies benefit metabolic flux specifically in extreme environmental conditions as

seen in acid mine drainage, with biofilms as relevant microenvironment. However, knowl-

edge about community species composition is not sufficient for deducing presence and effi-

ciency of composite molecular function. For this task molecular resolution of the consortium

interactome is to be retrieved, with molecular biomarkers particularly suited for characteriz-

ing composite molecular processes involved in biofilm formation and maintenance. A micro-

bial species set identified in 18 copper environmental sites provides a data matrix for

deriving a cross-species molecular process model of biofilm formation composed of 191

protein coding genes contributed from 25 microbial species. Computing degree and stress

centrality of biofilm molecular process nodes allows selection of network hubs and central

connectors, with the top ranking molecular features proposed as biomarker candidates for

characterizing biofilm homeostasis. Functional classes represented in the biomarker panel

include quorum sensing, chemotaxis, motility and extracellular polysaccharide biosynthesis,

complemented by chaperones. Abundance of biomarker candidates identified in experimen-

tal data sets monitoring different biofilm conditions provides evidence for the selected bio-

markers as sensitive and specific molecular process proxies for capturing biofilm

microenvironments. Topological criteria of process networks covering an aggregate function

of interest support the selection of biomarker candidates independent of specific community

species composition. Such panels promise efficient screening of environmental samples for

presence of microbial community composite molecular function.

Introduction

Microbial communities display cooperation and leverage on synergies, all embedded on the

level of entangled molecular processes across individual species. Occurrence of such traits is

tightly controlled via given species genotypes and environmental conditions, and centers on
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cost and benefit [1]. Extreme habitats including acid mine drainage (AMD), saline lakes or hot

springs are particularly prone to formation of cooperative microbial communities.

Cooperation displays as higher order function, i.e. molecular processes executed by the

community being not reducible to any of its individual species alone. Higher order molecular

functions may alter local environmental parameters, in turn imposing a feedback on coopera-

tion mechanisms, individual species abundance and specific involvement. Examples for such

community properties include occupation of sites lacking viable conditions for individual spe-

cies, division of labor, and fostering significant increase in metabolic flux [2].

Microbial communities hold profound relevance in industrial processes. One example is

bioleaching, i.e. extraction of base metals from sulfide ores [3]. A second application area is

bioremediation, offering alternatives to abiotic neutralization processes [4]. Optimization of

bio-based processes needs to addresses eminent efficiency constraints as well as process resil-

ience issues. Challenges include design of suitable consortia for sufficient process efficiency,

de-novo seeding of bioleaching or bioremediation operations, optimization of pre-existing

community compositions through addition of further members, or abiotic interference for

adjusting environmental conditions [5, 6]. Any rational design of consortia or selective inter-

ference with existing communities requires an understanding of community aggregate molec-

ular function and respective phenotypic properties, not necessarily deducible from a listing of

a community’s species composition.

Rational design and optimization of community function was recently demonstrated for

copper bioleaching [7]. However, metagenomics of environmental samples identified broad

species diversity. To date, about a dozen studies were conducted in both AMD environments

and bioleaching operations focusing on inventorying metabolic and genetic diversity of acido-

phile communities.

Extrapolation from a species inventory to capabilities of embedded community molecular

function is limited, as resolution of species interaction on a molecular function level is needed.

Next to allowing optimization of given consortia properties such knowledge promises particu-

lar utility in molecular function prospecting. Such scenario focuses on identification of com-

munities in environmental samples exhibiting specific aggregate molecular function of interest

[8].

Recalling that increased efficiency in bioleaching resembles a composite molecular process

in the sense of a microbial community aggregate function, a relevant proxy for such molecular

configuration is given as molecular biomarkers. Use of molecular biomarkers is further sup-

ported by recently identified evidence that function and underlying molecular processes of a

community may be preserved while the species composition of a community exhibits a

dynamic flux [9]. Further, communities collected at different sites may differ in species com-

position while being functionally comparable [10].

Biomarker identification approaches include explorative methods, involving comprehen-

sive functional gene arrays as well as various omics tools. For example, Roume et al. integrated

omics profiling results on molecular interaction networks for characterizing the impact of

environmental conditions on microbial communities relevant in biological waste water treat-

ment [11]. On the basis of metagenomics, -transcriptomics and -proteomics a metabolic net-

work was derived. Abundance levels from omics were combined with network characteristics

for identifying relevant molecular function assignable to selected environmental conditions.

Kuang et al. reported a comparative analysis of taxonomy-based and functional gene-based

characterization of natural AMD microbial assemblages, indicating superiority of molecular

parameters for predicting microbial community characteristics [12].

Analysis of molecular context is of particular value when aiming at characterizing compos-

ite function. Microbial community representation has to focus on the species set M composed

Biomarkers for microbial biofilms

PLOS ONE | https://doi.org/10.1371/journal.pone.0202032 August 9, 2018 2 / 20

in the form of salaries for authors AH, AL and BM,

but did not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

specific roles of these authors are articulated in the

‘authors contributions’ section.

Competing interests: The commercial affiliation of

AH, AL and BM does not alter our adherence to all

PLOS ONE policies on sharing data and materials.

Research results presented do not relate to

consultancy, patents, products in development or

marketed products.

https://doi.org/10.1371/journal.pone.0202032


of n individual microbial species mi, mj, . . . mn which together constitute the community. A

higher order function results out of a composite molecular process pi, principally grounded on

the set of protein coding genes gi, gj of all community species, hence the community genome

G.

