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Abstract

Cooperative spectrum sensing (CSS) is envisaged as a powerful approach to improve the uti-

lization of scarce radio spectrum resources, but it is threatened by Byzantine attack. Byzan-

tine attack has been becoming a popular research topic in both academia and industry due to

the demanding requirements of security. Extensive research mainly aims at mitigating the

negative effect of Byzantine attack on CSS, but with some strong assumptions, such as

attackers are in minority or trusted node(s) exist for data fusion, while paying little attention to

a mobile scenario. This paper focuses on the issue of designing a general and reliable refer-

ence for CSS in a mobile network. Instead of the previously simplified attack, we develop a

generic Byzantine attack model from sophisticated behaviors to conduct various attack strat-

egies and derive the condition of which Byzantine attack makes the fusion center (FC) blind.

Specifically, we propose a robust sequential CSS (SCSS) against dynamic Byzantine attack.

Our proposed method solves the unreliability of the FC by means of delivery-based assess-

ment to check consistency of individual sensing report, and innovatively reuses the sensing

information from Byzantines via a novel weight allocation mechanism. Furthermore, trust

value (TrV) ranking is exploited to proceed with a sequential test which generates a more

accurate decision about the presence of phenomenon with fewer samples. Lastly, we carry

out simulations on comparison of existing data fusion technologies and SCSS under dynamic

Byzantine attack, and results verify the theoretical analysis and effectiveness of our proposed

approach. We also conduct numerical analyses to demonstrate explicit impacts of secondary

user (SU) density and mobility on the performance of SCSS.

Introduction

With the proliferation of wireless services in the last couple of decades, in several countries,

most of the available spectrum has fully been allocated, which results in the spectrum scarcity
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problem. Federal Communications Commission (FCC) research has proved that the main rea-

son for the scarcity of spectrum is the underutilization of the frequency spectrum by the

licensed users either temporally or spatially. To improve spectrum utilization and solve the

problem of spectrum shortage, cognitive radio (CR) has been widely considered as one of the

most promising technologies that can offer a support for the increasing demand for spectrum

availability [1]. In cognitive radio networks (CRNs), there are two types of users: primary users

(PUs) and secondary users (SUs), and they have different priorities for spectrum access. As an

intelligent wireless network framework, SUs equipped with spectrum sensing capability are

allowed to opportunistically access the spectrum bands that have been assigned to, but unoccu-

pied by PUs. The SUs are required to evacuate the spectrum bands when PUs become active

[2]. Using this access strategy, the spectrum resources can be assured that they can be always

in use and thus, spectrum efficiency is enhanced, but without causing interference to PUs.

Spectrum sensing is the key function of CR technology to identify available spectrums. To

this end, several spectrum sensing methods have been proposed and investigated in [3] and

references therein. However, spectrum sensing techniques do not always guarantee satisfactory

performance due to noise uncertainty and channel fading, which are the fundamental charac-

teristics of dynamically changed wireless channel. Once the PU signal experiences deep fading

or blocked by obstacles, the power of the PU signal received at the SU may be too weak to be

detected [4]. A well-known approach for detecting the PU activity is cooperative spectrum

sensing (CSS) where a set of SUs cooperate by fusing their sensing information with each

other and collectively deciding on the presence or absence of the PU to enhance the reliability

of sensing results.

But the nature of aggregating data makes CSS open a window for attackers to sneak into

collaborative SUs, who will send out falsified local spectrum inference to the fusion center

(FC). During such an assault, attackers can prevent reliable SUs from using the existing white

space, or allure them to access the channels in use and cause excessive interference to PUs [5].

This typical sort of attack in CSS is Byzantine attack, which is also referred to as spectrum sens-

ing data falsification (SSDF), in pursuit of the CSS performance degradation, thereby under-

mining the premise of CR technology.

Byzantine attack in CSS systems is a critical threat and has attracted considerable attention

recently. Chen R et al. in [6] presented a hybrid method called weighted sequential probability

ratio test (WSPRT). Their method combines the nodes’ reputation and uses sequential proba-

bility ratio test (SPRT) to identify attackers. The WSPRT was also investigated in [7] for a cen-

tralized CRN and a novel fusion scheme based on spatial correlation technique was proposed.

The authors utilize geographical and reputational weights to define a two-level FC for secure

collaborative sensing. On the basis of WSPRT, [8] analyzed the CSS performance when there

exist attackers based on the cumulative reputation, and proposed an effective scheme by

employing Orthogonalized Gnanadesikan-Kettenring (OGK) to improve the robustness of

CRNs. In [9], Sharifi AA and Niya JM proposed an attack-aware CSS (ACSS) method to esti-

mate the credit value of each CR user and identify attackers along with their attack strategies.

The similar work was presented in [10], an attack-aware WSPRT algorithm estimates the

attack extension factor in a network, based on the standard deviation of received sensing

reports for improving the CSS performance. In contrast to existing data fusion techniques that

use a fixed number of samples, WSPRT algorithm uses a variable number of samples with only

the cost of a relatively low overhead. The authors of [6]–[10], however, assume an ideal FC but

pay little attention to the problem of the FC being compromised.

In another work, the authors focused on a new kind of attack model which is called bal-

anced collaborative (BC) attack in [11]. With the assistance of trusted nodes, an abnormality

detection algorithm was proposed to detect BC attackers based on the theoretical analysis that
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the reports between BC attackers have the highest similarities. Likewise, [12] proposed a sim-

ple yet robust secure CSS scheme with hard decision combining for opportunistic spectrum

access (OSA) networks. Based on the historical sensing records and the assistance of trusted

OSA nodes, the proposed approach effectively excludes misbehaving OSA nodes from the pro-

cess of cooperation. And [13] presented a new weighted likelihood ratio rest (WLRT) to miti-

gate the effect of Byzantine attack, in which the collaborative weight is calculated by

comparing the sensing history of each user with the reliable anchor node’s global decision.

However, all of them invariably take advantage of reliable helper nodes or anchor nodes to

identify attackers or falsified reports, such an assumption is not realistic in a real network.

In order to effectively defend against SSDF attack behaviors from malicious SUs, [14] pro-

posed a faithworthy CSS scheme based on the Dempster-Shafer (D-S) theory, including four

consecutive procedures, which are basic probability assignment (BPA) with the projection

approximation approach, holistic credibility calculation, option and amelioration for BPA and

evidence combination via the D-S rule, respectively. Besides D-S theory that is criticized to

have high decision conflicts, some common methods (clustering-based, consensus theory,

etc.) are widely used in the field of prevention of Byzantine attack, which only function well in

some specific attacks because of convergence limitation. [15] presented prevention and trust

evaluation scheme, called IRTrust, the framework of which incorporates a strategy of identity

authentication and a global trust of peers defend against several kinds of malicious attacks,

such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Building

trusted relationships among peers in a large-scale distributed peer-to-peer (P2P) system is of

particular concern to L. Li et al, rather than a centralized one.

