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Abstract

A campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched

in South Sudan in 2009. The success of such a campaign often depends upon adequate

available resources and reliable surveillance data which help officials understand existing

infections. An optimal allocation of resources for malaria control at a sub-national scale is

therefore paramount to the success of efforts to reduce malaria prevalence. In this paper, we

extend an existing SIR mathematical model to capture the effect of LLINs on malaria trans-

mission. Available data on malaria is utilized to determine realistic parameter values of this

model using a Bayesian approach via Markov Chain Monte Carlo (MCMC) methods. Then,

we explore the parasite prevalence on a continued rollout of LLINs in three different settings

in order to create a sub-national projection of malaria. Further, we calculate the model’s

basic reproductive number and study its sensitivity to LLINs’ coverage and its efficacy. From

the numerical simulation results, we notice a basic reproduction number, R0, confirming a

substantial increase of incidence cases if no form of intervention takes place in the commu-

nity. This work indicates that an effective use of LLINs may reduce R0 and hence malaria

transmission. We hope that this study will provide a basis for recommending a scaling-up of

the entry point of LLINs’ distribution that targets households in areas at risk of malaria.

Introduction

The Republic of South Sudan (RSS) is among the countries in sub-Saharan Africa that are

most severely affected by malaria and is currently experiencing an unprecedented outbreak

of malaria. Médecins Sans Frontières (MSF) have reported that, in the year 2015, malaria

outbreaks in South Sudan were considered to be the most hazardous in the region [1, 2]. The

country is facing a number of tremendous challenges, the most notable being the limitation of

human and financial resources due to the ongoing war and civilian instability. Nonetheless,

the government agencies of South Sudan, as well as many Non-Governmental Organizations

(NGOs) have committed to reducing this ongoing outbreak of malaria.
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Recently, the National Malaria Control Program (NMCP) reported, in its strategic plan,

that LLINs have been the main health intervention deployed to reduce malaria transmission in

South Sudan since it gained independence [3]. A number of LLINs nets have been distributed

since 2008, when the free mass LLIN distribution campaign was piloted in the States of War-

rap, Western Bahr-El-Ghazal and Western Equatoria. However, their distribution and utiliza-

tion still remain relatively low [4]. Subsequently, the programme was extended to the entire

country reaching a total of 2 602 021 LLINs in 2009 [5, 6]. This number declined to 1 836 401

LLINs in 2011 and then, further down to 1 592 507 LLINs in 2012 in various states [7]. More-

over, in these campaigns ownership of LLINs by community members varied by State. For

instance, Eastern Equatoria has the highest (58%) LLINs coverage, while the lowest coverage

rates are found in Warap (17%), Unity (20%) and Upper Nile (22%). Likewise, malaria infec-

tion takes a larger toll in the rural areas where the availability of LLINs is slightly lower (31%)

than in urban areas (44%) [8].

These control measures were not sufficient to eliminate the parasite over a short time scale

and failed to sustain control programs. The malaria trend increased between 2011 and 2015

in almost all of the states, as is shown in Fig 1. This reported case data is accumulated on a

weekly-basis. The data exhibits noise and some missing data is observed. Nonetheless, under-

standing the role of insecticide-treated nets in mosquito vectors is the first and most important

step in disease eradication. Here, we focus on current malaria control actions and their impact

on human infection. This will help to define the specific needs for successful malaria interven-

tions in various settings, while increasing the impact of control tools and maintaining value for

money. The key to effective control is to choose policies that are appropriate to local settings.

The Ministry of Health (MoH) has endeavored to scale up malaria control efforts in the

Fig 1. Reported weekly malaria cases between 2011 and 2015. Weekly malaria reported cases from the beginning of

2011 until end of 2015 in Central Equatoria State (CES), Western Bahr El Ghazal State (WBZ) and Warrap State (WRP).

The data was obtained from National Malaria Control Programme of South Sudan (NMCP).

https://doi.org/10.1371/journal.pone.0198280.g001
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country in order to lower both the morbidity and mortality rates of malaria by 80% by the year

2020. As this 80% reduction in malaria prevalence may not be achieved through a ‘more of the

same’ approach, mathematical modelling may play a role in operational strategies on control.

Mathematical models usually depend on a set of parameters. In the present case, each

parameter carries a biological significance such as force of infection, recovery rate or, mortality

rate. It is therefore important to evaluate the numerical values of these quantities with real data

in order the computational simulation to predict the reactions accurately, and thus to give us

a better understand of the disease epidemiology. In recent years there has been an increased

interest in parameters determination procedures [9–11]. Bayesian approaches and in particu-

lar, the Markov Chain Monte Carlo (MCMC) have proven to be powerful inference tools for

complex systems developed in behavioral science and computational biology [12–17].