The composite molecular process sees involvement of molecular functionality (gene prod-

ucts) from different species, needing modeling of the microbial community on the level of G

for deriving the specific set of cross-species processes pi, pj responsible for triggering pheno-

typic community characteristics. A biomarker in its definition serves as proxy for the status of

a molecular process. Having identified candidate processes pi, pj responsible for a molecular

function of interest in turn allows selecting corresponding candidate biomarkers bi, bj, where

bi monitors the state of process pi, and bj of pj, respectively. Recalling the finding of commu-

nity stability in terms of composite function but not in terms of species composition, such a

biomarker panel may offer generalization in prospecting of environmental samples. Further,

such biomarker panel approach realized as multiplexed assay may prove efficient for high

throughput analysis of environmental samples.

On this basis we propose an in silico workflow for identifying biomarker candidate panels

aimed at reflecting aggregate microbial community properties. Starting with a reference inven-

tory of a functionally relevant subset of G further combined with interaction information

allows deriving a molecular process graph. On the graph level, topological parameters aiming

at resembling molecular process proxies as well as species coverage considerations are used for

biomarker candidate selection. The resulting candidate biomarker panel is thus specific for the

function in focus but to some degree agnostic regarding actual species composition. Such can-

didate panel promises generic applicability in bioprospecting regarding a composite molecular

function of interest.

While the workflow is applicable for studying various instances of microbial community

aggregate function we in the following focus on community cooperation in forming a biofilm

microenvironment in copper bioleaching/AMD. Biofilms can be instantiated by certain indi-

vidual microbial species, however, in most environmental settings multiple species contribute

molecular function to this microenvironment. In selected scenarios such environment pro-

vides grounds for emergent community phenotypes, including significant increase in bioleach-

ing efficiency or initiation of AMD [13–15].

Materials and methods

The workflow illustrated in Fig 1 aligns data retrieval, integration and mapping on a protein

interaction network, followed by utilizing topology characteristics of a graph representing

aggregate function for candidate biomarker selection, complemented by experimental

evaluation.

In a first step scientific literature is screened for microbial communities reported as relevant

in a given focus (as copper bioleaching/AMD) for cataloguing constituent species genomes. In

addition, biological community aggregate molecular functions reported as relevant are

extracted. In a second step, catalogued genes are assigned to community molecular functions.

Third, an all-against-all ortholog map is created for the gene set assigned to the biological func-

tion term in focus (e.g. biofilm formation), followed by consolidating protein-protein interac-

tion information for the set of orthologs (step 4). With a gene set and respective interaction

data at hand a molecular process model approximating the function term is retrieved (step 5),

on this basis deriving topological parameters of the interaction network for guiding biomarker

candidate selection (step 6). Finally, candidate biomarkers are forwarded to experimental eval-

uation (step 7).

Biomarkers for microbial biofilms
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Microbial species and molecular feature details

A list of natural acid mine drainage sites, major industrial bioleaching operations as well as

suitable laboratory scale experiments, in the following referred to as ‘sites’, was compiled by

mining the National Library of Medicine (NCBI) PubMed scientific literature repository in

publication title and abstract for the terms ‘bioleaching’ and ‘acid mine drainage’. For all iden-

tified sites respective mineral endowment was extracted. For industrial mining sites additional

mineral composition data were sourced from the Mindat database [16]. Altogether 70 sites

were identified, among these being 18 copper sites (either AMD associated with copper min-

eral or an industrial copper plant, Table 1). Site-specific scientific references are provided in S1

Table.

Next, scientific literature covering the sites was screened for inventorying involved micro-

bial species. 133 microbial species could be retrieved, of which 42 are specifically associated

with one or more of the 18 copper sites.

For each of the copper site-associated microbial species gene-centric annotation was

retrieved from public databases as described previously [17]. Briefly, species as well as protein

coding gene identifiers were retrieved from the Pathosystems Resource Integration Center

Fig 1. Workflow for candidate biomarker selection. Microbial species and molecular feature details: step 1—data stocktaking at the microbial species

and biological function level; step 2—assignment of genes to biological function terms. Interaction data and networks: step 3—all-against-all ortholog

mapping; step 4—aggregation of protein interaction data; step 5—deriving a molecular process model. Biomarker candidates and experimental

evaluation: step 6—selection of biomarker candidates utilizing network topology characteristics; step 7—experimental evaluation of biomarker

candidates.

https://doi.org/10.1371/journal.pone.0202032.g001
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(PATRIC) [18], the Integrated Microbial Genomes database (IMG) [19], as well as Universal

Protein Resource (UniProt) [20], with the UniProt identifier (ID) used henceforth as unique

sequence identifier.

Each copper site-associated species was evaluated for availability of annotation data for

assigning protein coding genes to functional groups (COG) [21], and for presence of protein

interaction information in the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) [22]. For 25 of the 42 species COG-annotated proteomes, and for 14 species protein

interaction data could be retrieved. The resulting inventory of copper site-associated species as

well as their respective annotation is provided in Table 2. Species-specific scientific references

with respect to AMD and bioleaching sites are provided in S1 Table.

A matrix of biological function terms and genes of relevance in copper bioleaching was

obtained by manual data extraction from scientific publications reporting species given in

Table 2. Further, molecular features explicitly discussed in relation to AMD or bioleaching

(being either investigated in reductionist approaches or identified as relevant in omics profil-

ing) were extracted and recorded together with respective COG assignment and functional

context. Clusters of functional terms based on relative COG term endowments were identified

from the data matrix using hierarchical clustering as provided in R 3.1.2 [23].

Interaction data and networks

A comprehensive all-against-all ortholog screening of the 25 species holding COG annotation

was executed using the InParanoid pipeline (version 4.1) with default settings [24]. As input

files protein sequence data from the PATRIC database were used. Sequence data for two

organisms lacking coverage in PATRIC (Leptospirillum ssp. Group IV ‘UBA BS’ and T. arseni-
toxydans) were sourced from the NCBI RefSeq database.

