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Abstract

Whole genome sequencing (WGS) has been used as a powerful technology for molecular
epidemiology, surveillance, identification of species and serotype, identification of the
sources of outbreaks, among other purposes. In Brazil, there is relatively few epidemiologi-
cal data on Salmonella. In this study, 90 Salmonella Typhimurium strains had their genome
sequenced to uncover the diversity of Salmonella Typhimurium isolated from humans and
food, between 1983 and 2013, from different geographic regions in Brazil based on single
nucleotide polymorphism (SNP) analysis. A total of 39 resistance genes were identified,
such as aminoglycoside, tetracycline, sulfonamide, trimethoprim, beta-lactam, fluoroquino-
lone, phenicol and macrolide, as well as the occurrence of point mutations in some of the
genes such as gyrA, gyrB, parC and parE. A total of 65 (72.2%) out of 90 S. Typhimurium
strains studied were phenotypically resistant to sulfonamides, 44 (48.9%) strains were
streptomycin resistant, 27 (30%) strains were resistant to tetracycline, 21 (23.3%) strains
were gentamicin resistant, and seven (7.8%) strains were resistant to ceftriaxone. In the
gyrA gene, it was observed the following amino acid substitutions: Asp(87)—Gly, Asp(87)—
Asn, Ser(83)—Phe, Ser(83)—Tyr. Phylogenetic results placed the 90 S. Typhimurium
strains into two major clades suggesting the existence of a prevalent subtype, likely more
adapted, among strains isolated from humans, with some diversity in subtypes in foods. The
variety and prevalence of resistant genes found in these Salmonella Typhimurium strains
reinforces their potential hazard for humans and the risk in foods in Brazil.
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Introduction

Foodborne diseases have a major impact on the economy and public health worldwide. Non-
typhoidal Salmonella (NTS) is one of the most common causes of bacterial foodborne illnesses
[1, 2]. It is estimated that NTS cause about 93.8 million annual cases of gastroenteritis and 155
thousand deaths per year worldwide [1].

Among the Salmonella enterica serovars, Salmonella Typhimurium (S. Typhimurium) is
among the most frequent ones isolated worldwide [3]. From 2001 to 2007, this serovar was the
most prevalent in the United States, Canada, Australia and New Zealand. In the same period,
S. Typhimurium appeared as the second most prevalent serovar in Africa, Asia, Europe and
Latin America, surpassed only by S. Enteritidis [3].

In Brazil, there are relatively little epidemiological data on Salmonella [4-7]. However, it is
known that in the State of Sdo Paulo, S. Typhimurium was the most commonly isolated sero-
var from human sources and the third most common from non-human sources before the
1990’s [4]. After this period, S. Typhimurium declined becoming the third most commonly
isolated serovar from human and non-human sources in the period of 1991-1995 in Séo Paulo
State in Brazil, with S. Enteritidis being the most isolated serovar in both sources and, S.14,
(5), 12:i:- and S. Havana the second most isolated serovar in human and non-human sources,
respectively [5]. Between 1996 and 2000, the isolation of S. Typhimurium declined even more
from non-human sources [6]. However, between 1996 and 2003, this serovar was ranked as
the second most commonly isolated serovar from human sources [7].

Epidemiological studies have been crucial to verify the relationship among pathogenic
strains isolated from different sources, to elucidate contamination routes and to differentiate
strains isolated from outbreaks and sporadic cases. Investigative capabilities have been greatly
enhanced with the development and increasing feasibility of WGS as a molecular epidemiolog-
ical tool [8-10]. Over the last few years there has been a substantial reduction in the costs of
WGS making this technology economically viable as a routine tool for molecular epidemiol-
ogy. WGS has also been used for detection of antibiotic resistance determinants [11, 12].

The use of antimicrobials is not recommended in cases of noninvasive Salmonella infections
[13, 14]. However, in some cases, the antibiotic therapy might be necessary. The drug of choice
for the treatment of Salmonella infections is typically ciprofloxacin due to its broad spectrum
antimicrobial activity [14].

The extensive use of antimicrobials has led to increasing numbers of non-typhoidal Salmo-
nella strains that are resistant to quinolones and exhibited reduced susceptibility to fluoroquin-
olones [15-17]. This reduced susceptibility can lead to treatment failures in some cases [18,
19]. Quinolone resistance is usually mediated by mutations in the quinolone resistance deter-
mining regions (QRDRs) of the gyrA, gyrB, parC, and parE genes that code for bacterial DNA
gyrase leading to changes in the binding site of the antimicrobial to the enzyme [17, 20, 21].
Also, quinolone resistance may be due to the acquisition of plasmid-mediated quinolone resis-
tance (PMQR) genes [22-24], such as the gnr genes that encodes a group of pentapeptide pro-
teins that bind to DNA gyrase and prevent the action of quinolones, gepA gene, an quinolone
efflux pump, aac(6’)-Ib-cr gene that encodes to the aminoglycoside acetiltranferase that can
reduce susceptibility to ciprofloxacin and 0gxAB genes, a multidrug resistance efflux pump
[25].