Moreover, existing algorithms fail to take the mobility of SUs into consideration. To

address this problem, considering the location diversity of the network, [16] divided the whole

area of interest into several cells as well as [17]. Each user’s reputation score is updated after

each sensing slot and is used for identifying whether it is malicious or not. If so, it would be

removed away. And then the proposed reputation-based cooperative spectrum sensing (RCSS)

algorithm assigns users in cells with better channel conditions, i.e. larger signal-to-noise ratios

(SNRs), with larger weighting coefficients, without requiring the prior information of SNR.

Pollution attack similar to Byzantine attack has been recently investigated by [18] [19].

Although the researchers worldwide have made significant progress in addressing the

research challenges associated with CSS, robust CSS remains a big challenge for the science

and engineering community. The above-mentioned CSS methods against Byzantine attack are

invariably based on a simple attack model. From the attacker’s point of view, “always attack” is

a radical attack strategy, but is not necessarily the optimal, especially in the presence of coun-

termeasures. Despite that extensive simulation results prove the outstanding performance in

attacker identification, the premise that the number of attackers is less than that of reliable SUs

is indispensable. Therefore, the problem of Byzantine attack making the FC blind is largely

ignored. Besides, for those who are identified by the network as attackers, the common prac-

tice of these methods is that the FC arbitrarily eliminate them from the process of CSS upon

discovery. These issues motivate us to address the question:

• If the FC’s global decision is no longer reliable, is there any other way to accurately measure

the local sensing report, in addition to the auxiliary node?

• What is the relationship between the attacker ratio and attack probability, especially when

the FC is blind?

• In view of CSS, is the attacker’s sensing information regarding the primary signal definitely

useless information?
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The study of these practically motivated questions requires in-depth analyses, which wil be

systematically considered in our work.

Starting from the network model, the performance study of existing spectrum sensing algo-

rithms often overlooks the impact of SU mobility. Many of them assume SUs stationary or

with low mobility. As an addition to the wireless communication technology CR system

should consider mobility in spectrum [20], which is followed by spectrum sensing model and

Byzantine attack model.

Prior work on Byzantine attack mainly concentrates on strategies that work in small regions

where a common ground truth is viable, and attackers constitute a small fraction of the sec-

ondary’s or use unsophisticated strategies. Such limitations fuel the motivation in providing a

more generic attack model by intensively observing malicious behaviors, from a sophisticated

attacker’s viewpoint, to conduct more flexible attack strategies. Under the generalized model,

we analyze the circumstance where Byzantine attack makes the FC blind and derive a closed

form expression of the blind condition.

In the front of Byzantine attack, two kinds of data fusion techniques, voting rule and

hypothesis test, are introduced and elaborated from different angles, such as, the CSS perfor-

mance, the ability of resisting attack and the number of samples required. Moreover, we make

a detailed analysis on WSPRT and its drawbacks.

Then comes the last and most important, a sequential CSS (SCSS) is proposed by a struc-

tured and comprehensive overview of research on Byzantine attack, which consists of delivery-

based assessment, reusing weight allocation, trust value (TrV) ranking-based sequential test.

In the proposed SCSS, delivery-based assessment supersedes the FC’s global decision to check

consistency of received local reports in case Byzantine attack makes the FC blind, but without

extra cost. Also, we consider that the falsified sensing report submitting to the FC contains

some useful information, and can be distinguished and utilized by observing malicious behav-

iors instead of arbitrarily eliminating. This is the main idea of reusing weight allocation. At

last, we integrate the presence and absence decision ability into the weight of each report, and

proceed with sequential test in TrV ranking order.

The remainder of this paper is organized as follows. In Section II, system model is formu-

lated, including network model and Byzantine attack model. Section III gives theoretical analy-

ses on the scenario where Byzantine attack makes the FC blind. Section IV reviews current

data fusion techniques including voting rule and hypothesis test. A robust SCSS is proposed in

Section V to defend against dynamic Byzantine attack. Finally, simulation results are provided

in Section VI to verify our proposed method, and conclusions are drawn in Section VII.

System model

Network model

Considering Byzantine attack has more impact in a centralized network wherein false informa-

tion can propagate quickly [21]. The system model is a centralized CRN consisting of one pri-

mary transmitter (regarded as PU in the CRN), one FC and N collaborative SUs in which

coexists Na attackers, where ρ = Na/N. In fact, our proposed method also can be applied in the

network with several PUs and FCs.

Mobile scenario. Most of the work related to spectrum sensing assume that the SUs are

stationary. However, mobility is an essential feature of wireless networks [22]. As such, it is

critical to consider spectrum sensing with mobile users in the network.

We present a system model to imitate a scenario where the PU is stationary and the SUs are

mobile in the random waypoint model (RWM) in Fig 1. The PU is located at the center of the

network. At the beginning of the epoch, the SU chooses a new waypoint d1 toward the

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks
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destination waypoint d2. There is no pause time between two waypoints. Each SU has an iden-

tical sensing range (sensing radius is s) to sense the licensed channel. To protect the PU’s effec-

tive communication, SUs are forbidden to access licensed channel within the protection range

(protection radius is r) of PU.

Local spectrum sensing. In order to opportunistically access available spectrums, com-

mon spectrum sensing methods include matched filter, energy detection, cyclostationary

detection, and wavelet detection can be adopted, among which energy detection is the most

widely used because of its low complexity and it does not require any prior knowledge about

the primary signal. In the energy detection, the PU signal detection can be formulated as a

binary hypothesis test problem as follows:

Hypothesis H1

Due to the SU mobility, the relative position of SUs and the PU varies over time, according

to the log-normal shadowing path loss model, the received PU power at a distance d can be

expressed as in dB [23]:

PrðdBÞ ¼ Pt � PLðdÞ ¼ Pt � PLðdÞ � c

¼ Pt � PLðd0Þ þ 10llog10

d
d0

� �

þ c
ð1Þ

where PL(d) is the path loss as a function of d and PLðdÞ is the mean of PL(d), d0 is a close-in

reference distance which is determined from measurements close to the transmitter of PU. l is

the path loss exponent which indicates the rate at which the path loss increases with distance,

and ψ is a Gauss-distributed random variable with mean zero and variance σ2.

Under hypothesis H1, the a priori probabilities can be computed as

Pðsi ¼ 1jH1Þ ¼ Pðsi > gjH1Þ ¼ PðPt � PLðdÞ � c > gÞ

¼ Q
g � Pt þ PLðdÞ

s

� �
ð2Þ

Fig 1. Illustration of mobile scenario.

https://doi.org/10.1371/journal.pone.0199546.g001

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199546 July 5, 2018 5 / 32

https://doi.org/10.1371/journal.pone.0199546.g001
https://doi.org/10.1371/journal.pone.0199546


and

Pðsi ¼ 0jH1Þ ¼ 1 � Pðsi ¼ 1jH1Þ

¼ Q
Pt � PLðdÞ � g

s

� �
ð3Þ

where Q(�) is the complementary distribution function of the standard Gaussian, and γ is the

pre-determined detection threshold.