Many mathematicians and epidemiologists (see for example, [18–26]) have provided differ-

ent mathematical models for understanding the transmission dynamics of malaria in human

populations and also for consolidating various intervention tools, such as LLINs, Indoor Resid-

ual Spraying (IRS), drugs and even vaccines. For example, Ngonghala et al. [25] developed a

mathematical model for malaria dynamics that incorporates Insecticide-Treated Nets (ITNs)

coverage. They concluded that when the reproduction number R0 < 1, the mosquito-free equi-

librium is a globally asymptotically stable (GAS), whereas, when R0 is greater than one, a locally

asymptotically stable human-mosquito equilibrium exists. Their study shows that constant

ITNs-efficacy may underestimate the disease transmission risk. Chitnis et al. [26] adapted a

mathematical model to compare the impact of malaria vector-control Interventions consist of

ITNs and IRS, implemented individually and in combination; their results showed that ITNs

were more effective than IRS. Okumu et al [27] used a deterministic model of the mosquito life

cycle to investigate the effect of untreated nets or LLINs with IRS combinations on the disease

at the community level, they concluded that the insecticidal potential impact of LLINs and IRS

is mainly due to the personal protection provided by the nets, rather than insecticidal effective-

ness. Briët and Penny [28] used a stochastic simulation model based on individuals in scenarios

with sustained LLIN distributions, and varying degrees of Case Management (CM) coverage.

The modelling analysis indicated that under sustained vector control and scaled-up CM, trans-

mission can rebound to higher levels than when using LLIN distribution alone. Griffin et al.

[29] developed an individual-based simulation model for Plasmodium falciparum transmission

in an African context incorporating the impact of the switch to Artemisinin-Combination

Therapy (ACT) and scaling up the coverage of interventions from the year 2000 onwards.

In this paper, we propose a modification of the age structured model developed by Filipe

et al. [30], in the expression of the SEIR and SEI Model formulation for host and vector respec-

tively. Our model does not include an age structure, but accounts for LLINs’ waning effect in

order to forecast epidemiological aspects of malaria in South Sudan’s different regions and

states. Consequently, a parameter estimation of this model is carried out under a Bayesian

framework via Markov Chain Monte Carlo (MCMC) methods, wherein the likelihood func-

tion is combined with the prior values of the parameters in order to calculate the posterior val-

ues for model parameters from time series data.

Study area and demography

South Sudan is a tropical landlocked country in East-Central Africa which shares borders

with some of the most malaria-endemic countries in the world. Prior to 2015, the country was

divided into ten states comprised of three regions.

The pre-independence national census estimated the South Sudan population at 8.2 million

people in 2008, with 42% of the population aged under 15 years, 19% at the median age and
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only 5% aged over 60 years [31]. The population projection for 2009 may be as high as 11 mil-

lion due to both growth rates and the estimated numbers of returnees, Fig 2. The birth rate is

estimated at 40.62 per thousand people and the maternal mortality rate is estimated at 1,700

deaths per 100,000 live births [32]. The country’s fertility rate of 6.7 births per woman is the

highest in the Eastern Mediterranean region [32]. The census reported a life expectancy at

birth of 42 years for both sexes [33]. This study is conducted in states chosen randomly in

three different regions, namely:

1. Equatoria (South), we have chosen the state of Central Equatoria,

2. Bhar El Ghazal (North-west), we have chosen the state of Western Bahr El Ghazal,

3. Upper Nile (North-east), we have chosen the state of Warrap.

The map of the study area is given in Fig 3.

Fig 2. South Sudan population map. Population density of South Sudan 2009.

https://doi.org/10.1371/journal.pone.0198280.g002
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Method

We use a deterministic compartmental structure for the endemic malaria disease. The total

human population denoted by N is subdivided into susceptible individuals S, pre-infectious

with malaria parasite individuals E, clinical infectious individuals I, asymptomatic infectious

individuals A and protected individuals R, Eq (1). The total mosquito population denoted

byM is subdivided into susceptible mosquitoes X, mosquitoes exposed to the malaria parasite

Y and infectious mosquitoes Z, Eq (2). The compartmental model is illustrated in the flow

digram in Fig 4, which translates to Eqs (3) and (6).

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ AðtÞ þ RðtÞ; ð1Þ

MðtÞ ¼ XðtÞ þ YðtÞ þ ZðtÞ: ð2Þ

The human components of the model is presented to capture the relation of effective

treatment and parasite prevalence. The second components of the model represent mosquito

population dynamics to capture the effects of LLINs on vector mortality and in preventing

transmission. The model excludes a delay in the force of infection and includes seasonality

Fig 3. South Sudan selected state analysis map.

https://doi.org/10.1371/journal.pone.0198280.g003
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with respect to epidemics of this disease. We examine the model and data set, by applying

Bayesian approach to estimate the posterior distribution of parameters. The prior estimates of

some parameters were obtained from the literature [34, 35].

