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Abstract

Market timing is an investment technique that tries to continuously switch investment into

assets forecast to have better returns. What is the likelihood of having a successful market

timing strategy? With an emphasis on modeling simplicity, I calculate the feasible set of mar-

ket timing portfolios using index mutual fund data for perfectly timed (by hindsight) all or

nothing quarterly switching between two asset classes, US stocks and bonds over the time

period 1993–2017. The historical optimal timing path of switches is shown to be indistin-

guishable from a random sequence. The key result is that the probability distribution function

of market timing returns is asymmetric, that the highest probability outcome for market tim-

ing is a below median return. Put another way, simple math says market timing is more likely

to lose than to win—even before accounting for costs. The median of the market timing

return probability distribution can be directly calculated as a weighted average of the returns

of the model assets with the weights given by the fraction of time each asset has a higher

return than the other. For the time period of the data the median return was close to, but not

identical with, the return of a static 60:40 stock:bond portfolio. These results are illustrated

through Monte Carlo sampling of timing paths within the feasible set and by the observed

return paths of several market timing mutual funds.

Introduction

Market timing is an investment technique whereby an investment manager (professional or

individual) attempts to anticipate the price movement of asset classes of securities, such as

stocks and bonds, and to switch investment money away from assets with lower anticipated

returns into assets with higher anticipated returns. Market timing managers use economic or

other data to calculate propitious times to switch. Market timing seems a popular approach to

investment management, with Morningstar listing several hundred funds in its tactical

asset allocation (TAA) category—TAA being an industry name for market timing—and main-

stream fund managers advertising their ability to switch to defensive assets when stock markets

seem poised for a downturn. The antithesis of market timing, and another broadly popular

investing approach, is buy-and-hold, whereby investment managers allocate static fractions of

their monies to the available asset classes and then ignore market price gyrations.

Is market timing likely to be successful relative to investing in a static allocation to the avail-

able asset classes? The literature in this area is focused on developing sophisticated statistical
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tools that can detect and measure the market timing ability of professional fund managers [1].

Numerous uses of these techniques over decades have produced mixed results [2–7]. Some

authors detect no market timing ability, while others report statistically significant evidence of

market timing ability. On the other hand, Dalbar measures the market timing results of the

average individual investor through mutual fund sales, redemptions and exchanges [8]. These

studies find unambiguously that market timing by the average investor is unsuccessful relative

to a static allocation. The ambiguous results for successful market timing from professional

managers suggests that, at minimum, it is difficult to market time successfully, while the

unambiguous results for individuals strongly suggests that it is easy to market time

unsuccessfully.

My goal here is both different and simpler than statistical tests to detect market timing. I

want to create a simple model to ask the question, what is the likelihood of successful market

timing? Or more precisely, what is the return probability distribution function (PDF) for mar-

ket timing? Is the PDF of market timing returns symmetric? If it is hard to obtain above aver-

age returns by market timing, is it also hard to obtain below average returns? What is the most

basic mathematics of market timing?

I try in this paper to evoke a similar spirit to Sharpe’s “The Arithmetic of Active Manage-

ment” [9], in which elementary arithmetic is all that is required to demonstrate why active

management must in aggregate under perform low-cost index funds. While I will need to

invoke elementary probability theory, it will show that the most probable outcome of market

timing is to under perform a buy-and-hold, suitably weighted average of the available asset

classes. Moreover, as I build the simple model from the returns of US stock and bond total

market index funds since 1993, market returns over that time period mean that the suitably

weighted average portfolio, while not identical with the 60:40 stock:bond balanced fund, is in

practice barely distinguishable from it.

In the rest of the paper my approach will be to calculate the boundaries of the feasible set of

market timing portfolios using fund data for perfectly timed (by hindsight) switching between

two asset classes, stocks and bonds. From this analysis I also obtain the historically optimal

timing path of switches, which the NIST (National Institute of Standards and Technology, U.S.

Department of Commerce, www.nist.gov) suite of tests for randomness shows is indistinguish-

able from a random sequence. The key elementary result is that the geometric mean of market

timing returns has an asymmetric PDF. One implication of this is that the most probable mar-

ket timing return is below the median return, which can be directly calculated to be given by a

static portfolio weighted by the relative fraction of time periods that each asset class outper-

forms the other. These results are illustrated through Monte Carlo sampling of timing paths

within the feasible set and by the return paths of several market timing funds with comparably

long, publicly available data. To begin, in the next section I describe the data.