Hypothesis H0

Pr ¼ n0 ð4Þ

where n0 can be regarded as a Gaussian noise power with mean n0 and standard deviation σn.
Under hypothesis H0, the a priori probabilities can be computed as

Pðsi ¼ 1jH1Þ ¼ Q
g � n0

sn

� �

ð5Þ

and

Pðsi ¼ 0jH1Þ ¼ Q
n0 � g

sn

� �

ð6Þ

It is worth noting that each SU submits raw signal power measurement or a bit decision to

the FC according to soft/hard-combining technology, but the binary hard-combining is more

advantageous since there is no need for a powerful FC which results in reduced costs, but our

results can be readily extended to the case of soft-combining. Some methods of quantifying

sensing data have been investigated in [24] [25], including quantized hard-combining; how-

ever, this study is beyond the scope of our work.

Dynamic Byzantine attack model

Considering the importance of not causing interference to the primary network, spectrum

sensing, as a fundamental problem in CRNs, requires SUs to efficiently and effectively detect

the presence of the PU, but SUs’ changeable environment and ease of compromise, such as

shadowing and multipath fading, lead to the fact that the local spectrum sensing conducted by

the individual user is often incorrect. CSS is suggested to improve the detection accuracy. In

CSS, SUs sense the medium individually and share their local report results to find a consensus

on the channel availability. SUs send their local report results to the FC that aggregates all SUs

reports and makes the global decision. Assume that the communication channels between SUs

and the FC are error-free in this paper.

CSS can successfully mitigate the disadvantages of local spectrum sensing. However, it also

poses a great challenge in terms of Byzantine attack, since it allows attackers to take advantage

of the cooperative paradigm [26]. Byzantine attack is represented by attackers that send false

sensing results to the FC, trying to mislead the global decision regarding the spectrum occu-

pancy, as shown in Fig 2.

By concretely analyzing a general area of related work to Byzantine attack, we make a sum-

mary of attack type in accordance with the way that an attacker sends the false sensing report

as follows:

• The first type of attack is the one who always declares that the PU is active, called Always-

Yes (AY) attack. Via AY attack, attackers can access to the idle channel exclusively at the

expense of other SUs.
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• The second type of attack is the one who always reports an absence of primary signal, called

Always-No (AN) attack, thereby imposing severe interference on the PU.

• The third type is the one who always reports the opposite of what the attacker has sensed,

called Always-False (AF) attack, which has the negative impacts of both AY and AN attack.

Undoubtedly, “always attack” is a simple yet special case of Byzantine attack. As an attacker

who considers the attack risk or attack cost, “always attack” may not be the optimal strategy. If

an attacker always reports the false information to the FC, such a static attack strategy can be

easily identified. In order to perform stealth attack, the attacker is bound to adjust the attack

strategy in consideration of changeable environment and countermeasures.

On this account, the attack probability will be appropriately set by the attacker [27], in pur-

suit of sneaking into a reliable SU. Here, we propose a dynamic Byzantine attack model, as

shown in Fig 3., including false alarm attack (FAA) and miss detection attack (MDA), which is

described as

( Pðrj ¼ 1jðsj ¼ 0jH0ÞÞ ¼ a

Pðrj ¼ 0jðsj ¼ 1jH1ÞÞ ¼ b
ð7Þ

where sj is the sensing result and rj is the report result, α is the FAA probability, β is the MDA

probability.

Fig 2. Cooperative spectrum sensing model in the presence of Byzantine attack.

https://doi.org/10.1371/journal.pone.0199546.g002

Fig 3. Dynamic Byzantine attack model.

https://doi.org/10.1371/journal.pone.0199546.g003
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Depending on the above dynamic attack model, obviously, AY attack can be regarded as a

special FAA with the attack probability is 1 (α = 1), while AN attack as a special MDA the

attack probability is 1 (β = 1). AF attack boils down to a combination of AY and AN attack (α
= β = 1). Furthermore, as for attack strategy, α = β is too ideal to be achieved in [9] [28] etc.

Such a view totally overlooks the fact that FAA and MDA are independent. Thus, according to

the attack probability, the false alarm and miss detection probability of the j-th attacker can be

represented as

Pfa;j ¼ Pðrj ¼ 1jH0Þ þ Pðrj ¼ 1jH0Þ ¼ Pf ;jð1 � bÞ þ ð1 � Pf ;jÞa ð8Þ

and

Pma;j ¼ Pðrj ¼ 0jH1Þ þ Pðrj ¼ 0jH1Þ ¼ Pm;jð1 � aÞ þ ð1 � Pm;jÞb ð9Þ

where Pda,j = 1 − Pma,j is the detection probability.

Byzantine sophistication

Under the generalized Byzantine attack model, attackers have a certain probability, varying

from 0 to 1, to conduct various attacks. In the practical network, attackers could adopt sophis-

ticated and destructive strategies rather than a simple one to undermine the network operabil-

ity (the FC’s ability of making the correct decision regarding the presence or absence of the PU

[29]). If possible, they would want to make the FC completely unable to decide on a particular

decision, i.e., to make the performance of CSS no better than a random guess of the channel

status [30]. To secure the process of CSS, we further investigate such a scenario in this section.

We say that the FC is blind if attackers can make the sensing report that the FC receives

from the SUs, such that no information is conveyed. In other words, the FC cannot perform

better than simply making the decision based on priors [31]. Most of the previously conducted

research usually accounted for alleviating the effect of Byzantine attack when the percentage of

attackers is relatively small. Whereas little research has been done regarding the scenario

where the attacker makes the FC blind. This deficiency motivates us to address the question:

what is the condition of which Byzantine attack makes the FC blind? In the Bayesian frame-

work, the blind implies that the report result received by the FC is completely independent of

the hypothesis test, that is, the blind condition can be stated as

PðrjH0Þ ¼ PðrjH1Þ ð10Þ

where r = [r1, r2, . . ., rN] is the report vector received by the FC.

Considering that each SU’s sensing obseravtion is subject to conditional indepentdent and

identically distribution. The miss detection and false alarm probability are assumed to be the

same for every SU irrespective of whether they are reliable or not, denoted by Pm and Pf,
respectively. Therefore, the blind condition of (10) can be rewrited as

rðaðPf þ Pm � 1Þ þ ð1 � bÞð1 � Pf � PmÞÞ þ ð1 � rÞð1 � Pf � PmÞ ¼ 0 ð11Þ

Consequently,

r ¼
1

aþ b
ð12Þ

When α = β = 1 (AF attack), a critical value of 50% attackers can completely blind the FC.

Additionally, for α = 1, β = 0 (AY attack), only 100% attackers can lead to the blind result and

the same attack ratio is required for α = 0, β = 1 (AN attack). Another interesting extension is
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that the attack probability and the attack ratio can be compensated for each other when the

blind condition is satisfied.