Protein interaction information was retrieved from STRING (combined score, database

version 10.0a) and subsequently aggregated across all 25 species using ortholog screening

results to obtain an interactome on the ortholog level. This procedure allowed inclusion of

Table 1. Listing of copper sites.

site mineral

type

mineral site mineral type mineral

Aguablanca Mine

(Spain)

Ni/Cu copper residues Lechang Mine

(China)

Pb/Zn/Cu/

Cd

mixed sulphides with contents of malachite

Cantareras Mine

(Spain)

Cu copper sulfides Mynydd Parys Mine

(UK)

Cu/Pb/Zn chalcocite, chalcopyrite, covellite

El Abra Mine

(Chile)

Cu chalcocite, chalcopyrite, covellite Olavsgruva Mine

(Norway)

Cu chalcopyrite, cubanite

Escondida Mine

(Chile)

Cu chalcocite, chalcopyrite, covellite Richmond Mine

(USA)

Cu chalcopyrite

Spence Leach Plant

(Chile)

Cu chalcocite, chalcopyrite, covellite Saão Domingos Mine

(Portugal)

Cu chalcanthite, chalcopyrite, cupriferous pyrite,

malachite

Fankou Mine

(China)

Pb/Zn bournonite, chalcopyrite, tetrahedrite Selebi-Phikwe Mine

(Botswana)

Cu/Ni chalcopyrite, malachite

Freiberg Mine

(Germany)

Au/Cu freibergite Tong Shankou Mine

(China)

Cu/Mo chalcocite, chalcopyrite

Kristineberg Mine

(Sweden)

Au/Ag/Cu/

Zn

mixed sulphides with contents of

chalcopyrite

Yinshan Mine

(China)

Pb/Zn/Cu/

Ag/Au

porphyry copper reserve (chalcocite,

chalcopyrite, covellite, freibergite, tetrahedrite)

La Andina Mine

(Chile)

Cu porphyry copper tailing (bornite,

chalcocite, chalcopyrite, covellite)

Yongping Mine

(China)

Cu porphyry copper reserve (bornite, chalcopyrite,

malachite, tetrahedrite)

Copper site details including mining site name and geographical area, complemented by details on specific mineral type and copper mineral composition.

https://doi.org/10.1371/journal.pone.0202032.t001
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Table 2. Microbial species annotation details.

species domain # sites COG STRING

Acidimicrobium ferrooxidans DSM 10331 B 2 y y

Acidiphilium acidophilum ATCC 27807 B 3

Acidiphilium cryptum JF-5 B 4 y y

Acidiphilium rubrum ATCC 35905 B 1

Acidiphilium strain SJH B 1

Acidithiobacillus albertensis strain DSM 14366 B 1

Acidithiobacillus caldus ATCC 51756 B 3 y y

Acidithiobacillus ferrivorans SS3 B 4 y y

Acidithiobacillus ferrooxidans ATCC 23270 B 11 y y

Acidithiobacillus ferrooxidans ATCC 53993 B 1 y y

Acidithiobacillus thiooxidans ATCC 19377 B 4

Acidobacterium capsulatum ATCC 51196 B 3 y y

Acidobacterium strain Thars1 B 1

Acidocella aromatica strain PFBC B 1

Acidocella facilis ATCC 35904 B 2 y

Acidovorax sp. JS42 B 1 y y

Alicyclobacillus acidocaldarius DSM 446 B 2 y y

Alicyclobacillus disulfidooxidans B 1

Alicyclobacillus pomorum DSM 14955 B 1 y

Candidatus Micrarchaeum acidiphilum ARMAN-2 A 2

Candidatus Parvarchaeum acidiphilum ARMAN-4 A 2 y

Candidatus Parvarchaeum acidophilus ARMAN-5 A 2 y

Ferrimicrobium acidiphilum DSM 19497 A 1 y

Ferroplasma acidarmanus fer1 A 2 y y

Ferroplasma acidiphilum A 2

Ferroplasma cupricumulans A 1

Ferrovum myxofaciens P3G B 4 y

Leptospirillum ferriphilum DSM 14647 B 6 y

Leptospirillum ferriphilum ML-04 B 1 y

Leptospirillum ferriphilum Sp-Cl B 1

Leptospirillum ferrodiazotrophum B 1

Leptospirillum sp. Group IV UBA B 3 y

Leptospirillum ferrooxidans C2-3 B 9 y

Leptospirillum rubarum (group II) B 2

Picrophilus torridus DSM 9790 A 3 y y

Sulfobacillus Benefaciens B 1

Sulfobacillus thermosulfidooxidans str. Cutipay B 2 y

Sulfobacillus thermotolerans B 2

Sulfolobus acidocaldarius DSM 639 A 1 y y

Thermoplasma acidophilum DSM 1728 A 1 y Y

Thiobacillus prosperus DSM 5130 B 1

Thiomonas arsenitoxydans 3As B 1 y Y

Given is the microbial species name and domain (A: Archaea; B: Bacteria), and number of mining sites with positive identification of a given species, complemented

with molecular annotation coverage on the level of COG (“y”) and availability of interaction information from STRING (“y”).

https://doi.org/10.1371/journal.pone.0202032.t002
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protein coding genes of species as such not represented in the STRING database on the level of

identified ortholog sequences from respective species being covered in STRING. The resulting

interaction matrix was used to derive an ortholog network.

Biomarker candidates and experimental evaluation

Topological parameters of the ortholog graph were calculated using the NetworkAnalyzer

application of Cytoscape version 3.2.1 [25], network visualization was done in Gephi version

0.8.2 [26]. Correlation analysis, logistic regression analysis and significance testing (two-sided

t-test) among graph measures, species coverage and candidate biomarker abundance retrieved

from experimental reference experiments were performed in R 3.1.2.

For evaluation of candidate biomarkers selected on the ortholog graph level resembling the

composite process of biofilm formation available omics profiles were used. A scientific litera-

ture review identified omics profiles in scope of bioleaching/AMD providing a resolution on

the level of protein coding gene products. Data sets of specific interest needed to resemble

meta-transcriptomics or -proteomics profiles covering microbial communities exhibiting bio-

films in various environmental or laboratory conditions.