In previous studies of our group, we typed S. Typhimurium strains isolated from humans
and food between 1983 and 2013 in Brazil by Pulsed-field gel electrophoresis (PFGE), multi-
ple-locus variable number of tandem repeats analysis (MLVA), enterobacterial repetitive inter-
genic consensus PCR (ERIC-PCR), CRISPR-multi-locus virulence sequence typing
(CRISPR-MVLST) and Multilocus sequence typing (MLST). Moreover, the frequency of 12
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virulence markers was assessed by PCR and the resistance profile against 12 antimicrobials
was verified [26-28].

In this present work, WGS is used to uncover the diversity of Salmonella Typhimurium iso-
lated from humans and food, between 1983 and 2013, from different geographic regions in
Brazil. Additionally, WGS is used to verify the presence of antimicrobial resistance genes, as
well as, the occurrence of mutations points in the gyrA, gyrB, parC and parE genes.

Materials and methods
Bacterial strains

A total of 90 S. Typhimurium strains were sequenced including: 42 strains from human clinical
material such as diarrheic feces (n = 40), blood (n = 1) and brain abscess (n = 1) between 1983
and 2010; and 48 strains from food such as chicken (n = 8), poultry (n = 3), swine (n = 11),
meats (n = 23), vegetables (n = 2) and unknown (n = 1). Samples were collected between 1999
and 2013 from seven States of Brazil including: Sdo Paulo; Santa Catarina; Parand; Mato
Grosso do Sul; Rio Grande do Sul; Goias; and Bahia (Table 1). Strains were provided by Adolf
Lutz Institute of Ribeirao Preto and Oswaldo Cruz Foundation (FIOCRUZ).

DNA extraction and quantification

The genomic DNA extraction methods followed Campioni and Falcdo [29]. The quality of the
DNAs were checked using NanoDrop 1000 (Thermo Scientific, Rockford, IL), and the concen-
trations were determined using Qubit double-stranded DNA BR assay kit and Qubit fluorome-
ter (Life Technologies, Grand Island, NY) according to each manufacturer’s instructions.

Genome sequencing, assembly, and annotation

All isolates were prepared using the Nextera Sample Preparation Kit (Illumina, San Diego,
CA) and then sequenced on Illumina NextSeq (Illumina) for 2 x 151 cycles. De novo assemblies
were generated from all raw sequence data. The Illumina reads were assembled with SPAdes
3.0 with the following parameters: only contigs of length >500 bp were included; mismatch
(MM) 3.28; the genome fraction was 96.157; and number of mis-assemblies (MA) was 2 [30].
The contigs for each isolate (draft genome) were annotated using NCBI’s Prokaryotic
Genomes Automatic Annotation Pipeline (PGAAP) [31]. The draft genome sequences of S.
Typhimurium strains are publicly available in GenBank, with accession numbers listed in S1
Table. The presence of resistance genes, as well as points mutation in the QRDR of the gyrA,
gyrB, parC, and parE genes, were determined using ResFinder (Center for Genomic Epidemi-
ology, https://cge.cbs.dtu.dk/services/ResFinder/) with settings of threshold of 90%, and mini-
mum length of 60% [32].

Antimicrobial susceptibility testing

Antimicrobial susceptibility of the 90 S. Typhimurium strains were tested by the disc diffusion
method of the Clinical and Laboratory Standards Institute (CLSI) [33]. The majority of these
results were previously published in Almeida et al. (2015) for 12 antimicrobials including: cefo-
taxime; cefoxitin; ceftazidime; aztreonam; cefepime; amoxicillin-clavulanic acid; ampicillin;
nalidixic acid; levofloxacin; trimethoprim-sulfamethoxazole; chloramphenicol; and ciprofloxa-
cin (Oxoid). However, five additional antimicrobials were tested in this study including: genta-
micin; streptomycin; tetracycline; sulfonamides; and ceftriaxone. Additionally, the minimum
inhibitory concentrations (MIC) of fluoroquinolones in the nalidixic acid resistant and suscep-
tible strains were evaluated using Etest®) following the Clinical and Laboratory Standards
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Institute (CLSI) guidelines. Strains with MIC < 0.06 pug/mL were considered sensitive
and > 1 pug/mL resistant.