Overview of data fusion techniques

As illustrated in Fig 2, Byzantine attack makes CSS lie in a tremendous risk, the fusion technol-

ogy for the local sensing information received by the FC is particularly critical to guarantee the

integrity of CRNs. Existing data fusion technologies toward spectrum sensing generally fall

into voting rule and hypothesis test. In this section, a brief description of them are presented,

which is followed by a presentation of their advantages and disadvantages in detail.

Voting rule

Voting rule (a.k.a. counting rule or K-out-of-N rule) is one of the simplest data fusion technol-

ogies. It is available for making the global decision and contains three kinds of widely adopted

rule, such as, Or, And, Majority rule.

Or rule is a simple decision rule described as that no less than one reports the presence of

the PU, then the FC broadcasts the channel is busy, i.e.,H1 is accepted if
PN

i ri � 1, otherwise

H0. And rule works as if all decisions report the presence of the PU, then the FC broadcasts the

channel is busy, i.e.,H1 is accept iff
PN

i ri ¼ N, otherwiseH0 is accepted. Majority rule is

based on the majority of the individual decisions. If more than half of decisions report the

presence of the PU, then the FC broadcasts the channel is busy, i.e.,H1 is accepted if
PN

i ri ¼ N � dN=2e, otherwiseH0 is accepted.

As is clear from the above description, both the detection and false alarm probability of

And rule are very low, while Or rule are the opposite. Or, And, or Majority rule can be general-

ized as voting rule. In a generalized voting rule, K is usually used as an optimization variable to

obtain the optimal system performance, i.e. [28]. In summary, voting rule can be realized in

low complexity without any prior knowledge on the PU signal. But no matter what kind of vot-

ing rules is adopted, a fixed number of samples is required to inefficiently make the global

decision.

Hypothesis test

Similar to voting rule, hypothesis test is performed to test the binary decision on the presence

of the PU in CRNs. There are different test methods adopting various design rules [27], such

as, Bayesian detection, Neyman-Pearson (N-P) test, and SPRT. All of hypothesis tests require

varying degrees of prior information for the global decision output.

Bayesian detection. Bayesian detection requires the knowledge of a priori probabilities of

hypothesesHθ(θ = 0, 1), denoted by P(Hθ), and the conditional probabilities P(ri|Hθ). Thus,

four possible decision cases can occur in the binary hypothesis test problem [32], two corre-

spond to correct decisions including ri = 1 when the PU is active and ri = 0 when the PU is

inactive, and the other two to errors including ri = 0 when the PU is active and ri = 1 when the

PU is inactive. The objective of Bayesian detection is to minimize the average detection cost

given by

Cave ¼
X1

W¼0

X1

y¼0

CWyPðri ¼ HWjHyÞPðHyÞ ð13Þ
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where Cϑθ represents the cost of declaring Hϑ true whenHθ is present. Accordingly, likelihood

ratio test (LRT) of Bayesian detection is described as

YN

i¼1

PðrijH1Þ

PðrijH0Þ
≷
H1

H0

PðH0ÞðC10 � C00Þ

PðH1ÞðC01 � C11Þ
ð14Þ

The right side of (14) is equivalent to the threshold of Bayesian decision λBayes.
N-P test. Unlike Bayesian detection, neither the prior probabilities on hypotheses or

detection costs associated with decision cases are prerequisite in N-P test, but the conditional

probabilities P(ri|Hθ) are also indispensable. The objective of N-P test is to design a nonrando-

mized test that maximizes the detection probability while guarantees the false alarm probabil-

ity to be lower than an acceptable value [27]. The N-P test based LRT is represented as

YN

i¼1

PðrijH1Þ

PðrijH0Þ
≷
H1

H0

lNP ð15Þ

where λNP is the detection threshold derived from the acceptable false alarm probability.

As (14) and (15) show, Bayesian detection and N-P test are both essentially a fixed-number

LRT; their only difference is the way that the threshold is chosen [6].

SPRT. The main advantage of sequential test is that it requires, on an average, fewer sam-

ples to achieve the same probability of error performance as a fixed sample size test [32]. In

SPRT, samples sequentially arrive at the FC, the test statistic iteratively proceeds until a final

decision is made. Define the following LRT as

Sl ¼
Yl

i¼1

PðrijH1Þ

PðrijH0Þ
ð16Þ

where the number of samples l varies from 1 to N. Sl is compared with a lower threshold λl and

an upper threshold λu to make a final decision, the test procedure is described as follows [6]

Sl � lu; accept H1

Sl � ll; accept H0

ll < Sl < lu; take another observation

ð17Þ

8
>>><

>>>:

The values of double thresholds λl and λu are defined as

ll ¼
B

1 � A
; lu ¼

1 � B
A

ð18Þ

where A and B are the tolerated false alarm and miss alarm probability, respectively.

WSPRT

When applying SPRT to data fusion for CSS, fewer samples can be in charge of making the

global decision about the primary signal. Nevertheless, SPRT is incapable of identifying falsi-

fied data in the presence of Byzantine attack, therefore, Chen R et al. proposed WSRPT to rem-

edy the shortcoming by a dynamic weight in [6]. Before proceeding with the description of our

CSS scheme, a brief of the classic WSPRT against Byzantine attack is provided in this

subsection.

Review of WSPRT. In WSPRT, two steps are implemented by weight allocation and

sequential test. In the weight allocation, a SU’s TrV is related to its detection accuracy. If a SU’s

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199546 July 5, 2018 10 / 32

https://doi.org/10.1371/journal.pone.0199546


local report is consistent with the global decision, its TrV will be increased; otherwise it will be

decreased. Then, the i-th SU’s TrV at the k-th sensing interval is updated as

TiðkÞ ¼ Tiðk � 1Þ þ ð� 1Þ
ðriðkÞþdðkÞÞ ð19Þ

where d(k) represents the global decision from the FC. Consequently, integrating the SU’s TrV

into the weight, a SU with a larger TrV has a larger weight. Using a normalized function, the

weight allocation mechanism can be followed as:

wiðkÞ ¼ f ðTiðkÞÞ ¼

(
0;TiðkÞ � � g

TiðkÞþg
maxðTiðkÞÞþg

;TiðkÞ > � g
ð20Þ

where g = 5. More detailed considerations about weight allocation mechanism of (20) refers

to [6].

Next, as well as SPRT, applying the weight allocation to the sequential test of WSPRT, the

FC takes the following LRT as the decision variable:

WlðkÞ ¼
Yl

i¼1

PðriðkÞjH1Þ

PðriðkÞjH0Þ

� �wiðkÞ

ð21Þ

Previous studies have shown that WSPRT functions well in a special scenario where a small

fraction of attackers use unsophisticated strategies. Our ultimate objective is to propose a

robust CSS against dynamic Byzantine attack, next we will make a comprehensive analysis on

deficiencies of WSPRT.

