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Abstract

Identification of hotspot drug-receptor interactions through in-silico prediction methods

(Pharmacophore mapping, virtual screening, 3DQSAR, etc), is considered as a key

approach in drug designing and development process. In the current design study,

advanced in-silico based computational techniques were used for the identification of lead-

like molecules against the targeted receptor β-glucuronidase. The binding pattern of a

potent inhibitor in the ligand-receptor X-ray co-crystallize complex was used to identify and

extract the structure-base Pharmacophore features. Based on these observations; five

structure-based pharmacophore models were derived to conduct the virtual screening of

ICCBS in-house data-base. Top-ranked identified Hits (33 compounds) were selected to

subject for in-vitro biological activity evaluation against β-glucuronidase enzyme; out of

them, twenty compounds (61% of screened compounds) evaluated as actives, however

eleven compounds were found to have significantly higher inhibitory activity, including com-

pounds 1, 5–8, 10, 12–13, and 17–19 with IC50 values ranging from 1.2 μM to 34.9 μM. Out

of the eleven potent inhibitors, seven compounds 1, 5, 6, 7, 8, 13, and 19 were found new,

and evaluated first time for the β-glucuronidase inhibitory activity. Compounds 1, 5 and 19

exhibited a highly potent inhibition in uM of β-glucuronidase enzyme with non-cytotoxic

behavior against the mouse fibroblast (3T3) cell line. Our combined in-silico and in-vitro

results revealed that the binding pattern analysis of the eleven potent inhibitors, showed

almost similar non-covalent interactions, as observed in case of our validated pharmaco-

phore model. The obtained results thus demonstrated that the virtual screening minimizes

false positives, and provide a template for the identification and development of new and

more potent β-glucuronidase inhibitors with non-toxic effects.
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Introduction

β-Glucuronidase belongs to the glycosidase family of enzymes, which catalyze the hydrolysis of

complex carbohydrates. The active site of the enzyme consists of a large cleft at the interface of

two monomeric units. Two acidic amino acids, i.e., Glu 540 and Glu 451, and one aromatic

amino acid, i.e., Tyr 504, have been proposed to be important for catalysis [1–2]. Human β-glu-
curonidase is homologous to the Escherichia coli enzyme β-glucuronidase. It catalyzes the

hydrolysis of carbohydrates using two acidic a.a residues, Glu 540 and Glu 451. Additionally,

the a.a residue Tyr 504 is involved in this catalytic event [3]. The catalytic mechanism involves

three steps, as follows (1) Nucleophilic attack of the carboxylate anion on the anomeric carbon

of sugar, (2) Hydrolysis of glucuronyl enzyme intermediate, and (3) De-glucuronidation [4–

5].

Over-expression of β-glucuronidase enzyme activity is associated with several disorders,

including various types of cancers, particularly hormone-dependent cancers, such as breast,

prostate, and colon cancers. For the treatment of disorders associated with increased β-glucu-
ronidase activity, D-saccharic acid 1, 4-lactone (DSL; saccharo lactone), silymarin, and silybin

(crude drugs) are commercially available [6–7]. However, these drugs decreases immunity,

and cause adverse effects. Therefore, there is a strong need to develop new β-glucuronidase
inhibitors with improved potency and fewer adverse effects.

Structure-based pharmacophore mapping considered as a useful tool for medicinal chem-

ists to identify novel ligands that have a high probability of being biologically active. This

method utilizes the following steps: (I) Protein structure preparation, (II) Binding site detec-

tion, (III) Pharmacophore features identification, and (IV) Pharmacophore features selection.

Structure-based Pharmacophore can be efficiently used for virtual screening, ligand-recep-

tor binding pose prediction, and binding site similarity search. Therefore, this method is a

valuable tool for Hit and lead optimization, compounds library design, scaffold hopping, vir-

tual screening, and multi-target drug design [8–10]. A successful virtual screening can identify

molecules with novel chemical structural features that bind to the target receptor of interest in

a large chemical space (e.g. the needle in a haystack concept).

The main purpose of our entire designed study was to develop structure-based Pharmaco-

phore models, extracted with appropriate chemical structural features information, and use of

those models to conduct the virtual screening of an in-house data-base in search of new lead

candidates as inhibitors of β-glucuronidase with more potency [Fig 1]. For this purpose, we

used advance in-silico techniques of computer-aided drug design (CADD) to reduce the large

chemical space, and to increase the focus on more promising candidates towards lead discov-

ery and optimization.

Results

Pharmacophore-based virtual screening

Pharmacophore-based virtual screening provides a comprehensive and sophisticated method

to screen millions of compounds data-base within a manageable time frame. In this way, vir-

tual screening is expected to play a vital role in future rational drug design processes. In the

present study, software derived models [11] were used to search the chemical data-base of

ICCBS, which consisted of 8,262 filtered structurally diverse molecules, by using the software

Molecular Operating Environment MOE (2010–212)[12], [S1 Appendix ].

The software used Pharmacophore models and searched the query editor in the provided

data-base. Pharmacophore-based virtual screening identified 999 Hits through shared and

merged feature Pharmacophore models, 65 Hits were obtained by using 3LPF individual
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model, 85 Hits were obtained by using 3LPG individual Pharmacophore model, and finally

100 Hits were obtained through the individual 3K4D Pharmacophore model; thus a total of

1,249 Pharmacophore-based Hits were identified [Fig 2].

Molecular docking results of Pharmacophore-based Hits

Molecular docking studies of pharmacophore-based Hits was carried out along with 66 previ-

ously reported inhibitors from literature (belonging to different classes of compounds) [13]

[S1 Data-set] by using Fast Rigid Exhaustive Docking (FRED) software [14–17]. Rescoring of

the chemgauss-4 scoring function of FRED software was performed by using GOLD docking

software. Enrichment factors were calculated for 5%, 10%, 15%, and 20% of screened data-
base for each scoring function chemgauss-4, chem score, gold score, and ASP score, respec-

tively [Fig 3A–3D] to examine the potential strength of all scoring functions for identifying

drug-like candidates (redundancy of the in-house data-base), and to ultimately remove the

non-binders (non-redundancy of the decoy set) [18], [S1 Appendix].