Phylogenetic analysis

In addition to the 90 S. Typhimurium strains sequenced in this study, four additional S. Typhi-
murium strains (the sequencing reads were downloaded from NCBI with run accessions of
SRR1060710, SRR1963606, SRR6325339, and ERR1556230 for strain DT104, LT2, 14028s, and
SL1344, respectively) were added into the phylogenetic analysis for diversity purpose. The
genomic analysis was performed using the CFSAN SNP Pipeline that generated the SNP
matrix, which was then used to infer the maximum likelihood tree using GARLI [34] with 200
maximum likelihood replicates and 1000 bootstrap iterations. Three samples were included as
outgroups including: Salmonella enterica serovar Saintpaul CFSAN000611; Salmonella enterica
serovar Saintpaul CFSAN000614; and Salmonella enterica serovar Heidelberg CFSAN000443
[35]. The SNP matrix included 59,130 and 11,176 SNPs, with or without the three outgroups
sample, respectively.

Results

In silico antimicrobial resistance gene analysis

A total of 39 antimicrobial resistance genes were identified (Table 1) and are described in detail
below according to the different antimicrobial classes.

Aminoglycoside resistance genes. Ten distinct aminoglycoside resistance genes were
detected including: the most common gene aadA1 in 23 (25.6%) isolates (19 humans, 4 foods);
aph(6)-Id in 20 (22.2%) isolates (7 humans, 13 foods); aph(3’)-Ia in 11 (12.2%) isolates (10
humans, 1 foods); ant(2”)-Ia in 7 (7.8%) isolates from humans; aacA4 in 5 (5.6%) isolates from
humans; and aph(3”)-Ib in 5 (5.6%) isolates (1 humans, 4 foods); aph(4)-Ia in 3 (3.3%) isolates
from foods; aac(3)-1Va in 3 (3.3%) isolates from foods; and lastly both aac(3)-IId and aadA15
in 1 (1.1%) food isolate each.

Tetracycline resistance genes. Five distinct tetracycline resistance genes were detected
including: the most common tet(B) gene in 19 (21.1%) isolates (3 humans, 16 foods); tet(A) in
8 (8.9%) food isolate; tet(C) in 7 (7.8%) human isolates; tet(M) in 3 (3.3%) food isolates; and tet
(D)in 1 (1.1%) food isolate.

Sulfonamide and trimethoprim resistance. Only two sulfonamide resistance genes were
detected including: sull in 19 (21.1%) strains (12 humans 7 foods); and sul2 in 9 (10%) strains
(2 humans 7 foods). The 4 trimethoprim resistance genes detected included: the most common
dfrAl in 24 (26.7%) isolates (22 human, 2 foods); dfrA12in 4 (4.4%) isolates; dfrA8in 2 (2.2%)
foods; and dfrA25in 1 (1.1%) food isolate.

Beta-lactam resistance genes. Seven distinct beta-lactam resistance genes were detected
including: blatgm.1p in 16 (17.8%) strains (6 human,10 foods); blagxa_4 in 7 (7.8%) human iso-
lates; blagxa.17 in 5 (5.6%) human isolates; blatgp1a in 2 (2.2%) food isolates; and blacrx.-m-g
in 2 (2.2%) food isolates; blatgyi.1g7 in 1 (1.1%) human isolate; and blacrx a2 in 1 (1.1%) food
isolate.

Fluoroquinolone resistance genes. Five fluoroquinolone resistance genes were detected
including: aac(6')Ib-cr in 5 (5.6%) human isolates; 0ogxA in 4 (4.4%) food isolates; ogxB in 4
(4.4%) food isolates; and gnrB2 and gnrB88 each in one (1.1%) food isolate.

Phenicol resistance genes. Two phenicol genes were detected including: catAl in 14
(15.6%) human isolates; and floR in 5 (5.6%) food isolates.

Macrolide resistance genes. Only one macrolide resistant gene (mphA) was detected in
one food isolate.
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Antimicrobial susceptibility testing

A total of 65 (72.2%) out of 90 S. Typhimurium strains studied were resistant to sulfonamides,
44 (48.9%) strains were streptomycin resistant, 27 (30%) strains were resistant to tetracycline,
21 (23.3%) strains were gentamicin resistant, and 7 (7.8%) strains were resistant to ceftriaxone.
In our previously published paper (26), 34 strains were resistant to nalidixic acid (Nal®). In
this study we evaluated the reduced susceptibility to fluoroquinolones of 34 strains Nal® and
12 strains susceptible to nalidixic acid (Nal®). All the 12 Nal® strains and 21 Nal® strains studied
were sensitive to ciprofloxacin (MIC < 0.06 ug/ml), whereas 11 Nal® strains presented inter-
mediate resistance to this drug (MIC 0.12-0.5 pug/ml) and two Nal® strains were resistant to
ciprofloxacin. All the antimicrobial susceptibility test results were presented in Table 1.