Drawbacks of WSPRT. As discussed earlier, the FC has the possibility of being compro-

mised once the condition of (12) is satisfied and no information regarding the primary signal

is conveyed in the sequel. Subsequently, the FC’s global decision no longer takes effect as an

evaluation criterion for updating TrV.

Another important issue for WSPRT is to assume a somehow simplified attack strategy

which can be easily identified. But if in the context of our proposed generic Byzantine attack

model, WSPRT has no way of dealing with the negative effect on the network in a long-term

run if the attacker selects a proper α or β to guarantee that TrV is more than −g.
In the weight allocation mechanism, when the i-th SU’s TrV is lower than −g at the k-th

sensing interval, accordingly, the sensing report is regarded as useless information and is

immediately eliminated, i.e., wi(k) = 0. In practice, a proper g is not easy to select. This radical

weight allocation mechanism shows less consideration for shadowing characteristic and multi-

path effects during the local spectrum sensing. That is to say, the SU is likely to unintentionally

report an incorrect decision due to bad reception conditions, resulting in being misidentified

as an attacker.

The above-mentioned shortcomings prevail not only in WSPRT but also in many secure

CSS schemes. By this motivation, we present a robust SCSS against dynamic Byzantine attack

in the following section.

Sequential cooperative spectrum sensing

On the basis of above analyses, in this section, we propose a robust SCSS scheme against

dynamic Byzantine attack to overcome drawbacks of aforementioned work, which consists of

delivery-based assessment, reusing weight allocation and TrV ranking-based sequential test.

Proposed SCSS works on a well-defined strategy that will annihilate the impact of Byzantine

attack.

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199546 July 5, 2018 11 / 32

https://doi.org/10.1371/journal.pone.0199546


Delivery-based assessment

In CSS, the FC’s global decision plays a key role in assessing the reliability of local reports.

Detailedly, the FC compares every local report with the global decision and counts the number

of correct reports from each SU. After a few iterations, the FC finds and assigns a TrV to each

SU, which is proportional to the correct reports over an observation period [33]. Almost all of

TrV-based CSS schemes check the consistency of local reports through the FC’s global deci-

sion, including WSPRT mentioned above, but are carried out under a strong assumption that

the FC is not compromised. This approach lacks more in-depth consideration on the possibil-

ity that the FC might be blind owing to the presence of Byzantine attack, especially the attack-

ers represent the majority, which has already been analyzed in section III, so that the global

decision is not reliable as an evaluation criterion.

Instead, in this paper, we propose a more simple and effective approach to assess local

reports, called delivery-based assessment, which takes advantage of the delivery of the trans-

mitted data of the scheduled SU, but without any alteration to the network. For this aim, we

firstly illustrate a frame structure in CRNs for periodic spectrum sensing in Fig 4, where each

frame consists of one sensing slot, one report slot, and one transmission slot. Each SU individ-

ually implements the local spectrum sensing in the sensing slot, and submits individual sensing

result to the FC in the report slot, thus the FC is responsible for making a global decision on

the presence or absence of the primary signal based on its received information and deter-

mines whether SUs can access idle channels or not. We extend the delivery-based assessment

approach to two cases of the global decision as follows.

Case 0. When the global decision declares the licensed channel as idle, which implies that

one of SUs can be scheduled to access the unused channel for data transmission. The success-

ful delivery of the transmitted data reveals that the global decision was correct and that the

channel is actually unused. If the transmitted data cannot be successfully delivered (because of

the harmful interference between the primary and secondary network), the global decision is

identified as incorrect, and the channel is actually occupied [34].

Case 1. When the global decision declares the licensed channel as busy, all SUs need to

switch to another channel and sense its availability in the next sensing interval. If there is no

data transmission which represents the global decision was correct, otherwise definitely

Fig 4. Frame structure with periodic spectrum sensing.

https://doi.org/10.1371/journal.pone.0199546.g004
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incorrect. The reason is that the reliable SUs have switched another channel to sense, the

unused channel must be selfishly occupied by attackers if there exists the successful transmit-

ted data.

Doubtlessly, in both cases, the FC has realized the actual channel status, which can be used

to assess all the received local decisions as correct or not. As an evaluation criterion, data deliv-

ery is much more reliable than the global decision, even in the worst scenario where Byzantine

attack makes the FC blind.

In terms of implementation, the delivery-based assessment approach can be easily applied

in a centralized CRN, where SUs individually access the spectrum, the data delivery can be ver-

ified by an additional monitoring process during data transmission performed by the FC itself.

Notice that the monitoring process is much easier than spectrum sensing since the transmit-

ting user is known at the FC [34]. Hence, according to the delivery of the transmitted data of

the scheduled SU, the TrV renewal of (19) can be rewritten as

TiðkÞ ¼ Tiðk � 1Þ þ ð� 1Þ
ðriðkÞþd̂ðkÞÞ ð22Þ

where d̂ðkÞ represents the channel status information of delivery-based assessment.

Reusing weight allocation

Via delivery-based assessment, attack identification policy is easily carried out by TrV-based

algorithm where, on the one hand, the local reports of SUs with large TrVs are assigned with

large weighting coefficients, while, on the other hand, SUs with TrVs lower a pre-determined

value are removed from the fusion process at the FC. Such a method has been used by the

majority of research, and can minimize the impact of attack on the network to the maximum

extent, while this conservative defensive strategy is likely to misidentify the reliable SU as the

attacker because the reliable SU may experience fading or happen to be shadowed. Further, a

large number of attackers exist in the network, the advantages of CSS will greatly decline if

they are also removed in accordance with attack identification policy.

This observation motivates us to come up with an alternative way to deal with malicious

reports rather than jettison. Observing that attack identification policy is based on such a

premise that the attacker’s report is useless sensing information. In our work, reusing mali-

cious report is chosen as an objective for turning waste into treasure which represents the first

effort in this direction to the best of our knowledge. The main benefit of reusing malicious

report as an objective is to enhance the CSS performance since the attacker may convey some

useful information about the PU status. Based on this consideration, we now propose a novel

reusing allocation scheme for the weight of the local sensing report.

We define a pairwise of correct decision ability, the presence and absence decision ability,

which respectively denote the ability of correctly deciding the PU’s presence and absence. The

presence and absence decision ability of the i-th SU can be respectively described as

A1
i ðkÞ ¼

k1
i

k1
;A0

i ðkÞ ¼
k0
i

k0
ð23Þ

where k1 and k0 represent the cumulative round of the presence and absence of the PU after

the k-th sensing interval, k1
i and k0

i denote the cumulative round of correctly deciding the pres-

ence and absence of the PU at the i-th SU, which can be counted by delivery-based assessment.