Enrichment factors of FRED and GOLD scoring functions. The enrichment factors of

screened data-base by software FRED and GOLD with scoring functions chemgauss-4, gold

Fig 1. Overall schematic work flow representation. The structure-based Pharmacophore mapping, Virtual screening and in-vitro
biological activity evaluation of ICCBS in-house data-base against β-Glucuronidase enzyme.

https://doi.org/10.1371/journal.pone.0200502.g001
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score, chem score, and ASP score [19–20], were calculated for 5% (4.96%), 10% (10.60), 15%

(15.15%), and 20% (20.09%) respectively, [Table 1, Fig 3A–3D], [S1 Appendix].

Receiver operating characteristic (ROC) curves. ROC curves are used to validate the

docking software performance, which differentiates between the true binders (true positives)

and non-binders (false positives). ROC curves are the plots between sensitivity and (1-specific-

ity), sensitivity defines the presence of true actives in a data-base. Higher the sensitivity values

Fig 2. Graphical representation of Pharmacophore-based Hits / non-Hits with decoys. The X-axis (blue bar-graph)

represents total number of Pharmacophore-based Hits (1,249) compounds redundancy of in-house data-base, while

the red bar-graph depicting total number of compounds non-redundancy in decoys. The Y-axis represents total

number of screened compounds in the decoy-set (8,262) of in-house data-base.

https://doi.org/10.1371/journal.pone.0200502.g002

Fig 3. (A)The bar-graph illustrated the enrichment factors, for 5% of data-base in which chemgauss-4 scoring

function of FRED software is dominant represented with (blue bar), (B-D) For the remaining 10%, 15% and 20% of

data-base scoring function chem score of GOLD software is dominant showed with (orange bar).

https://doi.org/10.1371/journal.pone.0200502.g003
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represent an increase number of true positives in the data-base, whereas specificity defines the

presence of true-negatives (non-actives) in the data-base. The higher number of actives in the

data-set represented the increased sensitivity and decreased probability of specificity (presence

of non-binders). This statistical test is used in high-throughput computational-based virtual

screening (HTS) for quick and efficient differentiation between the actives and non-actives in

a decoy set of compounds. Based on this, we can consider an optimal model (true-binders)

and reject (discard) sub-optimal model for data that is not required (comprised of non-

binders).

Accuracy can be measured by using area under the curve (AUC). An area of 1 represents a

perfect test, whereas an area of 0.5 is supposed to be worthless; however, an area of 0.7–0.9 is

considered as an acceptable value.

In our case study, the AUC value calculated as 0.76, which was a quite acceptable value,

demonstrating that our data-set was considerably enriched with true binders (actives). Addi-

tionally, as we increased the cut off value of the data-base (small-subsets) in which true posi-

tives were present, the probability of finding TP increased, which ultimately raised the

sensitivity [21–22], [Fig 4].

Out of the sixty eight compounds (top 5% enrichment of the virtually screened data-set),
thirty three (33) compounds were selected for in-vitro bioassay screening to evaluate the hid-

den therapeutic potential against β-glucuronidase enzyme. Twenty compounds showed a good

inhibitory potential. Whereas, eleven compounds were found to be more potent actives com-

parative to the standard (D-saccharic acid 1, 4-lactone; half-maximal inhibitory concentration

[IC50] = 45.75 ± 2.16 μM). [Fig 5A–5K, Tables 2 and 3] (SAR).

Bio-assay screening results against β-Glucuronidase enzyme. For the biological activity

evaluation of the top ranked 5% enriched compounds, identified by structure-based virtual

screening of the in-house data-base using FRED software, 33 compounds were made available

and subjected for in-vitro bio-assay screening against β-glucuronidase enzyme [S1 Appendix],

[23]. Compounds 8, (IC50 = 1.2 ± 1.03 μM) and 17, (IC50 = 1.3 ± 0.64 μM) showed excellent

potent inhibitory activity, whereas compounds 1, 5–8, 10, 12–13, 17–19, with IC50 ranges in

between 4.5 μM to 34.9 μM, were also showed remarkably potent inhibitory effect.

Compounds 11 and 15 showed a moderate inhibition, while compounds 2–4, 9,11, 14–16

and 20 showed weak inhibitory activity comparative to the standard (D-saccharic acid, 1,4-lac-

tone; half-maximal inhibitory concentration (IC50 = 45.75 ± 2.16 μM) [Table 3], [S1

Appendix].

Cytotoxicity screening results. Eleven potent inhibitors of β-glucuronidase enzyme were

also subjected for cytotoxicity assays [24] in 3T3 mouse fibroblasts cell line [S1 Appendix].

Out of the eleven screened compounds, three tested compounds were evaluated as completely

non-cytotoxic [1, 5 and 19], whereas the remaining eight compounds 6–8, 10, 12–13, and 17–

Table 1. % Enrichment factor.

%Enrichment

Factor

Chemgauss-4 Gold score Chem score ASP score

5% 4.96% 1.51% 3.03% 0%

10% 7.57% 6.05% 10.60% 6.69%

15% 12.10% 12.12% 15.15% 7.50%

20% 16.69% 16.69% 20.09% 12.21%

Enrichment factor: For 5% of data-base scoring function chemgauss-4 of FRED software is dominant, while for rest of the 10%, 15% and 20% of data-base scoring

function chem score of GOLD software is dominant among the all [Table 1].

https://doi.org/10.1371/journal.pone.0200502.t001
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18, showed moderate cytotoxicity comparative to the standard inhibitor (cycloheximide; IC50:

0.26 ± 0.1 μM), [Table 4].