Two data sets appeared particularly suitable with respect to biofilm formation serving as

surrogate of bioleaching/AMD. The first study conducted by Belnap et al. covers proteomics

profiling [14]. The authors demonstrate a laboratory adaptation of a natural AMD biofilm

sourced from the Richmond Mine (Iron Mountain, USA). The communities are of low spe-

cies diversity and dominated by Leptospirillum and Ferroplasma species. To assess biofilm

functional traits quantitative proteomics comparison of natural versus laboratory settings

was conducted, complemented by determining biomass to estimate in situ chemoautotrophic

production. Productivity in the laboratory biofilm community was nearly five times lower

compared to its natural equivalent, being reflected in differential abundance of a range of

metabolic proteins. The authors concluded that the differences in both production as well as

protein expression profiles reflect metabolic stress in the laboratory biofilm. After optimiza-

tion of laboratory culture conditions (particularly NH3 supply, as well as KCl, K2HPO4,

MgSO4 and CaSO4 concentrations), community proteomics profiles resembled the environ-

mental setting particularly in respect to expression of stress response proteins and commu-

nity growth rates.

For calculation of differences in expression in the proteomics data the respective log2-ratios

of abundance when comparing the optimized laboratory culture with a natural biofilm sample

were subtracted from the respective abundance values comparing a standard laboratory cul-

ture with a natural biofilm. Respective fold changes are therefore indicative for the level of bio-

film formation and are used in biomarker candidate evaluation with respect to prospecting the

capacity of forming a composite biofilm microenvironment.

A second data source originates from a transcriptomics profiling study on bacterial com-

munities isolated from the Rio Tinto acid mine drainage system (Sierra Morena Mountains,

Spain) published by Moreno-Paz et al. [13]. The communities were comprised mainly of A.

ferrooxidans as well as L. ferriphilum and L. ferrooxidans, respectively. Further community

members worth noting include Acidimicrobium ferrooxidans as well as several Acidiphilum,

Ferroplasma and Sulfobacillus species, respectively. The study compared transcriptional pro-

files of natural planktonic and biofilm-associated consortia to gain insights into physiological

differences between free and the sessile community fractions. This approach allowed a precise

assessment of biofilm physiology determined on a genomic array of L. ferrooxidans, identifying

as main contributors to the biofilm situation genes coding for quorum sensing, motility and

chemotaxis, as well as matrix component production and transport.

Biomarkers for microbial biofilms
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In biomarker evaluation the fold changes (log2-ratios) are used contrasting planktonic and

biofilm status in focus of biofilm formation capacity.

A third study conducted by Christel et al. compared a culture of L. ferriphilum in continu-

ous vs. bioleaching conditions, the latter being grown on 2% (wt/vol) chalcopyrite [27]. The

authors executed the experiments in a stirred tank bioreactor with samples collected from the

culture medium rather than directly from the biofilm. A low transcript level of biofilm-associ-

ated genes was identified, seeing no significant up-regulation after addition of chalcopyrite for

triggering bioleaching.

This study serves as negative control experiment for candidate biomarker evaluation, utiliz-

ing fold changes (log2-ratios) comparing cultures in absence and presence of chalcopyrite.

Protein coding genes addressed in the three experimental studies were assigned to the

ortholog graph via Basic Local Alignment Search Tool 2 (BLAST2) [28], selecting the top-scor-

ing matches for allowing assignment of abundance values to biofilm network nodes.

Results and discussion

Microbial species, molecular features and function terms

An important prerequisite for candidate biomarkers to be used in microbial community

screening is applicability in absence of prior information about specific community species

composition. Therefore a meta-analysis approach is applied starting with an inventory of

microbial communities being involved in either bioleaching or acid mine drainage. Consortia

retrieved from 70 environmental sites in focus of bioleaching/AMD provide 133 individual

species. 18 sites report on copper sulfite ores with in total 42 individual microbial species. The

majority (32) is comprised of Bacteria, complemented by Archaea. The four most prevalent

species are A. ferrooxidans (identified in 11 sites), L. ferrooxidans (9 sites), L. ferriphilum (7

sites) and A. cryptum, A. ferrivorans, A. thiooxidans and F. myxofaciens (4 sites each). Each site

further reports a diverse and distinctive array of less frequent species.

Manual literature curation of molecular features involved in molecular processes relevant

in acid mine drainage and/or bioleaching together with their molecular functional annotation

identifies 14 molecular function categories holding 1,696 protein coding genes (S2 Table). The

Clusters of Orthologous Groups (COG) ontology allows a structured overview on the func-

tional complexity of communities. 25 of the 42 species hold annotation in COG terms. Table 3

provides a gene coverage matrix assigning the gene set to molecular function categories, fur-

ther relating to COG terms. Function category-specific scientific references are provided in S1

Table.

20 of the 26 COG terms are addressed in the AMD/bioleaching context, with specific func-

tion terms seeing varying assignment to COG terms. For instance, chemotaxis is associated

with 5 COG terms, on a gene count level mainly involving cell motility (N) and signal trans-

duction (T). Other terms are considerably more complex, specifically the function term bio-

film formation involving 19 COG terms. Main contributions come from cell wall/membrane/

envelope biogenesis (M), cell motility (N), signal transduction (T), intracellular trafficking and

secretion (U) as well as extracellular structures (W). Other complex functions with diverse

COG term involvement include quorum sensing together with toxicant and copper resistance.

Genes lacking COG annotation or being assigned to the unspecific COG terms R (General

Functional Prediction only) and S (Function Unknown) are not further considered.