Detection of mutations in the gyrA, gyrB, parC and parE genes and of the
presence of qnr, gepA, oqxAB and aac(6’)-1b-cr genes

A total of 33 (36.7%) out of 90 strains studied presented mutation points in the gyrA gene, with
all being resistant to nalidixic acid (Table 2). The nonsynonymous points of mutation in the
gyrA gene included: aspartate/glycine, Asp(87)—Gly in 21 strains; aspartate/asparagine, Asp
(87)—Asn in 7 strains; serine/tyrosine, Ser(83)—Tyr in 4 strains; and serine/phenylalanine,
Ser(83)—Phe in one strain. None of the strains had more than one mutation point (Table 2).
One strain (5934/06 isolated from swine) Nal® did not show mutation in the gyrA gene. Seven
(7.8%) strains presented synonymous nucleotide mutation, and these strains were Nal® (data
not shown) suggesting undiscovered mutations. Thirty-two (35.6%) strains presented synony-
mous nucleotide mutation in the parC gene and 10 of those strains were Nal® with, two strains
resistant to ciprofloxacin (data not shown). No strains presented mutations in the parE gene.

The gnrB88 gene was found in 1 (1.1%) Brazilian strain that previously had been reported
both in Klebsiella pneumoniae (GenBank: KX118608) and under another gene (qnrEI) found
in Klebsiella pneumonia (GenBank: KY781949). Additionally, one strain had the gnrB2 gene
present in Salmonella Bredeney (GenBank: FJ844401). The ogxAB gene was found in 4 (4.4%)
strains. However, these genes diverged in having 6 mutations compared to the 0oqxAB of Sal-
monella Derby (GenBank: FN811184). The aac(6°)Ib-cr gene was identified in 5 strains isolated
from humans.

Phylogenetic analysis

The 90 S. Typhimurium strains studied were distributed into 2 major clades (designated A and
B, Fig 1). Clade A comprised 34 (37.8%) strains with 7 isolated from humans between 1985
and 2010, and 27 isolated from food between 1998 and 2013. Thirty-four strains located in
Clade A were isolated from South, Southeast and Midwestern Regions in Brazil. Of the 34
strains in Clade A, 15 strains (14 foods, 1 human) were resistant to three or more antimicrobial
classes being multidrug-resistant (MDR). Clade B comprised 56 (62.2%) strains with 35 iso-
lated from humans between 1983 and 2003, and 21 strains isolated from food between 1995
and 2013. Fifty-six strains located in Clade B were from South, Southeast, Northeast and Mid-
western Regions in Brazil. Of the 56 strains in Clade B, 23 strains (18 humans, 5 foods) were
MDR. All reference genomes added were grouped in clade B (DT104, SL1344, 14028s and
LT2).

Discussion

In this study 90 S. Typhimurium strains isolated from food and humans in Brazil were
sequenced by next generation sequencing technology to evaluate their antimicrobial resistance
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Table 2. Quinolone resistance profiles of the 90 Salmonella Typhimurium strains studied isolated from humans
and food in various States between 1983 and 2013 in Brazil.

CFSANn”° Isolate Name | CIP E-test QRDRs mutations
gyrA mutation | gyrB mutation | parC mutation | parE mutation
CFSANO033848 STmo01 Susceptible | Asp(87)—Gly — — —
CFSAN033849 STmo02 Intermediate | Asp(87)—Gly - - -
CFSANO033850 STmo03 Susceptible | Asp(87)—Gly - - -
CFSANO033851 STmo04 Susceptible | Asp(87)—Gly — — —
CFSAN033852 STmO05 Susceptible | Asp(87)—Gly — — —
CFSANO033853 STmO06 - — — — —
CFSANO033854 STmo07 Susceptible | Asp(87)—Gly — — —
CFSANO033856 STm09 Susceptible | Asp(87)—Gly - - -
CFSANO033857 STm10 Intermediate | Asp(87)—Gly - - -
CFSANO033858 STm11 Susceptible | Asp(87)—Gly - - -
CFSANO033859 STm12 Susceptible | Asp(87)—Gly — — —
CFSANO033860 STm13 Susceptible | Asp(87)—Gly — — —
CFSAN033861 STm14 Susceptible | Asp(87)—Gly — — —
CFSAN033862 STm15 - - - - -
CFSAN033863 STm16 Susceptible | Asp(87)—Gly - - -
CFSAN033864 STm17 — — — — —
CFSANO033865 STm18 — - - - -
CFSANO033866 STm19 — Asp(87)—Gly — — —
CFSAN033867 STm20 Susceptible | Asp(87)—Gly — — —
CFSAN033868 STm21 Susceptible | Asp(87)—Gly — — —
CFSAN033869 STm22 Susceptible | Asp(87)—Gly - - -
CFSANO033870 STm23 - - - - -
CFSAN033871 STm24 Susceptible | Asp(87)—Gly — — —
CFSANO033872 STm25 Susceptible | Asp(87)—Gly — — —
CFSANO033873 STm26 Susceptible | Asp(87)—Gly — — —
CFSANO033874 STm27 Susceptible | Asp(87)—Gly — — —
CFSANO033875 STm28 Susceptible - - - -
CFSANO033876 STm29 Susceptible - - - -
CFSANO033877 STm30 — - - - -
CFSANO033878 STm31 Susceptible — — — —
CFSANO033879 STm32 — — — — —
CFSAN033880 STm33 - — — — —
CFSANO033881 STm34 Susceptible = — — -
CFSAN033882 STm35 Susceptible — — - -
CFSANO033883 STm36 Susceptible — — — —
CFSANO033884 STm37 Susceptible — — — —
CFSAN033885 STm38 - — - - —
CFSAN033886 STm39 - — - - —
CFSANO033887 STm40 Susceptible — — — —
CFSAN033888 STm41 — — - — —
CFSAN033889 STm42 — - - - -
CFSAN033890 STm43 — - - - -
CFSANO033891 STm44 Susceptible — — — —
CFSAN033892 STm45 Susceptible — — — -
CFSAN033893 STm46 Susceptible — — — —
(Continued)
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Table 2. (Continued)