Structure-activity relationship (SAR)

SAR of halo (Cl, Br)-substituted indol derivatives. Halo-substituted bis-indols possess

tremendous medicinal importance, [25] the docked pose interaction analysis of compound 8

demonstrated that H-bonding between the NH of indol and phenylalanine (Phe161) was

responsible for its highly potent activity (44 folds higher than the standard D-saccharic acid 1,

4-lactone), along with π-π stacking interactions between the active site amino acid Tyr 472 and

the phenyl ring of indol. The presence of di-hydroxy substituted phenyl in compound 8, one

hydroxy group formed H-bonding with amino acid Lys 568. It was also responsible for the

potent activity as compared to the activity of compound 17. This could be explained by the

absence of one OH group, which was replaced with one OMe (methoxy) group, exhibited H-

arene interaction, a comparatively weaker interaction than the H-bonding. A decrease in the

activity of compound 10 was observed due to the absence of one OH group, which was

replaced with one OMe group, although this provided an electron donating group but it was

not involved in H-bonding, as it was observed in compound 8. Glu 413 a.a also acted as a

hydrogen bond acceptor for compound 9 within the binding pocket region of 5 Å. The

decrease in the activity of compound 18 was also observed due to the absence of H-bonding of

one OH substituent in the phenyl ring [Tables 2 and 3].

SAR of cyclic thioimidazole derivatives. Docked pose interaction analysis of phenyl sul-

fone-substituted cyclic thiourea derivatives provided an insight into the most active compound

7, from thioimidazole class which showed 78.1% inhibition,(IC50 = 11.41 ± 0.04 μM). In this

compound, NH formed H-bonding with the active site amino acid residues Glu 413 and Phe

161, whereas the di-methoxy phenyl substituent showed π-π stacking interactions with Tyr

472. On the other hand, compound 6 with 81.0% inhibition, and (IC50 = 11.8 ± 0.86 μM), was

slightly less potent than compound 7. This decrease in activity was likely due to the absence of

Fig 4. ROC curve between sensitivity and 1-specificity. Where, X-axis (1-specificity) represents the false positives in

decoys. Y-axis (sensitivity) represents the (true +ves in the decoys).

https://doi.org/10.1371/journal.pone.0200502.g004
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H-bonding between NH and Phe 161 and π-π stacking interactions with Tyr 472 in compound

6. Compound 5 showed 95.1% inhibition, (IC50 = 14.7 ± 1.88 μM) in comparison to the above

two compounds. A lower activity was observed due to the absence of the di-methoxy substitu-

ent on the phenyl ring therefore the π-π stacking interactions did not exist. A decrease in the

activity of compound 19 was also observed due to the absence of one OMe substituent on the

phenyl ring; thus, the only phenyl ring possess less electron donating effect comparatively

substituted with OMe, as a consequence the strength of the existing π-π stacking interactions

becomes weaker, resulting to decrease in the biological activity [Tables 2 and 3].

SAR of pyranose-substituted coumarin derivatives. The docked pose analysis of pyra-

nose-substituted coumarin derivatives exhibited the binding pattern of the most active com-

pound, among the three actives from coumarin class. Compound 1 showed 96.9% inhibition

(IC50 = 4.5 ± 0.44 μM). The increase in activity showed due to H-bonding between the 5-β-H

pyranose moieties with the active site amino acid residue Glu 413. This interaction was missing

in compound 2 and 3, which exhibited 67.2% inhibition, (IC50 = 261.7 ± 7.02 μM), and 54.5%

inhibition, (IC50 = 318.5 ± 4.41 μM) respectively [Tables 2 and 3].

Fig 5. Binding pattern analysis of ligand-protein interactions with respect to IC50 values. For descriptions of figure parts A-K, see Table 2.

https://doi.org/10.1371/journal.pone.0200502.g005
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Table 2. Binding pattern analysis of ligand-protein interactions with respect to IC50 values.

Compound #, Fig #

and Molecular

formula

Ligand-protein observed key non-covalent interactions

Keys: HBD / HBA = Hydrogen bond donor and acceptor

Ligand-receptor docked poses

derived by using MOE software

IC50 (μM)

±SEM

(1)

(5A)

(C30H26O12)

2-β-OH of pyranose substituent of the coumarin moiety acted as HB-donor to Glu 503,

3-α-OH acted as HB-donor to Asp 161 for H-bonding, while 5-β-H behaved as HB-donor

to HB-acceptor Glu 413 for H-bonding.

Interactive amino acid (a.a)

residues

Glu 503

Asp 161

Glu 413

4.50±0.44

(5)

(5B)

(C21H22N6O3S2)

Thioimdazole (thione) moiety acted as HB-donor to HB-acceptor Asp163 making H-

bonding while a.a Glu 413, Tyr 472 behaved as HB-donor to the HB-acceptor N atom for

H-bonding.

Interactive amino acid (a.a)

residues

Asp 163

Glu 413

Tyr 472

14.7±1.88

(6)

(5C)

(C20H19N5O6S2)

One NH of triazole acted as HB-donor to a.a Glu 413 and formed H-bonding, while

another NH behaved as HB-donor to Asp 163 for H-bonding, a.a Asn 412 acted as HB-

donor to the sulfur atom and developed H-bonding while the a.a Arg 562 acted as HB-

donor to the HB-acceptor lone pair of N atom for H-bonding.

Interactive amino acid (a.a)

residues

Glu 413

Asp 163

Asn 412

Arg 56

11.8±0.86

(7)

(5D)

(C19H17N5O5S2)

“S” of thioimidazole (thione) behaved as HB-acceptor from HB-donor a.a residue Asn 412

and Glu 413 respectively for H-bonding. NH of thioimidazole acted as HB-donor to HB-

acceptor Phe 161 and Glu 413. However Arg 562 acted as HB-donor to the HB-acceptor

sulphone group of compound. Amino acid Tyr 472 showed arene-arene, π-π stacking

interactions with the di-methoxy substituted phenyl ring of the compound.