For simplicity of denotation, A1
i ðkÞ and A0

i ðkÞ are generally referred to as Axi ðkÞ, while
k1
i
k1 and

k0
i
k0

are referred to as
kxi
kx, where x is either 1 or 0.
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The starting point of reusing weight allocation in that when Axi ðkÞ is in close proximity to 0,

the i-th SU can be regarded as an attacker launching “always attack”. For examples, when

A1
i ðkÞ is near to 0, the i-th SU is definitely an AN attacker, and when A0

i ðkÞmoves towards 0, it

is an AY attacker. Therefore, at the end of the k-th sensing interval, the i-th SU with the correct

decision ability higher than 0.85 remains and will be allocated with the weight
kxi
kx to prepare for

the next sensing interval. If the correct decision ability is inferior to 0.15, the i-th SU’s report

in the next sensing interval will be reserved with the weight 1 �
kxi
kx. Such an approach innova-

tively turns attackers’ sensing reports into useful sensing information to enhance the coopera-

tive performance. Otherwise, for those SUs with the correct decision ability between 0.15 and

0.85, the weights of their reports are set to be 0, because they are interferential information for

the FC. Thus, the reusing weight allocation is given by

wxi ðkÞ ¼

1 �
kxi
kx ;AiðkÞ � 0:15

kxi
kx ;A

x
i ðkÞ � 0:85

0; otherwise

ð24Þ

8
>>>><

>>>>:

In (24), two factors account for selecting the range of wx
i ðkÞ ¼ 0. On one side, the larger the

range is set, the more the useful sensing information from attackers will be excluded. On the

other side, the smaller range eventually leads to the more opportunities for attackers to under-

mine CSS..

It is worth noting that SUs being identified attackers are not simply eliminated in our reus-

ing weight allocation, but the weights of their reports are set to 0. Even if the reliable SU may

be temporarily mistaken for an attacker due to the unfavorable channel condition, there is no

possibility of being eliminated. For those attackers, though we do not deal with them as strictly

as other algorithms, the restrictions on them will be involved in the scheduling policy in the

next subsection.

TrV ranking-based sequential test

It is known that CSS is the large communication resource requirement for reporting sensing

results, particularly, in a large CRN [35]. As discussed earlier, though it has shown that SPRT

can reduce the requirement of samples, the presence of Byzantine attack may make the FC

require a large sample size to make a global decision. For this reason, on the premise of ensur-

ing the network robustness, we provide a TrV ranking-based sequential test in order to reduce

the overhead, the total processing time and the energy consumption for CSS.

Since SPRT does not strictly specify the order in which the FC fuses the reports from SUs,

WSPRT is prone to become stuck and even deadlock triggered by attackers. Therefore, we

rank SUs’ TrVs in a descending order, and the SU with a higher TrV is prior to computes the

likelihood ratio and compares it with the lower threshold λl and upper threshold λu, until the

sequential test terminates. After the FC outputs a global decision, reports of the remaining SUs

are no longer submitted to the FC. In such a way, our TrV ranking-based sequential test only

requires less report samples than WSPRT to make a more reliable decision, while shortening

reporting time and prolonging data transmission time in a fixed frame slot. Consequently, it

can significantly improve the efficiency of spectrum sensing and secondary network

throughput.

Based on the key components, our proposed SCSS scheme at the k-th sensing interval can

be described in the following SCSS.
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Algorithm 1 SCSS

1: Initial Ti(1) = 0, Axi ð1Þ ¼ 1, i ¼ 1; 2; 3; . . .N.
2: for k to sensing limit do
3: Rank TrVs T1(k), T2(k), . . ., TN(k) of N SUs in a descending order.
4: Rank the local reports r1(k), r2(k), . . ., rN(k) of N SUs in a

descending order of TrV.
5: Wl(k) = 1.
6: for i: N do
7: Allocate the i-th SU’s weight wx

i ðkÞ according to its correct
decision ability Axi ðkÞ.

8: if ri(k) = 1 then
9: if A1

i ðkÞ � 0:15 then

10: w1
i ðkÞ ¼ 1 �

k1
i
kx :

11: end if
12: if A1

i ðkÞ � 0:85 then

13: w1
i ðkÞ ¼

k1
i
kx :

14: end if
15: if 0:15 < A1

i ðkÞ < 0:85 then
16: w1

i ðkÞ ¼ 0:

17: end if

18: WlðkÞ ¼
Ql

i¼1

PðriðkÞjH1Þ

PðriðkÞjH0Þ

� �w1
i ðkÞ
.

19: else
20: if A0

i ðkÞ � 0:15 then

21: w0
i ðkÞ ¼ 1 �

k0
i
kx :

22: end if
23: if A0

i ðkÞ � 0:85 then

24: w0
i ðkÞ ¼

k0
i
kx :

25: end if
26: if 0:15 < A0

i ðkÞ < 0:85 then
27: w0

i ðkÞ ¼ 0:

28: end if

29: WlðkÞ ¼
Ql

i¼1

PðriðkÞjH1Þ

PðriðkÞjH0Þ

� �w0
i ðkÞ
.

30: end if
31: if λl < Ws(k)< λu then
32: go to step 6.
33: end if
34: if Wl(k)� λu then
35: accept H1, then go to step 41.
36: end if
37: if Wl(k)� λl then
38: accept H0, then go to step 41.
39: end if
40: end for

41: TiðkÞ ¼ Tiðk � 1Þ þ ð� 1Þ
ðriðkÞþd̂ ðkÞÞ.

42: Update Axi ðkÞ according to delivery-based assessment.
43: The high TrV SUs are given priority to allocate spectrum

resources.
44: end for

After SCSS, the next question that arises is how to dispose of attackers. Attacker identifica-

tion can be done through delivery-based assessment, even we can accurately differentiate

whether an attacker launches FAA or MDA according to a pairwise of correct decision ability.
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But attacker identification is not of our original intention. As stated in our reusing weight allo-

cation, none of attackers are excluded from the network. But this does not mean that they can

attain the goal of malicious interfering with the primary network and occupying spectrum

resources. Given that it is unfair to provide the same opportunity for all SUs to access the spec-

trum, we provide a simple and effective scheduling policy to realize a fair spectrum resource

allocation principle. The scheduling policy distributes scheduling probability to each SU

according to its TrV, the SU with a higher TrV has a high scheduling probability for data trans-

mission. Such a fair scheduling policy acts as a punishment for attackers and a reward for reli-

able SUs [34], which not only enhances the collaboration performance by reuse of Byzantine

data but also ensures the network security under the constraint of malicious behaviors.

Simulation results

In this section, we perform a few experiments based on simulated data to validate our Byzan-

tine attack analysis and demonstrate the performance of the proposed SCSS by comparison

with other data fusion technologies.

In voting rule, three variants of Or, And, Majority rule are simulated. In Bayesian detection,

λBayes is calculated by the prior probabilities of hypotheses, i.e., P(H0) = 0.7 and P(H1) = 0.3.

The costs are assigned as: C00 = C11 = 0, C10 = 1 and C01 = 10. In N-P test, λNP is set to be 100

in comparison with a small λBayes. Another simulated fusion techniques are SPRT, WSPRT,

and SCSS. The parameters in these three fusion techniques used in the simulation are A = 10−3

and B = 10−4. The simulations are based on the Monte-Carlo method with 10000 iterations.