Related function terms map to similar COG term combinations. For biofilm formation,

COG terms include cell wall biogenesis, signal transduction and trafficking/secretion catego-

ries. Comparable patterns of COG category involvement are found for quorum sensing and

chemotaxis, reflecting close biological relationship.
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For deriving a biomarker candidate panel capturing major molecular aspects of relevance

in both AMD and copper bioleaching, function terms covering a broad set of COG terms

appear preferential, ideally further seeing broad involvement of microbial species. Of the 14

function terms, biofilm formation exhibits particularly broad COG term assignment as well as

species coverage across the original catalogue of 25 copper mineral associated microbes, pro-

viding all ingredients for establishment of higher order molecular function. Furthermore,

from a biological function perspective, establishment of biofilms is relevant in both acid mine

drainage as well as bioleaching. As demonstrated, enrichment of consortia with microbes par-

ticularly competent in formation of biofilms significantly boosts bioleaching process efficiency

[15]. Biofilms resemble macroscopic structures and provide an enabling microenvironment

for inhabitant microbes of different species to coordinate their interactions for gaining overall

benefit. In the ecological context, formation of biofilms on metal sulfide surfaces serves protec-

tive aims under extreme environmental conditions with catalyzing effect in energy supply,

subsequently triggering leaching of minerals [29].

Accordingly, the set of genes assigned to the aggregate function of biofilm formation is

used as basis for deriving a protein coding gene interaction network, subsequently serving for

biomarker panel selection.

Table 3. Molecular function terms and COG term assignment.

COG term SO IO NF AU BF QS CT OT PT OS CR HM TR CA

C Energy production and conversion

D Cell cycle control and mitosis

E Amino Acid metabolism and transport

F Nucleotide metabolism and transport

G Carbohydrate metabolism and transport

H Coenzyme metabolism

I Lipid metabolism

J Translation

K Transcription

L Replication and repair

M Cell wall/ membrane/ envelope biogenesis

N Cell motility

O Post-translational modification, . . .

P Inorganic ion transport and metabolism

Q Secondary metabolites biosynthesis, . . .

T Signal transduction

U Intracellular trafficking and secretion

V Defence mechanisms

W Extracellular structures

X Mobilome: prophages, transposons

Molecular function terms of relevance in copper bioleaching/AMD assigned to COG categories and the number of genes identified for each of these terms: SO—sulfur

oxidation (128); IO—iron oxidation (106); NF—nitrogen fixation (78); AU—ammonia uptake (97); BF—biofilm formation (272); QS—quorum sensing (204); CT—

chemotaxis (150); OT—osmo tolerance (26); PT—pH tolerance (106); OS—oxidative stress response (170); CR—copper resistance (117); HM—heavy metal resistance

(107); TR—toxicant resistance (100); CA—cold acclimation (35). Shading indicates representation of a COG category in a functional term with respect to assigned

molecular features. Highly prevalent COG categories in a given function term are indicated in dark grey.

https://doi.org/10.1371/journal.pone.0202032.t003
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Ortholog interaction network

According to data retrieval and functional category assignment 272 protein coding genes are

identified in the molecular context of biofilm formation. Ortholog screening of this set in the

genomes of the 25 species provides 3,106 orthologs, identifying at least one ortholog for all but

23 genes. 57 of the 272 genes hold orthology to other members of the biofilm gene set and are

removed to avoid biases from multiple sequence representation in subsequent molecular net-

work retrieval.

Ortholog information allows utilizing interaction information across species to derive an

ortholog graph, thereby complementing interaction data by aggregation. This procedure

enables inclusion of interaction information for finally 191 unique molecular features of the

biofilm gene set (S3 Table) in a single network component. 24 proteins lack direct or orthol-

ogy-derived interaction data and could therefore not be included in the interaction network.

The set of 191 protein-coding genes is found to be connected via 6,878 interactions (Fig 2).

The ortholog network allows capturing molecular function of species as such not included

in a species set. Representative for such an organism is L. ferrodiazotrophum, a diazotrophic

mesophilic bacterium also found in AMD biofilms [30]. L. ferrodiazotrophum efficiently fixes

nitrogen, but its genome lacks annotation including COG term assignment and interaction

data in STRING. The nitrogenase cassette is highly homolog to features found in other diazo-

trophic bacteria such as L. ferrooxidans and Acidithiobacillus ssp., i.e. the cassette is considered

at the ortholog level.

The ortholog graph serves as basis for identifying biomarker candidates according to net-

work topology. Topological parameters characterizing the centrality of a given node capture

properties related to the functional importance within its network context. Specifically, node

degree and stress centrality resemble properties prone to biomarker candidate selection. Both

centrality measures reflect affectedness of state changes in molecular processes, hence serving

as proxies for molecular process status. Nodes with high degree centrality establish a large

number of interactions, i.e. serve as network hubs [31]. Nodes exhibiting high stress centrality

are deemed to be crucially involved in information flow [32]. An analog correlation of degree

centrality and influence of a given species in an ecological network was observed for keystone

species [33].

The relevance of degree and stress becomes apparent from Fig 2, where high degree is

reflected by the central position of respective nodes.

Accordingly, biomarker candidates from the ortholog graph of biofilm formation showing

high degree and stress centrality are deemed to serve as relevant proxy for the entire process,

and promise sensitivity in monitoring the presence of biofilm formation.

Candidate biomarker selection

Relevance of network topology aspects is evaluated using proteomics profiles published by Bel-

nap et al., contrasting a generic and an optimized laboratory setting with environmental sam-

ples in focus of biofilm formation efficiency [14]. Proteomics comparison of wild type and

laboratory cultures provides abundance information for all 191 protein coding genes assigned

to biofilm formation. For assessing principal relevance of features included in the biofilm data

set, the abundance of AMD (biofilm positive) and generic laboratory culture (“control”) was

compared. 25 out of the 191 features are identified as significantly different in abundance.