CFSAN n° Isolate Name | CIP E-test QRDRs mutations
gyrA mutation | gyrB mutation | parC mutation | parE mutation
CFSAN033894 STm47 Susceptible - — — —
CFSANO033895 STm48 - - — — —
CFSAN033896 STm49 Intermediate | Asp(87)—Asn - - -
CFSANO033897 702/99 - — — — -
CFSANO033898 12288/06 - - - — —
CFSAN033899 12278/06 Susceptible | Asp(87)—Asn — — —
CFSANO033900 12290/06 - - - — _
CFSANO033901 12268/06 Intermediate | Asp(87)—Asn - - -
CFSANO033902 12381/06 - - - — _
CFSANO033903 5936/06 - — — — _
CFSANO033904 5937/06 - - — — —
CFSANO033905 5934/06 Susceptible - - - —_
CFSANO033906 5961/06 - — — — —
CFSANO033907 5962/06 - — — — -
CFSANO033908 5929/06 - — — — —
CFSANO033909 13609/06 - - - — —
CFSANO033910 3848/08 - — — — —
CFSANO033911 16238/09 Resistant Ser(83)—Tyr - - -
CFSANO033912 16239/09 Intermediate | Asp(87)—Asn - - -
CFSANO033913 16240/09 Intermediate | Asp(87)—Asn - - -
CFSANO033914 16202/09 - - - — _
CFSANO033915 16251/09 - - - — _
CFSANO033916 16273/09 Intermediate | Ser(83)—Phe - - -
CFSANO033917 17307/09 Resistant Ser(83)—Tyr - - -
CFSANO033918 9461/10 - — — — —
CFSANO033919 9479/10 - — — — —
CFSANO033920 7032/10 - — — — —
CFSAN033921 3057/10 - — — — —
CFSANO033922 6346/10 - — — — _
CFSANO033923 5635/10 Intermediate | Asp(87)—Asn - - -
CFSANO033924 9109/10 - — — — _
CFSANO033925 426/10 - — — — _
CFSANO033926 447/10 - — — — _
CFSANO033927 2452/11 - — — — _
CFSANO033928 6709/11 Intermediate | Asp(87)—Asn - - -
CFSANO033929 948/12 - - — — _
CFSANO033930 1103/12 - - — — —
CFSAN033931 1104/12 - - — — —
CFSANO033932 3330/12 - - — — -
CFSANO033933 994/13 - — — — —
CFSANO033934 374/13 - — — — —
CFSANO033935 465/13 - — — — _
CFSANO033937 622/13 Intermediate | Ser(83)—Tyr - - -
CFSANO033938 583/13 - — — — _
CFSANO033939 623/13 Intermediate | Ser(83)—Tyr - - -
https://doi.org/10.1371/journal.pone.0201882.t002
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4 CFSAN000443_Heidelberg
—| 1 —————————— CFSANO000614_Saintpaul
L CFSAN000611_Saintpaul
1 CFSAN033875_STm 28_Human feces_SP_1988_AMG
CFSAN033862_STm 15_Human feces_SP_1985_AMG
CFSAN033939_623/13_Final product sales (animal origin)_SC_2013_AMG; BETA; PHE; TET
CFSAN033937_622/13_Final product sales (animal origin)_SC_2013_AMG
CFSAN033911_16238/09_Ready-to-eat dish_MS_2009_AMG; BETA; PHE; SUL; TET; TRI
CFSAN033917_17307/09_Industrialized product_-_2009_AMG; BETA; SUL; TET; TRI
—— CFSAN033890_STm 43_Human feces_SP_2000_AMG; TET
CFSAN033888_STm 41_Raw kafta_SP_1998_AMG; TET
CFSAN033870_STm 23_Human feces_SP_1986_AMG; TET
CFSAN033889_STm 42_Human feces_SP_1999_AMG; TET
1 CFSAN033898_12288/06_Swine_SC_2006_AMG; BETA; TET
‘E{ CFSAN033901_12268/06_Swine_SC_2006_AMG; BETA; FLU; TET
CFSAN033899_12278/06_Swine_SC_2006_AMG. TET
1 CFSAN033895_STm 48_Brain abscess_SP_2005_AMG; BETA; SUL; TRI
1 i CFSAN033900_12290/06_Swine_SC_2006_AMG; FLU; SUL; TET
CFSAN033902_12381/06_Swine_SC_2006_AMG; SUL; TET
—— CFSANO033905_5934/06_Swine_SC_2006_AMG; FLU; TET
—— CFSANO033915_16251/09_Industrialized product_GO_2009_AMG; BETA; FLU; PHE; SUL; TET; TRI
— CFSAN033892_STm 45_Raw pork sausage_SP_2000_AMG; TET
CFSAN033893_STm 46_Raw tuscan sausage_SP_2002_AMG
CFSAN033896_STm 49_Human feces_SP_2010_AMG
CFSAN033928_6709/11_Cold chicken_RS_2011_AMG; BETA; FLU; PHE; SUL; TET; TRI
CFSAN033923_5635/10_Unknown_RS_2010_AMG
CFSAN033934_374/13_Final product sales (animal origin)_SC_2013_AMG
CFSAN033935_465/13_Final product sales (animal origin)_SP_2013_AMG; BETA; MLS; SUL; TET; TRI
CFSAN033910_3848/08_Food_SC_2008_AMG
CFSAN033907_5962/06_Swine_SC_2006_AMG; SUL; TET
CFSAN033906_5961/06_Swine_SC_2006_AMG; SUL; TET
CFSAN033903_5936/06_Cold chicken_SC_2006_AMG
CFSAN033926_447/10_Chicken_SC_2010_AMG; BETA
CFSAN033920_7032/10_Poultry_PR_2010_AMG; BETA; SUL; TET; TRI
CFSAN033908_5929/06_Poultry_SC_2006_AMG
CFSAN033904_5937/06_Cold chicken_SC_2006_AMG
CFSAN033925_426/10_Chicken_SC_2010_AMG; BETA
S. typhimurium Strain DT104
1