In order to evaluate the detection performance, we utilize the global error probability Qe
which is defined as follows:

Qe ¼ PðH0ÞQf þ PðH1ÞQm ð25Þ

where Qf is the global false alarm probability and Qm is the global miss detection probability.

Other than the error probability, we also are interested in an additional performance metric,

which is the average number of samples that SUs submit to the FC that used for making a

global decision over an observation period, and it measures the overhead of a particular data

fusion technique [8]. For voting rule, Bayesian detection and N-P test, a fixed sample size is

required for making a global decision, while the number of samples of SPRT-based CSS

scheme changes. Therefore, we only focus this metric for SPRT, WSPRT and SCSS.

Simulation environment

The PLðdÞ in (1) employs the Hata model, which has been different application environments.

Given that CRNs are more likely to be actually applied in rural areas because the licensed spec-

trum is not fully utilized. The standard formula for empirical path loss in open rural areas

under the Hata model is given by [23] [36]

PLruralðdÞ ¼ PLurbanðdÞ � 4:78ðlog10ðfcÞÞ
2
þ 18:33log10ðfcÞ � 40:98 ð26Þ

PLurbanðdÞ ¼ 69:55þ 26:16log10ðfcÞ � 13:82log10ðhtÞ � aðhrÞ

þð44:9 � 6:55log10ðhtÞÞ þ 18:33log10ðfcÞ � 40:98
ð27Þ

aðhrÞ ¼ ð1:1log10ðfcÞ � 0:7Þhr � ð1:56log10ðfcÞ � 0:8Þ ð28Þ

where PLurbanðdÞ is the standard formula for empirical path loss in urban areas under the Hata

model, fc is the signal frequency, ht is the effective transmitter antenna height in meters, hr is
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the effective receiver antenna height in meters, and a(hr) is the correction factor for effective

mobile antenna height which is a function of the size of the coverage area.

In our simulation, the related parameter settings are also used in [6] [7]. Assume that the

PU is at frequency of 617MHz, ht = 50m, hr = 1m. At the transmitter/incumbent side, and the

effective isotropic radiated power (EIRP) is assumed to be 80kW. Each receiver has a typical

sensitivity of −92dBm, which is the minimum power for a signal to be detected. For the noise

power, the typical value of n0 in the considered band frequency −106dBm is used. For the devi-

ation part of the log-normal shadowing path loss model and noise, we adopt σ = σ0 = 11.8. Oth-

erwise, d0 = 100m, l = 4.4, r = 1000m. For the sake of easy presentation, ψ is set 0. The distance

between SUs is negligible compared to the distance between SUs and the PU.

Static scenario

Due to that most of CSS methods do not involve mobile scenario, we start with a static sce-

nario in order to build a fair comparison framework, and fix d = 2000, N = 100 while changing

attack types and varying ρ from 0 to 0.9. To better reflect the nature of the attacker, an elusive

behavior which attackers randomly launch Byzantine attack is simulated over different obser-

vation periods.

Always attack

Under the attack of AY, AN and AF, the relationship between the performance and the attack

ratio is illustrated in Figs 5–7 for different fusion techniques. It is evident that the error proba-

bility of Or rule and And rule respectively stay at 0.7 and 0.3 from the beginning, since they

approximately always declare the channel as either busy or idle. Other fusion technologies can

guarantee the detection accuracy in the presence of a few attackers, while the error probabili-

ties have risen to varying degree as attackers increase.

In a series of “always attack” simulations, the error probability of SPRT and WSPRT fluctu-

ate in varying degrees, as depicted in Figs 5a–7a, the main difference lies in the fluctuation

range and fluctuation magnitude. The larger fluctuation range of SPRT is not a surprise, and is

in fact a direct consequence of its lack of consideration of attack, as it does not differ in receiv-

ing any reports, including malicious ones, which amplifies the negative effect of attack. Unlike

SPRT, the weight allocation of WSPRT can suppress malicious behaviors, but only when there

exist a few attackers. Our comparative results clearly reveal that WSPRT is extremely sensitive

to the number of attackers, and the higher the attack ratio, the higher the possibility of the FC

being blinded, resulting in the failure of its weight allocation. For Majority, Bayesian detection

and N-P test, their error probabilities are not as volatile as SPRT and WSPRT but rapidly

increases once the attack ratio reaches the critical value of 50%. By comparison, it can be

found that SCSS is not affected by blind condition. This is attributed to the fact that delivery-

based assessment to assess local reports is more reliable than the FC’s global decision.

As for the sample size, Figs 5b–7b show that there is no significant difference between three

SPRT schemes at the outset. But with the increasing attackers, the sample size of SPRT and

WSPRT become larger, which is followed by the unstable detection performance. Obviously,

the negative impact of malicious reports is gradually expanding. As the proportion of attackers

further increases, the number of samples required for SPRT and WSPRT gradually decreases

and the error probability increases, which indicates that the FC begins to be compromised at

this time. In contrast, the sample size of SCSS is basically maintained at 6 for various propor-

tion of attackers.

Ultimately, as can be seen from Figs 5a–7a, the error probability of Majority, N-P, Bayesian,

SPRT, WSPRT for AY attack converges to 0.7, the error probability for AN attack and AY
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Fig 5. Performance of fusion techniques with varying percentage of AY attackers. (a) the error probability. (b) the

number of samples.

https://doi.org/10.1371/journal.pone.0199546.g005
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Fig 6. Performance of fusion techniques with varying percentage of AN attackers. (a) the error probability. (b) the

number of samples.

https://doi.org/10.1371/journal.pone.0199546.g006

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199546 July 5, 2018 19 / 32

https://doi.org/10.1371/journal.pone.0199546.g006
https://doi.org/10.1371/journal.pone.0199546


Fig 7. Performance of fusion techniques with varying percentage of AF attackers. (a) the error probability. (b) the

number of samples.

https://doi.org/10.1371/journal.pone.0199546.g007
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attack converge to 0.3 and 1, respectively. The reason for this phenomenon is that the false

alarm probability and miss detection probability of an AY attacker are 1 and 0, respectively,

while an AN attacker are the opposite and an AF attacker are both 1. According to (25), the

convergence performance that is consistent with simulation results can be easily obtained. As

anticipated, the performance of SCSS bests that of other fusion techniques regardless of what

proportion of “always attack”. Even though the percentage of attackers is more approachable

to 85%, the sample size and the error probability for SCSS have both risen, but they are still

impressive. There are two reasons for this. First, delivery-based assessment lays a foundation

for accuracy detection of SCSS. Second, the principle of TrV ranking-based sequential test

ensures stable detection performance in an arbitrary attack ratio.

Dynamic attack

From the perspective of attackers, when launching the attack, they have to take into the factors

of attack cost and attack risk account, and may act in a strategic manner to dynamically adjust

the FAA and MDA probability rather than the simplified “always attack”. Thus, we simulate

the error probability and sample size of different fusion techniques under dynamic attack strat-

egy in the context of three combinations of FAA probability α and MDA probability β.