Interactive amino acid (a.a)

residues

Asn 412

Glu 413

Phe 161

Arg 562

Tyr 472

11.41

±0.04

(8)

(5E)

(C23H16Br2N2O2)

NH- of indol ring behaved as backbone HB-donor to the HB-acceptor Phe 161 for H-

bonding, another phenyl ring of bis-indol moiety showed arene-arene, π-π stacking

interactions with a.a residue Tyr 472. While 2-Hydroxy substituted phenyl ring acted as

HB-acceptor from a.a Lys 568 for H-bonding.

Interactive amino acid (a.a)

residues

Phe 161

Tyr 472

Lys 568

1.20±1.03

(10)

(5F)

(C26H18N4O2 )

Amino acid Tyr 572 showed arene-arene, π-π stacking interactions with indol phenyl ring.

Trp 549 acted as arene-H donor to the HB-acceptor methoxy oxygen for H-bonding.

Thr556 behaved as HB-donor to the HB-acceptor lone pair of azo-nitrogen.

Interactive amino acid (a.a)

residues

Tyr 472

Trp 549

Thr 556

Gly 362

8.5±1.43

(12)

(5G)

(C25H15N5O2)

Binding region amino acid residues Tyr 472, Lys 565 were acted as HB-donor to the

oxygen atom of NO2 group substituted on phenyl ring to establish H-bonding, Leu 561

acted as HB-donor to the HB-acceptor lone pair of nitrogen atom of cyano group, while

NH of indol ring behaved as HB-donor to the HB-acceptor Phe 161 for H-bonding.

Interactive amino acid (a.a)

residues

Tyr 472

Lys 568

Leu 561

Phe 161

34.9±0.21

(13)

(5H)

(C23H16Br2N2O)

NH of indol behaved as HB-donor to the HB-acceptor a.a Glu 413 for H-bonding within

the binding region of receptor active site.

Interactive amino acid (a.a) residue

Glu 413

15.3±2.30

(17)

(5I)

(C24H18Br2N2O)

Binding region promising aromatic amino acid residue Tyr 472 showed arene-arene, π-π
stacking interactions with the phenyl and pyrol ring respectively, phenyl substituted with

Br atom behaved as Lewis base (e-donor) to Glu 413 and formed H-bonding, while NH of

indol moiety acted as HB-donor to HB-acceptor a.a Gly 362 to establish H-bonding.

Interactive amino acid (a.a)

residues

Tyr 472

Glu 413

Gly 362

Thr 556

1.373±0.64

(18)

(5J)

(C18H15N5O5S2)

NH- of indol ring behaved as backbone HB-donor to the HB-acceptor Phe 161 to develop

H-bonding, while another phenyl ring of indol moiety showed arene-arene π-π stacking

interaction with a.a residue Tyr472. 2-hydroxy substituent on phenyl ring acted as HB-

acceptor from HB-donor Lys 568 a.a to establish H-bonding.

Interactive amino acid (a.a)

residues

Tyr472

Gly362

Glu413

Trp540

Thr556

16.16±0.76

(Continued)
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Discussion

β-Glucuronidase is an important glycosidase enzyme with great biological importance, which

provides space towards the libraries of small organic inhibitors designing [26–27]. It’s over

expression is associated with several cancers [28]. Therefore to overcome the adverse effects

associated with the available drugs, there is a strong need to search and identify lead candidates

which possesses the therapeutic potential against this target receptor with less adverse effects.

For this purpose we first derived structure-based pharmacophore models using Ligand Scout

software 3.0 version. These developed models were furthermore used to search and identify

the drug-like candidates from in-house data-base by using MOE software. The Pharmacophore

based features exist at similar distances in the respective screened compounds of data-base, to

picked up (query editor) searched for those compounds which have possibly the similar Phar-

macophore match with our derived models, (Pharmacophore search on the bases of distances

b/w the respective features of functional-groups). For conducting the virtual screening, ICCBS

in-house data-base was used as decoy set, which comprises over 9,000 structurally diversified

molecules data-base was initially filtered to obtain drug-like candidates by using MOE software

filter, removed all of those compounds which deviate from “Lipinski rule of five” and follow

drug ability criteria, initially unwanted, highly reactive, toxic and those compounds which

Table 2. (Continued)

Compound #, Fig #

and Molecular

formula

Ligand-protein observed key non-covalent interactions

Keys: HBD / HBA = Hydrogen bond donor and acceptor

Ligand-receptor docked poses

derived by using MOE software

IC50 (μM)

±SEM

(19)

(5K)

(C20H22N4
2+)

One NH of triazole (thione) behaved as HB-donor to Glu 413, while another NH acted as

HB-donor to HB-acceptor a.a Phe 161 for H-bonding,

binding region a.a residues Asn 412 and Glu 413 acted as HB-donor to the HB-acceptor

lone pair of sulfur atom and showed H-bonding. Amino acid Tyr 472 showed arene-arene,

π-π stacking interactions with the phenyl ring.

Interactive amino acid residues

Glu 413

Phe 161

Asn 412

Tyr 472

Arg 562

16.65±0.69

Ligand-receptor non-covalent interactions pattern analysis: within the provided 5Åof binding region, the most common interactions were observed with Glu 413, Tyr

472, and Phe 161 amino acid residues [Table 2 & Fig 5A–5K].

https://doi.org/10.1371/journal.pone.0200502.t002

Table 3. Bio-assay screening results.