Compared with the background set of microbial genes considered in the experimental study

(with less than 5% of all features showing significant differential abundance) proteins assigned

to the biofilm formation context see significant overrepresentation with more than 15% of

features.
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Fig 2. Biofilm ortholog graph. Nodes represent protein coding genes and edges resemble aggregate interaction information. The

layout reflects node degree, the node diameter scales with stress centrality. Node color-coding indicates microbial species coverage

scaling from one to 25 (upper semicircle, scaling from light to dark blue), and selected COG term assignment in the context of

biofilm formation (lower semicircle, orange: cell wall/membrane/envelop biogenesis; green: cell motility; magenta: extracellular

structures). Node annotation refers to biomarker candidates according to Table 4.

https://doi.org/10.1371/journal.pone.0202032.g002
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Annotation of nodes of the ortholog graph with fold change values assigned to biofilm for-

mation in combination with computation of the topological parameters degree as well as stress

centrality allow determining significance in difference of graph measure distributions. Degree

as well as stress centrality are found to be different for nodes holding a significant fold change

compared to nodes not found to be affected according to the proteomics data (p = 0.038 for

degree and p = 0.026 for stress centrality, Fig 3A and 3B). Computing a logistic regression to

predict significance in fold change using graph measures as parameters identifies significant

individual association (p = 0.022 for degree, p = 0.004 for stress centrality). Aside apparent var-

iance, higher degree and stress centrality appear indicative for significance as well as magni-

tude of fold change according to the given proteomics data.

A second correlation is determined for graph measures and node species coverage, i.e. eval-

uating if nodes showing hub properties in degree and stress resemble broad orthology or if

they are captured only by a limited set of species. For both parameters a significant (p<0.001)

positive correlation is identified (Fig 3C and 3D), aside large variability and sparse data cover-

age at high values of degree and stress centrality being indicative for positive association.

Based on the observed association of degree and stress centrality with a probability of abun-

dance change under varying biofilm conditions, a rank score of both graph measures and spe-

cies coverage is determined. Each individual parameter is ranked starting with the maximum

value, with the rank score reflecting the mean of the sum of each individual parameter rank for

a given protein. Table 4 lists the 12 top ranking proteins (see S3 Table for ranking of all 191

molecular features included in the network).

Fig 3. Node details of the biofilm process network in relation to experimental data. Violin plots for (A) degree and (B) stress centrality of network

nodes comparing the wild type microbial community situation with laboratory conditions on fold change significance, complemented by correlation of

species coverage with (C) degree and (D) stress centrality for nodes holding a significant fold change.

https://doi.org/10.1371/journal.pone.0202032.g003
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Biomarker evaluation in public domain omics profiles

For evaluation of the biomarker candidate panel two omics studies appear particularly useful

due to providing i) substantial coverage of the entire molecular feature space represented in

the biofilm network, and ii) showing differential readout for biofilm formation under varying

conditions. The first study conducted by Moreno-Paz et al. resembles a prospecting situation

and reports transcriptomics profiling comparing planktonic versus biofilm associated bacterial

consortia in a natural AMD site [13]. The study confirms significant differential regulation of

nine features included in the biomarker panel, all identified as up-regulated in the biofilm con-

text. Although the transcript profile was specifically derived for L. ferrooxidans, significant

orthology of sequences selected in the biomarker panel render fold changes as indicative for

biomarker expression on the background of the ortholog network.

A monitoring/process optimization situation can be approximated via comparing proteo-

mics data of the generic and the optimized laboratory condition as provided in Belnap et al.

[14]. With optimized conditions designed to reduce metabolic stress AMD communities

showed metabolic profiles closer to those of the natural isolates, including an increased

Table 4. Biomarker candidate panel for capturing the biofilm molecular process.

protein name UniProt

ID

prot Trans control #

species

function context

chaperonin GroEL

(O: Post-translational modification, protein
turnover, chaperone functions)

I0IPK2 +0.6 +2.6 -0.19 24 regulation of protein fate and transport, thermal stability,

protection from oxidative damage caused by copper

chaperone DnaK

(O: Post-translational modification, protein
turnover, chaperone functions)

I0IPF3 +1.0 +3.0� -0.08 23 DNA stability, defense against reactive oxygen species

GrpE protein, putative

(O: Post-translational modification, protein
turnover, chaperone functions)

I0IPF4 +2.8 +3.0� -0.35 23 mediation of acid tolerance

dimethyladenosine transferase

(J: Translation)
I0IQ48 +2.7 24 quorum sensing: environmental adaptation through cross-species

synchronization

UDP-glucose 4-epimerase, putative

(M: Cell wall/membrane/envelop biogenesis)
I0IN00 -0.01 17 EPS biosynthesis: adhesion, production of EPS precursors

diguanylate cyclase, putative

(T: Signal transduction)
I0IKF7 +2.0 -0.4 8 regulation of bacterial biofilm formation and motility

diguanylate cyclase/phosphodiesterase

(M: Cell wall/membrane/envelop biogenesis)
A5FTD7 +0.43 16 EPS biosynthesis: signal transduction

peptidoglycan glycosyltransferase, putative

(D: Cell cycle control and mitosis; M: Cell wall/
membrane/envelop biogenesis)

I0IRD8 +2.0 21 EPS biosynthesis: cell wall modification

signal transduction histidine kinase

(N: Cell motility; T: Signal transduction)
I0IL64 +6.2 +2.8 -0.33 16 two-component system: chemotaxis regulation

chaperone clpB

(O: Post-translational modification, protein
turnover, chaperone functions)

I0IRT5 +7.0 -0.05 20 regulation of stress-response, temperature adaptation: membrane

fluidity, pH tolerance

signal recognition particle subunit FFH/SRP54

(U: Intracellular trafficking and secretion)
I0IPL2 +2.8 +0.13 25 chemotaxis, acid tolerance, secretion of EPS material

sensor protein PilS, putative

(T: Signal transduction)
B7J3T0 -0.28 13 motility: regulation of tight adherence, auto-aggregation, and pili

formation

Given are protein name and respective COG term assignment, UniProt database identifier, fold change (optimized vs. standard laboratory culture) in the proteomics

data set (prot), fold change (biofilm vs. planktonic fraction) in the transcriptomics data set (trans), fold change (continuous vs. bioleaching culture) in the control data

set (control), number of species coding the protein (in the set of 25 species), and protein molecular function context. EPS: extracellular polymeric substance.

https://doi.org/10.1371/journal.pone.0202032.t004
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capacity in biofilm formation. Four molecular features among the 12 top-ranked candidates

are identified as being up regulated in the optimized laboratory setting.