In the set of simulations shown in Figs 8–10, when attackers launch FAA and MDA in (α,

β) = (0.2, 0.2), (0.5, 0.5), (0.8, 0.8). Performance changes of different fusion technologies are

similar to that of “always attacks”. As we can see from Figs 7a–10a, when attack strength is low

(attack probability is small), although attackers cannot make the FC blind, as the fraction of

attackers increases, the error probability finally converges to the attack probability. With the

exception of Or rule, And rule and SCSS, the error probability of others converge to P(H0)α +

P(H1)β, such as, when (α, β) = (0.2, 0.2), the error probability converges to P(H0) � 0.2 + P(H1)

� 0.2 = 0.2. In spite of some attack strategies, the FC is not completely blind, but the system is

always in a state of low performance, which inevitably causes long-term interference to the pri-

mary network and selfishly occupy the idle channel by attackers. Especially, when AF attacker

is introduced, not surprisingly, 50% attackers can make the FC blind as illustrated in Fig 7a.

This result confirms our theoretical analysis of (12). Nevertheless, no matter what an attack

strategy (attack ratio, attack probability) the attacker takes, the detection performance of our

proposed SCSS exceeds other data fusion technologies, and is still impressive even in the case

of a high malicious presence, adding only a few samples.

From Figs 5 to 10, it is concluded that the unstable performance of SPRT and WSPRT are

caused by the elusive attack behavior. In order to ensure reliability of simulation results, we

conduct 100 simulation experiments to take the average results from S1 Fig to S6 Fig. The only

difference from our previous simulation results is that the performance of SPRT and WSPRT

has become relatively smooth. The common thing is that their better performance is compara-

ble to that of SCSS in the presence of a few attackers. However, as attackers increase, SCSS can

still maintain good detection performance, but only increases the number of samples, while

the detection performance by SPRT and WSPRT dramatically decreases with the drop in sam-

ples. This again confirms the validity of our proposed SCSS.

So far, we have presented the performance of different data fusion technologies under sev-

eral combinations of FAA probability and MDA probability. Yet another state of data fusion

to be considered is SU density. For a deeper insight into how the proposed scheme benefits

from malicious reports to achieve better performance, we observe the impact of SU density on

the performance in terms of various FAAs and MDAs. Since the results and analyses show that

existing data technologies expose a high vulnerability for a high attack ratio. Hence, we only

focus on SCSS in the following simulations.
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Fig 8. Performance of fusion techniques under (α, β) = (0.2, 0.2). (a) the error probability. (b) the number of

samples.

https://doi.org/10.1371/journal.pone.0199546.g008

Sequential CSS in the presence of dynamic Byzantine attack for mobile networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199546 July 5, 2018 22 / 32

https://doi.org/10.1371/journal.pone.0199546.g008
https://doi.org/10.1371/journal.pone.0199546


Fig 9. Performance of fusion techniques under (α, β) = (0.5, 0.5). (a) the error probability. (b) the number of

samples.

https://doi.org/10.1371/journal.pone.0199546.g009
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Fig 10. Performance of fusion techniques under (α, β) = (0.8, 0.8). (a) the error probability. (b) the number of

samples.

https://doi.org/10.1371/journal.pone.0199546.g010
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Impact of SU density

The value of N in fact decides the SU density in CRNs. In order to observe the impact of the

SU density on the error probability and the number of samples, we fix d = 1500 in the presence

of 80% attackers while varying N from 30 to 120 at an interval of 10.

Fig 11 shows that whatever the probability of FAA and MDA in the network is, the higher

SU density always results in that fewer samples generate a more accurate decision. Further-

more, one interesting effect we can also see is that the higher attack strength makes SCSS only

require less samples at a fixed N while ending up with a similar detection accuracy with the

lower attack strength. To be specific, if there exist enough SUs to cooperate, the impact of

attack strength on the error probability can be neglectable. There is no doubt that this is due to

the success of our proposed reusing weight allocation scheme using malicious reports, and the

higher the attack strength, the more obvious the attack features, the more valuable malicious

reports. As a consequence, SCSS needs the least samples for AF attack, while the most samples

for (α, β) = (0.2, 0.2).

Mobile scenario

Mobility is one of the most important factors in wireless systems because it affects numerous

network characteristics. In the real implementation of CRNs, the mobility may be of our con-

cern. To this end, we assume the initial waypoint d1 = 1500m and N = 100, SU velocity varies

from 10 to 40m/s within the range of the network area and a maximum idle time of 120s.

In Fig 12, we simulate the error probability and sample size of SCSS in terms of varying

attack probability when there exist 80% attackers. It can be observed from Fig 12b that the

faster the SU velocity, the greater the number of samples. This is reasonable, because the SU

velocity deteriorates the local sensing performance and SCSS has to require more decision

samples in support of the FC’s decision. Whereas different from the negative effect of SU

velocity, Fig 12a shows that attack strength has little effect on the error probability for a fixed

SU velocity, which corroborates the correctness and effectiveness of reusing malicious reports

once again.

Conclusions

In this paper, we have proposed a sequential test against dynamic Byzantine attack for mobile

networks. Unlike the previous static scenario and simplified attack strategies, we consider

spectrum sensing problem in a more realistic mobile scene and propose a generic attack model

(FAA and MDA) by analyzing malicious behaviors, aiming at evolving dynamic attack strate-

gies from the attacker’s perspective. The blind problem is the most representative Byzantine

sophistication in dynamic attack strategy, and a closed form expression of the blind condition

is also derived. Further, we give a brief of introduction to existing data fusion techniques

including voting rule, hypothesis test and decompose drawbacks of WSPRT. To deal with

these issues, our proposed SCSS, which takes advantage of delivery-based assessment to assess

local reports as well as reusing weight allocation to benefit from malicious reports, operates

sequential test in a TrV ranking order. Furthermore, a fair scheduling policy is added as spec-

trum resource allocation principle to enhance the collaborative performance and secure the

network. Finally, simulation results show that, compared to existing data fusion technologies,

the superiority of SCSS with respect to the error probability is evident at the expense of a small

sample size, which proves the high performance of the proposed policy under dynamic attack,

even in the case of Byzantine attack satisfying the blind condition. Simultaneously, the density

and mobility of SU show the positive and negative effects on SCSS, respectively.
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Fig 11. Performance of SCSS v.s. SU density for varing attack probability. (a) the error probability. (b) the number

of samples.

https://doi.org/10.1371/journal.pone.0199546.g011
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Fig 12. Performance of SCSS v.s. SU velocity for varing attack probability. (a) the error probability. (b) the number

of samples.

https://doi.org/10.1371/journal.pone.0199546.g012
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There are still many interesting questions that remain to be explored in the future work,

such as the fast accuracy malicious detection in a high-speed mobile scenario and the optimal

attack strategy investigation for smart Byzantines.
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