Compound

no

% Inhibition Conc. (μM) IC50 μM±SEM Compound no % Inhibition Conc. (μM) IC50 μM±SEM

1 96.9 200 4.5±0.44 12 57.3 50.0 34.9±0.21

2 54.5 200 318.5±4.41 13 73.4 400 15.3±2.30

3 67.2 200 261.7±7.02 14 59.2 200 162.9±2.50

4 63.0 200 140.9±4.10 15 53.6 200 82.9±2.30

5 95.1 200 14.7±1.88 16 54.4 200 385.3±5.58

6 81.0 200 11.8±0.86 17 99.2 200 1.30±0.64

7 78.1 200 11.4±0.04 18 75.9 200 16.1±0.76

8 97.8 200 1.2±1.03 19 93.4 200 16.6±0.69

9 56.6 200 290.0±4.50 20 91.0 200 141.6±0.27

10 62.1 200 8.5±1.43

11 67.4 200 94.4±1.30 Standard inhibitor� 89.4 200 45.75±2.16

In-vitro bio-assay screening results of twenty actives against β-Glucuronidase enzyme: Compounds 1, 5–8, 10, 12–13 and 17–19 showed more potent inhibitory

potential as compared to the standard (�D-saccharic acid 1, 4-lactone, IC50 = 45.75±2.16 μM).

https://doi.org/10.1371/journal.pone.0200502.t003
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deviate from (ROF), and possess poor bio-availability, were removed from the data-base, the

filters ultimately selected those compounds which possess good ADME / Tox properties. Soft-

ware Omega (Open Eye Scientific Software) was used for energy minimization through its

MM2 Molecular Mechanics force field parameters for each compound of data-base, atom

types were corrected and molecular charges were also added through SYBYL software [29–30].

Virtual screening of filtered compounds identified small organic molecules, which follows

drug-ability criteria described by Rule of five (ROF). Therefore, computational based high-

throughput screening (HTS) helped out to remove or eliminate toxic, larger, unstable and

non-drug-like candidates from data-base, in the way restrict to identify drug-like candidates.

As a result it prevents to identify higher molecular weight compounds (usually transition

metal complexes, peptides etc) which sometimes appear active at the in-vitro level but suffer

with bio-availability issues at the in-vivo level [31–32].

The major purpose of in-silico based analyses is to examine the existing non-covalent inter-

actions with catalytic amino acid residues through molecular docking binding poses which

showed a good efficiency by using the software and good enrichment in the data-base with suf-

ficient active compounds [33]. These knowledge-based research findings were furthermore

validated with the help of statistical methods, including ROC curves, AUC values, and enrich-

ment factors, which have been successfully applied to identify true positives (true-binders),

and efficiently remove the false positives (non-binders) in the data-base. Therefore, structure-

based Pharmacophore model can be efficiently used to quick search and identify the Pharma-

cophore features in various diverse classes of compounds and considered as an alternative tool

of molecular docking, however this cannot be observed in the ligand-base Pharmacophore

model which lacks the interaction with active site a.a residues, and usually Hits the similar type

of compounds.

After in-silico based screening the top-ranked candidates were also examined using an in-
vitro bio-assay screening for the evaluation of β-glucuronidase inhibitory activity [34]. Twenty

compounds were selected, in which compounds 8 and 17 showed significantly higher inhibi-

tory potential, whereas compounds 1, 5–7, 10, 12–13, 18–19, were also exhibited good

Table 4. Cytotoxicity results.

Compound No. Cytotoxicity (IC50 μ M± SEM)

1 >30

5 >30

6 17.13±1.41

7 13.78±0.96

8 16.84±0.99

10 20.12±0.58

12 9.56±0.13

13 10.51±0.48

17 9.53±0.32

18 19.54±1.07

19 >30

Standard� 0.26±0.11

Cytotoxicity results: Compounds (1, 5 and 19) showed completely non-cytotoxic effect, while compounds (6–8, 10,

12–13, and 17–18) exhibited moderately cytotoxic effect against the 3T3 mouse fibroblast cell line.

� (Cycloheximide).

https://doi.org/10.1371/journal.pone.0200502.t004
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Fig 6. (A) The 2D and (B) The 3D structure-based Pharmacophore models were derived from PDB I.d 3LPF

highlighted with active site surface groove depicted the features. Yellow sphere showed hydrophobic aromatic

substituent. Green vector (arrow head) showed the hydrogen bonding of NH with a conserved water molecule HOH

680, another green vector (arrow head) showed the H-bonding of hydroxyl group with amino acid Glu 413A. Two red

vectors (arrow heads) showed the H-bonding of HOH 731, and HOH 733 with the hydroxyl group, along with the

calculated distances in Å b/w the respective Pharmacophore features.

https://doi.org/10.1371/journal.pone.0200502.g006
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inhibitory effect however compounds 11, and 15 showed moderate inhibitory activity against

β-glucuronidase enzyme, as compared to the standard, (D-saccharic acid 1, 4-lactone).

Eleven potent compounds were further subjected to cytotoxicity assay against the mouse

fibroblasts (3T3) cell line, to map their preliminary toxicity profile. The standard inhibitor

used for 3T3 mouse fibroblasts cell line was cycloheximide. The potent leads of β-glucuronidase
inhibitors 1, 5, and 19 exhibited completely non-cytotoxic behavior. Whereas compounds 6–

8, 10, 12–13 and 17–18 showed a moderate cytotoxicity.

Fig 7. (A)The 2D and (B)The 3D structure-based pharmacophore models derived from PDB I.d 3LPG highlighted

with active site surface groove, depicted the features, two yellow spheres for the hydrophobic methyl benzene ring

interacting with the amino acid Val 473A, MSE 447A, PHE 448A. Another two yellow spheres represent the presence

of one hydrophobic aromatic ring and hydrophobic fluorine. One green vector (arrow head) showed the H-bonding

donor NH to the acceptor HOH 667. One red vector (arrow head) showed the hydrogen donor to the carbonyl oxygen

of aldehyde group; along with the calculated distances in Å b/w the respective Pharmacophore features.

https://doi.org/10.1371/journal.pone.0200502.g007
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The obtained results revealed that our potent inhibitors contained functional groups NH,

sulfur, and thiourea. This observation was further supported from a recently published U.S.