The third data set prepared by Christel et al. compared gene expression of a continuous and

a bioleaching (addition of chalcopyrite) culture of L. ferrooxidans cultivated in an agitated-

tank bioreactor [27]. This species is a dominant member of bioleaching consortia (also being

involved in consortia studied by Belnap et al. [14] and Moreno-Paz et al. [13]), and is a key

driver of biofilm formation. Genes associated with mineral dissolving activity (heavy metal

resistance, motility or chemotaxis) were found to be significantly up-regulated under chalco-

pyrite addition. As expected by the experimental setup, which did not specifically harvest and

analyze cells from biofilms, genes assigned to biofilm formation are reported as essentially

unchanged in expression. Further, none of the 12 candidate biomarkers are found differently

expressed, providing an indication on specificity of candidate markers.

A further data set provided by Vera et al. implemented shotgun proteomics for characteriz-

ing early biofilm formation of A. ferrooxidans on pyrite [34]. In this single organism setting a

biofilm monolayer is formed, being essential for cell attachment and subsequent metal sulfide

leaching. The early stage biofilm situation is characterized by 87 proteins exhibiting differential

abundance, mainly centered around metabolic adoptions. However, only 11 of the 87 proteins

are part of the biofilm ortholog graph. This finding may reflect differences when comparing

early stage biofilm formation and established biofilms. Even more important, this setting may

be indicative for substantial differences of single species biofilm formation and multi-species

biofilm scenarios resembling higher order function.

The most prominent function category involved in the biomarker set is chaperones with

four protein-coding genes. High ranking in degree centrality reflects broad involvement in

folding and arrangement of macromolecular structures as well as their propensity to associate

with hub proteins. This property meets with the processes of biofilm formation, but questions

specificity, as activity of these proteins is supposedly relevant in a variety of molecular pro-

cesses beyond the aggregate function in focus.

Still, given chaperones hold specific evidence in the biofilm context in an acidic environ-

ment. GroEL chaperones are generally known as stress response proteins and are frequently

found in acidophilic bacteria (equivalently identified for the chaperone DnaK) when grown on

elementary sulfur. A more specific role of the protein family is modulation of fatty acid com-

ponents of bacterial cell walls deemed essential during biofilm maturation [35]. The putative

GrpE protein as well as the chaperone clpB are described in stress response in acidic environ-

mental conditions and are implicated in the maintenance of acidophilic biofilms [13]. Tsuboi

et al. reported meta-transcriptomics data from multiple sampling in an acidic stream ecosys-

tem, identifying GroEL transcripts in a range of physico-chemical conditions (varying temper-

ature and iron concentration) [36]. The second marker, the signal recognition particle subunit

FFH/SRP54 (I0IPL2) showed abundance only at distant sites from the spring (characterized by

decrease in temperature, iron concentration, and increase in pH), eventually indicative for bio-

film formation at these conditions. I0IPL2 was also identified by Peng et al. executing a geno-

mic and transcriptomic analysis of a high altitude AMD community contrasting different

temperature conditions [37].

A second prominent function term covers central biofilm components involved in the syn-

thesis of extracellular polymeric substances. Members include a uridine diphosphate (UDP)-

glucose 4-epimerase converting uridine diphosphate galactose to UDP-glucose, a precursor for

the osmoprotectant trehalose, as well as several exopolysaccharides [38, 39]. Further members

include diguanylate cyclase/phosphodiesterase providing cyclic di-guanosine monophosphate

(c-di-GMP) as messenger relevant in biofilm formation, complemented by a peptidoglycan

glycosyltransferase involved in cell wall modification with respect to biofilm attachment [40].
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The third term set covers chemotaxis, sensing and motility, of apparent relevance in struc-

turing the community microenvironment in a biofilm. For dimethyladenosine transferase a

more specific function in quorum sensing was discovered and involves environmental adapta-

tion through cross-species synchronization [41]. As second sensing element, srp54 targets

secretory proteins to plasma membranes. The signal recognition particle pathway is broadly

conserved for targeting polypeptides for secretion. Diguanylate cyclases (as well as phosphodi-

esterases) are constituents of the bacterial c-di-GMP pathway, and are relevant mediators of

bacterial biofilm formation and motility specifically discussed in bioleaching [42]. The sensor

protein PilS is involved in a signal transduction system for allowing response to environmental

changes, including auto-aggregation of microbial cells involving a signal transduction histidine

kinase [43].

Taken together, the panel members represent core functional elements required in estab-

lishing a biofilm microenvironment, covering chemotaxis, motility, quorum sensing as well as

the production of extracellular matrix components. The prominent representation of chaper-

ones of the GroEL-Dnak-GrpE system not only points to adaptation processes allowing com-

munities to establish in the extreme environments, but also reflects the need for a proper

orchestration of the biofilm formation processes [44]. Genes facilitating the quorum sensing

function may play an important role in sustaining cooperation of the biofilm community e.g.

by fine-tuning its population density [45]. Chen et al. executed a comparative metagenomic

and metatranscriptomic analysis of microbial communities in acid mine drainage [46]. The

study confirmed presence of four biomarker candidates from Table 4 (chaperonin GroEL,

chaperone DnaK, peptidoglycan glycosyltransferase and signal transduction histidine kinase)

in all 4 AMD sites analyzed.