Data

The data consists of time series of quarterly returns for three index funds starting in 1993, the

advent of the youngest of the three funds, and ending in Q3 2017. The series covers 24 years,

and there are N = 99 data points per series. The funds, all from Vanguard, are Total Stock Mar-

ket, Total Bond Market, and Balanced Index, the last a static portfolio of 60% Total Stock and

40% Total Bond. Other information on these funds is in S1 Appendix. Fig 1 shows the quar-

terly return time series for stocks and bonds. Because the data are from live funds, calculated

return paths are net of management and trading costs; however, tax consequences are ignored.

For quarterly switching taxes would likely be substantial, but the effect would only dampen the

spread of net returns and change only the quantitative, not the qualitative results of the model.
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Note that because fund data are the basic building blocks of the model, all return paths calcu-

lated could have been obtained by an investor during the time period.

Since the way to calculate total return is to multiply the sub-period returns together, I trivi-

ally transform the original data to multiplicative form, e.g. a +3% return becomes 1.03 and a

−3% return becomes 0.97. The differences between multiplicative and additive random pro-

cesses will be important in the subsequent analysis.

Two asset, all or nothing market timing model

Here I define the simple two asset market timing model with all or nothing quarterly switches,

emphasizing the deliberate choice to assume a simple model in order to gain insight into the

fundamental mathematics. Using perfect hindsight, it is easy to identify the best and worst pos-

sible market timing portfolios, which form the boundaries of the feasible return paths for all

market timing portfolios, i.e. all possible market timing portfolios lie between the boundaries

of the feasible set. (Technically it is all market timing portfolios that conform to the assump-

tions of the model; however, in the discussion section we will see that real, non-conforming

market timing funds fall within the feasible set.) I reveal the optimal (highest possible return)

timing sequence and test it for randomness. A later section focuses on deriving the return PDF

for the model.

Model

The model consists of quarterly all or nothing switches between stocks and bonds. In the ith
time period ti the return of stocks is denoted rsi and the return of bonds is denoted rbi. A timing

Fig 1. Quarterly returns data. Quarterly return time series for stock and bond total market index funds, 1993–2017.

Returns are in multiplicative form.

https://doi.org/10.1371/journal.pone.0200561.g001
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path is the binary sequence fi that is

fi ¼

(
1 if during ti rsi > rbi

0 if during ti rsi < rbi:
ð1Þ

In other words f is set to f = 1 when the stock return is larger than the bond return and set to

f = 0 when the bond return is larger than the stock return. A special class of timing path has f =

constant and is termed a static allocation or buy-and-hold portfolio. I call a return path,

denoted ρ, the sequence of returns generated by a particular timing path fi. The jth return path

is given by

rj ¼
YN

i

ðfijrsi þ ð1 � fijÞrbiÞ: ð2Þ

The geometric mean of a return path is given by r
1=N
j .

Feasible set

With perfect hindsight the best and worst performing return paths are easily found. In the

notation of Matlab code Eq (2) becomes for the best ρb and worst ρw possible return paths

rb ¼ cumprodðmaxðstocks; bondsÞÞ ð3aÞ

rw ¼ cumprodðminðstocks; bondsÞÞ; ð3bÞ

and the timing path for ρb is given by fb = (stocks > bonds); similarly for ρw. Fig 2(a) shows the

quarterly return series for ρb and ρw, while Fig 2(b) shows histograms of quarterly returns for

stocks, bonds, ρb, and ρw. There are no surprises: partitioning returns by Eq (3) puts the posi-

tive return, right tail of the stocks distribution into ρb, while excluding the negative return, left

tail. The reverse happens to ρw.

Fig 2(c) plots several return paths on semi-log axes. The best and worst possible return

paths for this period are thick red lines. Blue lines are the fund data for stocks (f = 1), bonds

(f = 0) and balanced (f = 0.6). The returns of the fixed portfolios are ordered as expected with

f = 0 producing the lowest returns of the fixed f portfolios and f = 1 producing the highest.

Note, however, that the large difference in returns normally associated with stocks and bonds

is dwarfed by the difference in returns between the best and worst market timing portfolios.

The potential reward to successful market timing is clearly enormous; however, just as enor-

mous is the potential penalty to unsuccessful market timing.

The best and worst possible return paths demark the feasible set of return paths for the two

asset model. All possible return paths (all possible market timing paths fi) fall inside the enve-

lope made by ρb and ρw. As the model has all or nothing switches, the number of possible paths

of length N is 2N. As the data set has N = 99, the number of possible return paths is 299 * 1029,

which is large.