Patent [2012 / 0322797] December 20/2012 [35], which also included urea derivatives, sulfur-

containing compounds, methoxy-substituted quinoline derivatives, and halo-substituted phe-

nyl-thiophene compounds. Moreover, we observed the presence of the phenyl ring, hetero-

atoms (sulfur and oxygen), NH (in case of urea), amide nitrogen, and oxygen atoms, which

were all have important chemical structural features of the Pharmacophore, and have inter-

acted with the amino acid residues of binding region, to establish important non-covalent

interactions b/w ligand and receptor, including, H-bonding, H-arene, arene-arene, π-π stack-

ing interactions, Van der waal forces of attraction and dipole-dipole interactions, these all con-

tributed towards the best fit ligand-receptor binding pose and ultimately for potent biological

activity.

In the way, bioinformatics computational based techniques have proved to be a useful ratio-

nal approach towards drug designing and discovery process with improved potency and

reduce toxic effects.

Material and methods

Structure-based individual pharmacophore mapping of PDB 3LPF

Two and three-dimensional (2D and 3D, respectively) structure-based Pharmacophore models

were derived from PDB I.d 3LPF using Ligand Scout 3.0 version. The software was used to

illustrate the following pharmacophore features (Fig 6A and 6B).

Two yellow spheres represented the hydrophobic methyl substituent;

One yellow sphere showed one hydrophobic region due to aromatic substituent;

One green vector (arrow head) depicted the H-bonding of NH with a conserved water mol-

ecule HOH 680; another green vector (arrow head) depicted the H-bonding of the hydroxyl

group with Glu 413A.

Red vectors (arrow heads) showed the H-bonding of HOH 731 and HOH 733 with the

hydroxyl group.

Structure-based individual pharmacophore mapping of PDB 3LPG

The 2D and 3D structure-based pharmacophore models were derived from PDB I.d 3LPG

using Ligand Scout 3.0 version. The software depicted the following pharmacophore features

(Fig 7A and 7B).

Two yellow spheres represented the hydrophobic region of methyl benzene ring interacting

with the amino acids Val 473A, Mse 447A, and Phe 448A;

Another yellow sphere showed hydrophobic aromatic ring and hydrophobic fluorine; the

green vector (arrow head) depicted the H-bond donor NH for the acceptor HOH 667;

The red vector (arrow head) represented the hydrogen acceptor of the carbonyl oxygen of

aldehyde group from HB-donor HOH677.

Fig 8. (A)The 2Dand (B)The 3D structure-based pharmacophore models were derived from PDB I.d 3K4D,

highlighted with surface active site groove, depicted the features, two red vectors (arrow heads) for H-acceptors, one

for the carboxylate anion, and one for the lactam carbonyl keto group. Three red-green vectors (arrow heads) showed

the 3HB-donor / 3HB-acceptor of three OH substituent’s group. One red pointed sphere depicted the negative

ionizable area of carboxylate anion; along with the calculated distances in Å b/w the respective pharmacophore

features.

https://doi.org/10.1371/journal.pone.0200502.g008

Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0200502.g008
https://doi.org/10.1371/journal.pone.0200502


Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 15 / 19

https://doi.org/10.1371/journal.pone.0200502


Structure-based individual pharmacophore mapping of PDB 3K4D

The 2D and 3D structure-based pharmacophore models were derived from PDB I.d 3K4D

using Ligand Scout software 3.0 versions. The software illustrated the following pharmaco-

phore features (Fig 8A and 8B).

Two red vectors (arrow heads) represented HB-donor from a.a Tyr 472A, Arg 562A to HB-

acceptors, one is carboxylate anion (negative ionizable area), while another is lactam carbonyl

keto group; three red-green vectors (arrow heads) depicted the 3HB-donor / 3HB-acceptor of

three OH groups.

Generation of structure-based shared and merged feature pharmacophore

models

A five-element structure-based shared feature pharmacophore model was also derived. For

this purpose, we selected the PDB I.d 3LPF as a reference, to extract the keen binding pattern

information’s due to its potent inhibitor bound with IC50 value of 326 nM. The remaining two

individual derived Pharmacophore models were aligned over it in the alignment pane; finally a

shared featured structure-based five element pharmacophore model was generated. Similarly,

a merged feature model was also derived by extracting all the Pharmacophore features

together. [Fig 9A and 9B].

Conclusions

In conclusion, our combined methodology of in-silico pharmacophore mapping and virtual

screening established that computational virtual screening could provide a cost-effective and

time saving approach for the selection of drug-like candidates. After experimental evaluation

of the top ranked identified Hits, we obtained eleven potent inhibitors, three compounds with

non-cytotoxic behavior while eight compounds with moderate cytotoxicity against the 3T3

mouse fibroblast cell line. In our designed case study virtual screening Hit results, (scaffold

hopping) has been successfully performed, and we identified top 5% enriched data-base, con-

tained new classes of compounds with potent biological inhibitory activity against the β-Glucu-
ronidase enzyme.

Supporting information

S1 Data-set. It consists of reported inhibitors data-set.
(DOCX)

S1 Appendix. The in-silico screening protocol, software’s information, in-vitro β-glucuron-
idase bio-assay screening, and cytotoxicity protocols are included in the supporting appen-

dix, DOI ([https://dx.doi.org/10.17504/protocols.io.q6pdzdn]https://dx.doi.org/10.17504/

protocols.io.q6pdzdn).