1

—— CFSAN033921_3057/10_Frozen chicken carcass_PR_2010_AMG
L CFSAN033883_STm 36_Cold chicken_SP_1995_AMG
| ———— S. Typhimurium Strain SL1344

\ "F CFSAN033894_STm 47_Human feces_SP_2003_AMG

CFSAN033891_STm 44_Blood_SP_2000_AMG
CFSAN033884_STm 37_Raw pork sausage_SP_1996_AMG
CFSANO033876_STm 29_Human feces_SP_1989_AMG; BETA; SUL

CFSAN033887_STm 40_Lettuce_SP_1998_AMG
— CFSANO033881_STm 34_Human feces_SP_1993_AMG
! — CFSAN033886_STm 39_Human feces_SP_1998_AMG
CFSAN033877_STm 30_Human feces_SP_1990_AMG
CFSAN033882_STm 35_Human feces_SP_1995_AMG
\ [ CFSAN033864 STm 17_Human feces_SP_1985 AMG
\ CFSAN033932_3330/12_Roast beef_SC_2012_AMG
| CFSAN033878_STm 31_Human feces_SP_1991_AMG
1; CFSAN033880_STm 33_Human feces_SP_1992_AMG
CFSAN033879_STm 32_Human feces_SP_1992_AMG
CFSAN033922_6346/10_Chicken_SP_2010_AMG
CFSAN033919_9479/10_In natura meat_SC_2010_AMG
CFSAN033924_9109/10_Swine_PR_2010_AMG
CFSAN033929_948/12_Raw salad_BA_2012_AMG
CFSAN033931_1104/12_Swine (homemade salami)_RS_2012_AMG
S. typhimurium Strain 14028s
CFSAN033909_13609/06_Poultry_SC_2006_AMG
CFSAN033930_1103/12_Swine (homemade salami)_RS_2012_AMG
CFSAN033938_583/13_Final product sales (animal origin)_SC_2013_AMG; BETA; TET; TRI
CFSAN033913_16240/09_Ready-to-eat dish_MS_2009_AMG; BETA; PHE; TET
CFSAN033912_16239/09_Ready-to-eat dish_MS_2009_AMG; BETA; TET
CFSAN033885_STm 38_Human feces_SP_1997_AMG
CFSAN033914_16202/09_Industrialized product_RS_2009_AMG
CFSAN033918_9461/10_In natura meat_SC_2010_AMG
CFSAN033853_STm 06_Human feces_SP_1983_AMG
CFSAN033865_STm 18_Human feces_SP_1985_AMG
CFSAN033933_994/13_Final product sales (animal origin)_SP_2013_AMG
CFSAN033927_2452/11_Frozen chicken carcass_SP_2011_AMG; TET; TRI
CFSAN033897_702/99_Final product_SC_1999_AMG
CFSAN033916_16273/09_Industrialized product_GO_2009_AMG; BETA; SUL; TET