The unpredictable optimal timing path

Fig 3 shows the historical optimal timing path fb that produces the highest possible return path

ρb over the time period. Black regions have fi = 1 (stock return > bond return). White regions

have fi = 0 (bond return > stock return). It will be convenient to define p as the fraction of

time periods in which f = 1, which is easily calculated by summing fb and dividing by N. For

this data p = pb� 0.64: over this time period approximately 2/3 of the time stocks returned
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Fig 2. Two asset, all or nothing market timing model. Two asset, all or nothing market timing model switches to

whichever of the two assets classes will have the better return that quarter. (a) Quarterly returns of the best and worst

market timing portfolios as a function of time in multiplicative form. (b) Histograms of returns for the indicated data

sets. (c) Feasibility envelope plotted on semi-log axes. Thick red lines are the best and worst possible return paths over

this time period. Blue lines are the three data sets: stocks (f = 1), bonds (f = 0), and balanced (f = 0.6). The fixed

portfolio lines order as expected from f = 0 to f = 1.

https://doi.org/10.1371/journal.pone.0200561.g002

Fig 3. Optimal timing path. Optimal timing path fb that would have produced the highest possible return path ρb over

the time period. Black regions have fi = 1 (stocks> bonds). White regions have fi = 0 (bonds> stocks).

https://doi.org/10.1371/journal.pone.0200561.g003
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more than bonds. While the optimal timing path fb is not random like a coin flip (pb 6¼ 1/2),

Fig 3 shows no pattern readily discernible to the eye. Is fb random?

It is worth distinguishing random and unpredictable. The historically optimal timing path

is not a random bit sequence because ones occur about two-thirds of the time. Nonetheless,

the important question is can I predict the next element in the sequence, given knowledge of

the previous elements of the sequence? How can a sequence be not random but at the same

time unpredictable? Consider a 6-sided die, of which four sides have a one and two sides have

a zero. For each fair roll of the die there is a two-thirds probability of a one and a one-third

probability of a zero, i.e. the chance of a 1 or 0 is similar to that observed in the data. Since

each fair roll of the die is independent of all rolls that have come before, there is no way to pre-

dict from the past sequence of rolls what the next roll of the die will produce. Although pb is

not known a priori—in fact pb could be different over different time periods or markets—the

unpredictable die analogy holds for all pb by changing the number of sides to the die.

Leaving the details to S2 Appendix, I use the suit of 15 tests published by NIST [10] and

designed for the purpose of verifying random number generators for cryptography, using Ger-

hardt’s implementation of the test suite for Mathematica [11]. While most of the NIST tests, in

order to ensure an accurate test, require orders of magnitude longer bit sequences than the

financial time series provides, for four of the tests the N = 99 bit length of fb is close to the sug-

gested minimum length. Again, leaving details to S2 Appendix, the result of those four tests is

that fb is random (unpredictable) at the 99% confidence level.

While the historically optimal timing sequence fb is clearly special in some sense—the prob-

ability of that particular sequence to occur is 2−99—the question is what, if anything, distin-

guishes fb from any other random timing paths? If we look at fb and randomly generated

timing paths without knowing which is which, can we distinguish fb from the masses of possible

timing paths? If fb is random, as the NIST tests say it is, there is nothing to tell why it is special,

which says that it is not special, that just by a 2−99 random chance, it was special for this time

period and that, in itself, fb is unpredictable, i.e. it contains no information about any future

optimal timing path.

Probability distribution of return paths

As the optimal timing path is indistinguishable from a random sequence, I review elementary

properties of random multiplicative processes, from which it follows that the highest probabil-

ity outcome of market timing is a return less than the median of the PDF of market timing

returns. The return PDF is estimated by Monte Carlo sampling of random timing paths. The

median of the return PDF can be directly calculated as the weighted average of the returns of

the assets with the weights given by the fraction of time each asset has a higher return than the

other. For the time period covered by the data the median return was close to the f = 0.6 bal-

anced index fund.

Monte carlo

The distribution of typical returns of the model can be estimated by Monte Carlo methods.

Generate M random timing paths of length N and calculate M return paths with Eq (2). In

order to match the period data, set random timing paths to have the same fraction of ones and

zeros as the data, i.e. the average value of p for the M timing paths is set to p = pb. This is done

by using Matlab’s rand function to generate a length N sequence of random real numbers n
drawn from a uniform distribution in the range [0, 1] and setting each term in the sequence

equal to one if n< pb or to zero if n� pb. Fig 4 shows M = 105 return paths as thin gray lines in

a semi-log plot similar to Fig 2(c). Red lines are the boundaries of the feasible set, ρb and ρw,
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while the thick black line is the data for the f = 0.6 balanced fund. Before further examination

of the return PDF it will be useful to review several facts about distributions from random mul-

tiplicative processes, such as that of Eq (2).