Still, the exposed network topology of the panel members being hubs and connectors and

on top being encoded in a wide range of species, in various instances covering more than 20 of

the in total 25 microbial species involved, may in part be driven by annotation biases of net-

work nodes and interactions, at present not allowing for evidence-based correction. Aside this

aspect the need for specialist species for driving aggregate molecular processes is to be

addressed. Analyzing species coverage of nodes in the network neighborhood of degree and

stress centrality hubs sees more sparse species coverage, indicating the need for marginal con-

sortia members on the molecular process level [47]. As example serves chaperonin GroEL

commonly associated with stress response. The protein sees interactions with biofilm-relevant

proteins such as a pilus chaperone protein (UniProt ID B7J3A8) involved in surface adhesion,

a methyl-accepting chemotaxis sensory transducer (UniProt ID I0IKF9) regulating colony

building, a cellulose synthase I (UniProt ID C1F830), together with a pilin signal sequence

domain protein (UniProt ID B7J7E7) involved in extracellular polymer production. In the

given species set, all such proteins see minor coverage of two to five species. Thus, the ubiqui-

tous GroEL may trigger matrix production through recruitment of specialized function attrib-

uted from less abundant species, eventually without seeing significant differential abundance

of such contributing factors. Indications are provided in the proteomics study of Belnap et al.,

where the expression level of any of the matrix synthesis markers (UniProt IDs I0IN00,

A5FTD7 and I0IRD8, respectively) remained unchanged across all culturing conditions [14].

These findings are consistent with the reported correlation of high network connectedness

with regulatory functionality and a widespread differential expression of regulators and its reg-

ulated targets [48].

Molecular features involved in biofilm formation are identified in a range of organisms

commonly isolated in AMD and bioleaching sites. For a subset of organisms a sufficient depth

of annotation is available both on functional as well as on protein interaction level. Lack of

annotation per design removes a subset of protein coding genes from integrative analysis,
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although eventually resembling excellent biomarker candidates. However, coding regions dis-

playing no orthology to annotated sequences of an extended species set retrieved in a meta-

analysis approach may be fairly specific for certain species. In consequence, biomarkers from

such subset may lack generalization capacity, in turn limiting sensitivity in a species-agnostic

prospecting approach.

Available interaction data allow deriving an ortholog network to approximate the commu-

nity molecular process of biofilm formation. By integrating orthology information in the net-

work some major limitations, given by unknown or incompletely characterized genes, lack of

functional annotation as well as of interaction data can be addressed to some extent. The inter-

action data source used in this work provides interactions holding experimental evidence and

candidate interactions resting on computational inference. With lack of completeness of

experimentally derived interactomes together with biases introduced by experimental proto-

cols, inference of interactions from heterogeneous data sources in part addresses given limita-

tions and biases. This approach at the same time introduces probabilistic assignments. In

consequence, resulting networks primarily serve hypothesis generation, demanding subse-

quent experimental evaluation. On the other hand, correlation of abundance of sequences

with unknown function and annotated nodes of a mechanistic network model may support

candidate function assignment [49].

Combining various functionalities deemed necessary for effective biofilm formation in a

multimarker panel promises improved sensitivity as well as specificity. The functional diversity

of the process of forming a biofilm microenvironment, specifically beyond enzymes, points to

an important aspect for selecting a comprehensive network model. For example, approaches

restricted to metabolic networks by e.g. utilizing KEGG orthology (KO) terms of enzymes

(nodes) connected by metabolites (edges) cover less than half of the network nodes included

in the biofilm orthology graph [11]. In addition, only 5 out of the 12 panel members identified

in this study hold enzymatic function.

Conclusion

The workflow discusses candidate biomarker retrieval for prospecting of an aggregate biologi-

cal function executed by microbial consortia in environmental samples. The approach lever-

ages on cross-species interaction consolidated as ortholog network, and utilizes topological

properties of network nodes for molecular feature selection.

Identification of candidate panel members is based on a molecular process model tailored

at representing the molecular context of biofilm formation. The candidate biomarkers are

selected according to a rank score of degree and stress centrality as well as species coverage,

thus focusing on prevalent proteins being deemed essential for establishing a biofilm microen-

vironment. Evaluating candidate biomarkers via utilizing public domain omics profiles indi-

cates relevance in biofilm formation. Applicability of the method is not restricted to biofilm

prospecting in copper mineral decomposition, but is expandable to alternative microbial com-

munity functions including as examples biofertilization in agriculture or microbial communi-

ties serving in oil spill bioremediation.

Practical implementation on the mRNA level, e.g. via quantitative polymerase chain reac-

tion (qPCR)-based methods, demands conserved sequence regions as probes. The approach of

defining a set of biomarkers designed to screen for a given molecular function being at least to

some extent independent of the executing microbes bears the promise to significantly facilitate

prospecting of novel bacterial consortia. The precise composition of consortia is in most cases

unknown at the point of screening. A species-robust screening tool supersedes the need for

any prior knowledge on likely species occurrence. In line with prospecting goals a biomarker
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panel allows a first evaluation of samples, and in case of positive biomarker readout providing

grounds towards a more detailed molecular analysis e.g. via metagenomics. This is particularly

useful in cases where potential prospecting areas are large and diverse, or where a fast and fre-

quent read-out, e.g. in a monitoring situation, is needed. Further, the approach facilitates the

targeted discovery of new species in a functional context in focus, particularly if combined

with novel techniques such as methods for de novo functional characterization of unknown

species.

In conclusion, interaction networks offer a methodology for characterization of community

aggregate molecular functions via integrating individual species contributions into a molecular

process network. Next to adding to our understanding of molecular mechanisms of aggregate

function such networks allow selecting candidate biomarkers grounded on network topology

characteristics. Such biomarkers promise support in microbial function prospecting as well as

in industrial process monitoring in a range of application areas, with bioleaching and bioreme-

diation as examples.
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