(DOCX)

Fig 9. (A) It depicts five element based shared feature pharmacophore model derived from PDB I.d, 3LPF, 3LPG and

3K4D by using Ligand Scout, three green vectors showed H-donors, five red vectors showed H-acceptors, four yellow

spheres depicted lipophilicity with hydrophobic surface regions grey spheres showed the excluded volume, along with

reference point set with a.a residues from active site contour.(B): It depicts a merged feature pharmacophore derived

model, from PDB I.d 3LPF, 3LPG and 3K4D by using Ligand Scout, it comprised of the features, six red vectors

showed the H-acceptors, four green vectors showed the H-donors, one red pointed sphere represented the negative

ionizable area, six spheres showed the hydrophobic region, grey spheres depicted excluded volume along with

reference point set with amino acid residues within active site contour.

https://doi.org/10.1371/journal.pone.0200502.g009

Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200502.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200502.s002
https://dx.doi.org/10.17504/protocols.io.q6pdzdn
https://dx.doi.org/10.17504/protocols.io.q6pdzdn
https://dx.doi.org/10.17504/protocols.io.q6pdzdn
https://doi.org/10.1371/journal.pone.0200502.g009
https://doi.org/10.1371/journal.pone.0200502


S2 Appendix. Contains supplementary information document of binding curves.

(DOCX)

Author Contributions

Conceptualization: Maria Yousuf.

Data curation: Maria Yousuf.

Formal analysis: Maria Yousuf.

Funding acquisition: Maria Yousuf, Zaheer Ul-Haq, M. Iqbal Choudhary.

Investigation: Maria Yousuf, Zaheer Ul-Haq.

Methodology: Maria Yousuf.

Project administration: Maria Yousuf.

Resources: Zaheer Ul-Haq, M. Iqbal Choudhary.

Software: Maria Yousuf, Zaheer Ul-Haq.

Supervision: Zaheer Ul-Haq.

Validation: Maria Yousuf, Nimra Naveed Shaikh.

Visualization: Maria Yousuf.

Writing – original draft: Maria Yousuf.

Writing – review & editing: Maria Yousuf.

References
1. Wong A. W., He S., Grubb J.H.J. Identification of Glu 540 as the catalytic nucleophile of human beta-

glucuronidase using electrospray mass spectrometry. J. Biol. Chem. 1998; 237(51): 34057–34062.

2. Walaszek Z., Szemraj J., Narog M. Metabolism, uptake, and excretion of a D-glucaric acid salt and its

potential use in cancer prevention. Cancer. Detect Prev. 1997; 21: 178–190. PMID: 9101079

3. Ahmad M. High throughput assay for discovery of bacterial β-glucuronidase inhibitors. Curr. Chem.

Genom. 2011; 5: 13–20.

4. Oleson L.C.M. Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human

tissue microsomes and recombinant UDP-glucuronosyl transferases. J. Pharm. Pharmacol. 2008; 60

(9):1175–82. https://doi.org/10.1211/jpp.60.9.0009 PMID: 18718121

5. Ahmad S., Mark A., Hughes, Li-An, Yeh and JES. Potential repurposing of known drugs as potent bac-

terial β–glucuronidase inhibitors. J. Biomol. Screen. 2012; 11:958–965

6. Kim D.H., Jin Y.H., Park J.B. K.K. Silymarin and its components are inhibitors of beta-glucuronidase.

Biol. Pharm. Bull. 1994; 17 (3):443–445. PMID: 8019514

7. Walters W., Stahl M., Murcko M. Virtual screening—an overview. Drug. Discov. Today. 1998; 3:160–

178.

8. Wermuth C.G., Ganellin C.R., Lindberg P, Mitscher LA. Glossary of terms used in medi chem (IUPAC

Recommendations). Pure and App Chem. 1998; 70: 1129–1143

9. Thangapandian S., John S., Sakkiah S., Lee K.W. Potential virtual lead identification in the discovery of

renin inhibitors application of ligand and structure-based pharmacophore modeling approaches. Eur. J.

Med. Chem. 2011; 46: 2469–2476. https://doi.org/10.1016/j.ejmech.2011.03.035 PMID: 21497958

10. Qingzhi G., Lulu Y., and Yongqiang Z. Pharmacophore based drug design approach as a practical pro-

cess in drug discovery. Curr. Comput-Aided Drug Des. 2010; 6: 37–49. PMID: 20370694

11. Gerhard, W, and Thierry L. Automated structure-based pharmacophore model generation by using inte-

ligand; Ligand Scout 3.0 user guide manual.

12. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbrook

St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013.

Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200502.s003
http://www.ncbi.nlm.nih.gov/pubmed/9101079
https://doi.org/10.1211/jpp.60.9.0009
http://www.ncbi.nlm.nih.gov/pubmed/18718121
http://www.ncbi.nlm.nih.gov/pubmed/8019514
https://doi.org/10.1016/j.ejmech.2011.03.035
http://www.ncbi.nlm.nih.gov/pubmed/21497958
http://www.ncbi.nlm.nih.gov/pubmed/20370694
https://doi.org/10.1371/journal.pone.0200502


13. Khan K.M., Saad S.M., Shaikh N.N., Hussain S., Fakhri M.I., Perveen S., et al,Synthesis and β-glucu-

ronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. J. Bioorg. Med. Chem. 2014; 22. 3449–

3454.

14. Ooms F., FacultesUniversitaires Notre-Dame de la Paix. ChimieMoléculaireStructurale, Namur, Bel-

gium. Molecular modeling and computer aided drug design. Examples of their applications in medicinal

chemistry current medicinal chemistry. Curr. Med. Chem. 2000; 7:141–158. PMID: 10637360

15. Marijn P. A., Sanders R.M. From the protein’s perspective. The benefits and challenges of protein struc-

ture-based Pharmacophore modeling, J. Med. Chem. Commun. 2012; 3:28–38.

16. FRED docking software manual user guide.

17. Gann Mc. M., J.; FRED pose prediction and virtual screening accuracy, Chem. Inf. Model., 2011; 51:

578–596.