[

— S. typhimurium Strain LT2
r— CFSAN033849_STm 02_Human feces_SP_1983_AMG; BETA; PHE; SUL; TRI
r CFSAN033848_STm 01_Human feces_SP_1983_AMG; TET; TRI
_1[ CFSAN033852_STm 05_Human feces_SP_1983_AMG; BETA; PHE; SUL; TET; TRI
CFSAN033850_STm 03_Human feces_SP_1983_AMG; BETA; PHE; SUL; TET; TRI
CFSAN033856_STm 09_Human feces_SP_1984_AMG; BETA; PHE; SUL; TRI
CFSAN033858_STm 11_Human feces_SP_1984_AMG; BETA; PHE; SUL; TRI
| 17 CFSAN033861_STm 14_Human feces_SP_1984_AMG; BETA; TET; TRI
CFSAN033851_STm 04_Human feces_SP_1983_AMG; BETA; PHE; SUL; TRI
CFSAN033860_STm 13_Human feces_SP_1984_AMG; BETA; PHE; SUL; TRI
CFSAN033857_STm 10_Human feces_SP_1984_AMG
~ CFSAN033854_STm 07_Human feces_SP_1983_AMG; BETA; PHE; TRI
CFSAN033868_STm 21_Human feces_SP_1986_AMG; TRI
' { CFSAN033867_STm 20_Human feces_SP_1986_AMG; PHE; TET; TRI
|- CFSAN033866_STm 19_Human feces_SP_1986_AMG; BETA; FLU; PHE; SUL; TRI
CFSAN033859_STm 12_Human feces_SP_1984_AMG; BETA; FLU; PHE; SUL; TRI
CFSAN033863_STm 16_Human feces_SP_1985_AMG
CFSAN033869_STm 22_Human feces_SP_1986_AMG; BETA; FLU; PHE; SUL; TRI
CFSAN033874_STm 27_Human feces_SP_1986_AMG; BETA; FLU; PHE; SUL; TET; TRI
CFSANO033871_STm 24_Human feces_SP_1986_AMG; BETA; FLU; PHE; SUL; TET; TRI
CFSAN033872_STm 25_Human feces_SP_1986_AMG; BETA; TRI
CFSAN033873_STm 26_Human feces_SP_1986_AMG; TRI
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Fig 1. Phylogenetic analysis based on SNPs of the 90 Salmonella Typhimurium strains of this study and four
additional S. Typhimurium strains (the sequencing reads were downloaded from NCBI with run accessions of
SRR1060710, SRR1963606, SRR6325339, and ERR1556230 for strain DT104, LT2, 14028s, and SL1344,
respectively). The genomes of one Salmonella Heidelberg and two Salmonella Saintpaul were used as outgroup.

https://doi.org/10.1371/journal.pone.0201882.9001

gene profiles and phylogenetic diversity. This is the first study of S. Typhimurium strains iso-
lated in Brazil that used WGS to access the genetic diversity and the molecular bases of antimi-
crobial resistance. In previous studies, the same strains were typed by PEGE, MLVA,
ERIC-PCR, CRISPR-MVLST and MLST [26-28].

In this study, 47 (52.2%) strains presented phenotypic resistance to gentamicin and/or
streptomycin. Streptomycin is not frequently used to treat Salmonella enterica infections; but,
it has been commonly used as a growth promoter in food-producing animals and for this rea-
son may serve as a marker for resistant strains moving through the food supply [11].

Our results confirm McDermott et al’s. [11] observations of discrepancies between pheno-
typic resistance and genotypic resistance of aminoglycoside resistant genes. We observed 35
isolates carrying streptomycin resistance genes, but these isolates were phenotypically suscepti-
ble to the drugs. It is unclear why the genes while present in the genomes were not expressed
to provide phenotypic resistance. Presence of the known streptomycin resistance genes does
not predict phenotypic resistance well for this class.