Random multiplicative processes

A sum of random numbers is guaranteed by the central limit theorem to converge to a Gauss-

ian (normal) PDF in the limit of a large number of terms in the sum. A product of random

numbers, such as that used in Eq (2) to calculate return, does not share this nice property. On

the contrary, the PDF for a random multiplicative process (of positive numbers) depends on

rare sequences that generate an asymmetric PDF with a long tail. The average value of the PDF

(or of any moment) depends sensitively on the sampling size M and, until M approaches the

number of possible outcomes, becomes larger and larger compared to the mode [12].

Nonetheless, what can be done is to take the log of the geometric mean of Eq (2) to change

the product of returns to a sum of the log returns:

log ðr1=N
j Þ ¼ N � 1

XN

i

log ðfirsi þ ð1 � fiÞrbiÞ: ð4Þ

Eq (4) says that the log of the geometric mean is given by the average of the log return. The

PDF of log return then does obey the central limit theorem to converge to a Gaussian PDF.

Moreover, if the log of something is distributed as a Gaussian, then the something has a log-

normal PDF [12]. In other words, the return PDF for market timing is log-normal, as a simple

consequence of elementary properties of the logarithm. Further, if μ and σ are respectively the

median and variance of the Gaussian PDF, then eμ is the median and eμ − σ2

is the mode of the

log-normal PDF: the mode, which is the most probable outcome, is less than the median of the

Fig 4. Return paths for random timing paths. Return paths (gray) for M = 105 randomly generated timing paths. Red

lines are the best and worst market timing return paths. The black line is the observed f = 0.6 balanced fund returns.

https://doi.org/10.1371/journal.pone.0200561.g004
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log-normal PDF. Thus from elementary considerations the most probable outcome from mar-

ket timing is a return that is less than the median of the return PDF.

To illustrate, Fig 5(a) plots the histogram of end of period log returns from the Monte Carlo

data of Fig 4. Even though M = 105 grossly under samples the order 1029 distinct paths in the

feasible set, convergence to a Gaussian PDF is evident, as predicted by the form of Eq (4). The

green and purple bars at the extremes are the results for respectively ρw and ρb. The orange bar

marks the median log-return and the log -return for the f = 0.6 balanced index fund, which are

indistinguishable in this plot, and the reason for this will be discussed in the next section. Fig 5

(b) plots the histogram of the end of period return (not log-return). The predicted log-normal

form with a long tail is also evident. The inset shows the entire data range to indicate how long

the return tail is. Colored bars have the similar meaning as in Fig 5(a), just for the return PDF

instead of the log return PDF. The highest probability outcome is the mode (maximum) of the

distribution, which is less than the median return marked by the orange bar.

Fig 5. Probability distribution functions. Probability distribution function of (a) log-return and (b) return estimated

from M = 105 trials with p = pb� 0.64. Green and purple vertical bars are respectively the worst and best timing

portfolios. The orange bar is the median of the PDF and the observed return of the f = 0.6 balanced index fund, which

so closely approximates the median as to be indistinguishable at this scale. Inset of (b) is the full data range, showing

the extreme low probability position of the optimum timing portfolio (purple bar) in the tail of the distribution.

https://doi.org/10.1371/journal.pone.0200561.g005
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Expectation value of the median

The expectation value operator E gives the most probable value of a PDF. After a calculation

given in detail in S3 Appendix, the expectation value of Eq (4) for the median μ of the log

return distribution is

m ¼ E½ log ðr1=N
j Þ� ¼ log ðpb�rs þ ð1 � pbÞ�rbÞ; ð5Þ

where �rs;b are the geometric mean returns of the stock and bond assets. Recall pb is the

observed fraction of time periods that the stock return exceeds the bond return. The median of

the distribution of log returns is given by the log of the weighted average of the two assets with

the weights given by the fraction of time periods p that each asset’s return exceeded that of the

other. The median of the return PDF is eμ.

Note that because over the time period of the data pb� 0.64, that using the log return for

the f = 0.6 balanced fund for the right hand side of Eq (5) well approximates the exact result for

ρb, which, of course, cannot be known a priori. As noted above, in Fig 5 the median return and

the return for the f = 0.6 balanced index fund are indistinguishable at the scale of the plot.