18. Khan K.M., Rahim F., Halim S.A., Taha M., Khan M., Perveen S., et al,. Synthesis of novel inhibitors of

β-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular dock-

ing, Bioorg. Med. Chem. 2011; 19:4286–4294. https://doi.org/10.1016/j.bmc.2011.05.052 PMID:

21684753

19. Andreas B., Robert C. and Glen A. Discussion of measures of enrichment in virtual screening: Compar-

ing the information content of descriptors with increasing levels of sophistication, J. Chem. Inf. Model.,

2005; 45, 1369–1375. https://doi.org/10.1021/ci0500177 PMID: 16180913

20. GOLD docking software manual user guide. A component of the GOLD suite

21. Swets, J. A. Signal detection theory and ROC analysis in psychology and diagnostics: collected papers,

Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

22. Triballeau N., Acher F., Brabet I., Philippe, Pin J., and Olivier B.H. Virtual screening workflow develop-

ment guided by the “Receiver Operating Characteristic” curve approach. Application to high-throughput

docking on metabotropic glutamate receptor subtype 4, J. Med. Chem. 2005; 48, 2534–2547. https://

doi.org/10.1021/jm049092j PMID: 15801843

23. Collins RA, Ng TB, Fong WP, Wan CC, Yeung HW, Inhibition of glycohydrolase enzymes by aqueous

extracts of Chinese medicinal herbs in a microplate format. Biochem Mol Biol Int, 1997; 42:1163–1169.

PMID: 9305534

24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and

cytotoxicity assays, J. Immunol Methods, 1983; 65:55–63. PMID: 6606682

25. Taha M., Hayat-ullah, Al Muqarrabun L.M.R., Khan M.N., Rahim F., et al;. Synthesis of bis-indolyl-

methanes as new potential inhibitors of β-glucuronidase and their molecular docking studies, Eur. J.

Med. Chem, 2018; 143, 1757–1767. https://doi.org/10.1016/j.ejmech.2017.10.071 PMID: 29133042

26. Taha M.,Arbin M., Ahmat N., Imran S., Rahim F. Synthesis: Small library of hybrid scaffolds of ben-

zothiazole having hydrazone and evaluation of their β-glucuronidase activity, Bioorg. Chem.2018; 77,

47–55. https://doi.org/10.1016/j.bioorg.2018.01.002 PMID: 29331764

27. Taha M., Baharudin M.S., Ismail N.H., Selvaraj M., Salar U., Alkadi K.A., et al;.Synthesis and in-silico

studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors, Bioorg. Chem,

2017, 71:86–96. https://doi.org/10.1016/j.bioorg.2017.01.015 PMID: 28160943

28. Wallace B. D., Wang H., Lane K.T., Scott J.E., Orans J., Koo J.S., et al; Alleviating cancer drug toxicity

by inhibiting a bacterial enzyme, Science. 2010; 5; 330(6005): 831–835. https://doi.org/10.1126/

science.1191175 PMID: 21051639

29. SYBYL software Tutorial: Minimizing small molecules.

30. Hawkins P.C.D., Skillman G.A., Warren G.L., Ellingson B.A. and Stahl M.T. Conformer generation with

OMEGA: Algorithm and validation using high quality structures from the protein databank and Cam-

bridge structural database, J. Chem. Inf. Model. 2010; 50, 572–584. https://doi.org/10.1021/ci100031x

PMID: 20235588

31. Chenzhong L., Markus S., Angelo P., and Marc C. N. Software and resources for computational medici-

nal chemistry. Future Med. Chem. 2011; 3(8): 1057–1085. https://doi.org/10.4155/fmc.11.63 PMID:

21707404

32. Christopher A., Lipinski Drug-like properties and the causes of poor solubility and poor permeability, J.

of Pharmacol and Toxicol Methods, 2000; 44: 235–249.

33. Perola E., and Charifson P.S.Conformational analysis of drug-like molecules bound to proteins: an

extensive study of ligand reorganization upon binding, J. Med. Chem. 2004; 47, 2499–2510. https://doi.

org/10.1021/jm030563w PMID: 15115393

34. Khan K.M., Saad S.M., Shaikh N.N., Hussain S., Fakhri M.I., et al;. Synthesis and β-glucuronidase

inhibitory activity of 2-arylquinazolin-4(3H)-ones. J. Bioorg. Med. Chem. 2014; 22. 3449–3454.

Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/10637360
https://doi.org/10.1016/j.bmc.2011.05.052
http://www.ncbi.nlm.nih.gov/pubmed/21684753
https://doi.org/10.1021/ci0500177
http://www.ncbi.nlm.nih.gov/pubmed/16180913
https://doi.org/10.1021/jm049092j
https://doi.org/10.1021/jm049092j
http://www.ncbi.nlm.nih.gov/pubmed/15801843
http://www.ncbi.nlm.nih.gov/pubmed/9305534
http://www.ncbi.nlm.nih.gov/pubmed/6606682
https://doi.org/10.1016/j.ejmech.2017.10.071
http://www.ncbi.nlm.nih.gov/pubmed/29133042
https://doi.org/10.1016/j.bioorg.2018.01.002
http://www.ncbi.nlm.nih.gov/pubmed/29331764
https://doi.org/10.1016/j.bioorg.2017.01.015
http://www.ncbi.nlm.nih.gov/pubmed/28160943
https://doi.org/10.1126/science.1191175
https://doi.org/10.1126/science.1191175
http://www.ncbi.nlm.nih.gov/pubmed/21051639
https://doi.org/10.1021/ci100031x
http://www.ncbi.nlm.nih.gov/pubmed/20235588
https://doi.org/10.4155/fmc.11.63
http://www.ncbi.nlm.nih.gov/pubmed/21707404
https://doi.org/10.1021/jm030563w
https://doi.org/10.1021/jm030563w
http://www.ncbi.nlm.nih.gov/pubmed/15115393
https://doi.org/10.1371/journal.pone.0200502


35. Matthew R., Redinbo, Mani S., Alfred W., Scott J., Li-An Yeh,et al;. Selective beta-glucuronidase inhibi-

tors as a treatment for side effects of camptothecin antineoplastic agents, U.S. Patents [2012/0322797]

December 20/2012.

Bioinformatics: A rational combine approach used for designing potent β-Glucuronidase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0200502 December 5, 2018 19 / 19

https://doi.org/10.1371/journal.pone.0200502