The tetracycline resistance genes were found in 32 (35.5%) strains. Interestingly, 2 strains
that were phenotypically resistant to tetracycline did not present any known tetracycline resis-
tance genes suggesting a possible alternative mode of resistance. In contrast, seven strains that
presented tetracycline resistance genes were phenotypically susceptible. Of these seven, six
strains had two tetracycline resistance genes and one strain had only one tetracycline resis-
tance gene. Tetracycline has been used commonly as an antibiotic in swine husbandry [36].
Brazil is a major producer of pigs with 3.73 million tons of pork produced and exported in
2016 [37, 38]. The Salmonella Typhimurium serovar usually does not cause severe disease in
pigs and sometimes it is asymptomatic in these animals, which may be a serious public health
problem, since it may be an important source of contamination of carcasses in slaughter-
houses. In addition, the contamination by S. Typhimurium may not be detected while the pigs
are on the farm, which may eventually lead to human contamination [36, 39].

Cefoxitin resistance has been used to indicate certain types of beta-lactamases production
by Salmonella and E. coli. First and second-generation cephalosporin susceptibility results are
not reported in clinical medicine for Salmonella, because the drugs may appear active in vitro,
but are not therapeutically effective [33]. Regarding the beta-lactam resistance genes found in
Brazil, the most common was blargy 1p gene presented in 16 (17.8%) isolates (6 humans, 10
foods). The blatgy 15 gene has been associated with ampicillin resistance and 32 (35.6%)
strains were phenotypically resistant to the ampicillin. The blacrx g and blactx_m.» genes
have been more closely associated to cephalosporin resistance and 7 strains were resistant to
ceftriaxone (CRO), third generation cephalosporin, but only 3 strains presented a blacrx allele.
The most common resistant gene was aac(6')Ib-cr found in 5 (5.6%) human isolates followed
by 0gxA and 0gxB found in 4 (4.4%) food isolates. The gnrB2 and gnrB88 genes were found
eachin 1 (1.1%) food isolate.

Some of the discrepancies observed when a resistance gene is present but no phenotypic
resistance in bacterial growth is observed, or when the phenotype is present but no known
resistance gene is observed, is likely due to new unidentified resistance genes or mutations
conferring resistance in undiscovered genes. Therefore, it is important to study any discrep-
ancy as each represents new ways that bacteria are acquiring resistance as was reported for a
new mechanisms discovered for Campylobacter gentamicin resistance [40]. Pribul et al. [41]
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evaluated the prevalence of PMRQ genes in 129 isolates of non-typhoidal Salmonella from Brazil
by PCR amplification. Qnr genes were found in 15 (11.6%) isolates (8 gnrS, 6 gnrB, and 1 gnrD),
and the aac(6')-Ib gene was found in 23 (17.8%) isolates. Regarding mutation points in the
QRDRs, gyrA mutation was the only one found among the strains studied. Thirty-three (36.7%)
of nalidixic acid resistant strains presented mutations in the gyrA gene (22 human, 11 foods).

McDermott and colleagues [11] used WGS technology to identify known antimicrobial
resistance genes among 640 non-typhoidal Salmonella strains for 43 different serotypes and
correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial
resistance surveillance. Overall, genotypic and phenotypic resistance correlated in 99.0% of the
cases. They concluded that WGS is an effective tool for predicting antibiotic resistance in non-
typhoidal Salmonella [11]. Regarding QRDR mutations and PMQR genes, 21 isolates had
either QRDR mutations or PMQR genes, all of which were from human clinical cases. In con-
trast, in this study QRDR mutations were found in both human and food isolates.

Salmonella Typhimurium ST313 had been described only in sub-Saharan Africa, with high
levels of antibiotic resistance associated with bloodstream infections and mortality rates of
>25% [42, 43]. In 2017 [28], nine strains were typed as ST313 in Brazil, with only 1 MDR,
human strain (STm29 feces), presenting resistant to ampicillin, streptomycin and sulfonamide.
Five Brazilian strains (STm30, STm35, STm37, STm47, STm44) were resistant just to sulfon-
amide with STm37 isolated from food. Other resistant strains included: STm40 isolated from
food (streptomycin and sulfonamide); STm39 isolated from human feces (streptomycin); and
STm34 isolated from human feces (pan_susceptible).

Food isolates were distributed in Clades A and B in relatively similar numbers suggesting
that there is more than one subtype in circulation, in foods in Brazil. Human’s isolates were
more prevalent in the Clade B suggesting the existence of a prevalent subtype. Genomic and
phenotypic testing results suggest clinical strains isolated before the mid-1990s presented
more antimicrobial resistance compared to later strains. The diversity and prevalence of resis-
tant genes found in Brazilian Salmonella Typhimurium is an alert of their potential hazard for
food safety and public health.
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