It is important to note that Fig 5 shows the PDF for costless market timing. In practice, mar-

ket timing costs higher than the index fund costs would shift the PDF to the left, but the

boundaries of the feasible set and the median of the PDF would not shift because they are cal-

culated from fund data, which already includes the small index funds costs. In practice what

the Monte Carlo simulation estimates is the lower bound of the most likely shortfall of market

timing to the median return given by the appropriately weighted static portfolio.

Discussion

Several critiques could be leveled at the analysis in this paper. For example, adherents of mar-

ket timing would claim that their timing systems are not random, therefore they would be able

to choose timing paths to have returns far out on the right tail of the PDF, i.e. that the strategy

to generate random paths (random f sequences) is not representative of actual market timing.

There are two answers to this. One is that the feasible set is well-defined and that it is simply a

fact that all market timing paths, no matter how they are generated, are contained in the feasible

set. As such, any sampling of the feasible set generates valid timing paths. The second answer

is in Fig 6, which reproduces Fig 4 with the addition of the return paths (yellow lines) of two

funds that Morningstar classifies as TAA funds and for which there are publicly available

returns data from 1994, almost as long as for the index funds data series. S4 Appendix has

details about these two funds, which are rated by Morningstar as above average. While these

market timing funds were neither limited to two asset classes, nor did they make all or nothing

switches, yet their return paths are, as expected, contained inside the feasible set. The conclu-

sion is that real-life market timers are correctly characterized—except for costs—by the PDF

within the feasible set, and that random sampling of the PDF does properly characterize the

return distribution expected from market timing schemes.

Fig 6 also illustrates the main result with live, not simulated, market timing data. These

long-lived, above average market timing funds trailed the median return over the time period

—and its close proxy, the f = 0.6 balanced fund—as simple math says is the most probable out-

come. This longer-term observation is consistent with more recent analysis covering a much

shorter time period but many more TAA funds [7]. (From Ptak [7], “We found that very few

tactical funds generated better risk-adjusted returns than Vanguard Balanced Index over the

extended time period we studied. Not only has the group of tactical allocation funds underper-

formed, but not a single one of them outperformed the simple, low-cost, passive fund.”)
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A more subtle criticism is that I have not disproved market timing. This is because of the

possibility of hidden variables. Hidden variables represent information, such as earnings, book

value, anything, that a market timer could put into a function that produces a timing path.

While the observed optimal timing path fb is random to the extent that it passes the NIST tests,

it is possible that there was a set of hidden variables that could have been combined in a func-

tion that would have produced the optimal timing path fb. Good pseudo-random number gen-

erators also pass the NIST tests but are produced by deterministic systems. Taking into

account the fund data of Fig 6, I think it highly unlikely, but it could be true and so market tim-

ing is not mathematically disproved. Take comfort in that, dear reader, as you will.

Conclusion

I have examined a two asset, all or nothing market timing model with 24 years of data from US

stock and bond total market index funds from 1993–2017. The model is deliberately kept sim-

ple in order to see the basic mathematics of market timing at work answering the question,

what is the likelihood of successful market timing? The boundaries of the feasible set of market

timing paths, within which all market timing return paths must lie, is easy in hindsight to cal-

culate by always choosing the higher or lower returning asset each quarter. The historical opti-

mal timing path is, however, indistinguishable from a random sequence; it is unpredictable

and encodes no information about the future optimal timing path.

The key observation is that return is a multiplicative process and so its PDF is log-normal.

The implication is the mathematical fact that the most probable outcome from market timing

is a below median return—even before accounting for costs. This stems from an elementary

property of the logarithm. Put another way, simple math says the most likely outcome of

Fig 6. Market timing funds in the feasible set. Reprise of Fig 4 with the addition of two market timing funds with

publicly available data of comparable length (yellow lines). Red lines are the best and worst timing portfolio return

paths. The black line is the observed f = 0.6 balanced index fund.

https://doi.org/10.1371/journal.pone.0200561.g006
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market timing is under performance. Exactly what this under performance is can be ascer-

tained because the median of the market timing return PDF can be directly calculated as a

weighted average of the returns of the model assets with weights given by the fraction of time

periods each asset has a higher return than the other. For the time period of the data the

median return was close to the return of the static 60:40 stock:bond balanced index; althrough,

the value of pb need not be fixed for all time.

For simplicity of analysis and clarity of results the model in this paper has only two asset

classes; however, it is clear that the methodology could be extended to any number of asset

classes.
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(PDF)

S4 Appendix. Tactical allocation funds. Fund data and objectives summaries scrapped from
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