Human model formulation

Since we are modelling the endemic malaria on a longer scale, we include birth and death rate

in the model. Hence, the susceptible compartment is recruited by birth at a rate Γ. We presume

susceptible individuals (S) acquire malaria and become infected at a rate Λh when they are bit-

ten by infectious mosquitoes (the entomological inoculation rate, EIR). After bites from infec-

tious mosquitoes, individuals progress to the pre-infectious compartment E and remain on

average 12 days (latent period) before becoming fully infective. Upon infection, they either

develop clinical infectious with probability rate η to enter compartment I or proceed with

asymptomatic infection with probability rate ρ to enter compartment A. Those that develop

disease (with symptoms) are successfully treated and naturally recovered with the rate α1 and

subsequently enter a compartment of recovery (or a protected compartment R) which are

assumed to lose immunity and move to the susceptible compartment at a rate of α3. Individu-

als with asymptomatic infection are assumed to recover naturally with a constant per ca-pita

recovery rate α2 and enter R compartment. All compartments are stratified by level at which

people are bitten by mosquitoes and also drop individuals at a natural death rate of m ¼ 1

q�360

day−1 where q is the human life expectancy in years. The deterministic model for the human

dynamics is as follows

dS
dt
¼ G � LhSþ a3R � mS;

dE
dt
¼ LhS � ZE � rE � mE;

dI
dt
¼ ZE � ða1 þ dþ mÞI;

dA
dt
¼ rE � ða2 þ mÞA;

dR
dt
¼ a1I þ a2A � a3R � mR;

ð3Þ

Fig 4. Malaria transmission model diagram. Flow diagram for Human and Mosquito infection model.

https://doi.org/10.1371/journal.pone.0198280.g004
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where t represents time and α1 and α2 symbolize human infection durations while α3 is depend

on the loss of immunity duration. The force of infection, Eq (4) is assumed to vary by degree

of exposure to mosquitoes due to geographic variation and is governed by the function

Lh ¼ EIR b ¼ ð
�Z
N
Þb ð4Þ

where EIR denotes the entomological inoculation rate, b is the probability of infection if bitten

by an infectious mosquito, with 0< b� 1. The parameter � is the per capita biting rate of mos-

quitoes to be measured for adults at study settings level.

Mosquitoes model formulation

We consider Anopheles Gambiae mosquitoes which is the main anopheles species that trans-

mits Plasmodium Falciparum in South Sudan [36]. The mosquito population is divided into

three classes: susceptible X, latently infected Y, infectious Z. Susceptible female mosquitoes

are recruited at the birth rate C. We assume reduction in this compartment at the death rate

μv and at the force of infection (see Eq (5)). Thus, the adult susceptible mosquito acquires

malaria at a rate Λv which depends on the infectiousness of the human population:

Lv ¼
sa�Aþ si�I

N
ð5Þ

where σa is the onward infectivity from an asymptomatic infectious and σi is the onward infec-

tivity from a clinical infection. The parasite (in the form of gametocytes) enters the mosquito

with some probability when the mosquito bites an infectious human and the mosquito moves

from the susceptible to the infectious class at a rate determined by the force of infection. Once

mosquitoes are infected, they pass through a latent period. Mosquitoes then become infectious

to humans and remain infectious for life (until they die). They leave the population through a

per ca-pita density-dependent natural death rate. The population dynamics and infection pro-

cess of anopheles Gambiae mosquitoes are given by the following set of ordinary differential

equations.

dX
dt

¼ C � LvX � mvX;

dY
dt

¼ LvX � ðbþ mvÞY;

dZ
dt
¼ bY � mvZ;

ð6Þ

where β is the probability that a mosquito survives the extrinsic incubation period (EIP), μv is

the death rate and Λv is the force of infection acting on mosquitoes.

Basic reproductive number R0

To determine the stability of this model we first evaluate the critical points of the model

(3) and (6) of ODEs. The trivial critical point with no infected individuals is the point

E0 ¼ ðS�;E�; I�;A�;R�;X�;Y�;Z�Þ ¼ ðGm ; 0; 0; 0; 0;
C

mv
; 0; 0Þ. The basic reproduction number,

denoted by R0, plays a vital role in understanding the propagation of the relevant epidemic. It

is defined as the average number of secondary infections that occur when one infective indi-

vidual is introduced into a completely susceptible host population [37].

Malaria transmission modelling
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For the purpose of our model, the basic reproduction number of the models can be estab-

lished by using the next generation matrix as presented in [37]. In Proposition 4.1 we compute

the basic reproduction number for the system.

Proposition 4.1. The basic reproduction number of the model (3) and (6) is

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2bbsar

mvðbþ mvÞðZþ rþ mÞðmþ a1Þ
þ

�2bbsiZ

mvðbþ mvÞðZþ rþ mÞðmþ dþ a2Þ

s

ð7Þ

Proof: See S1 Appendix.

Model fitting

In this section, our quantitative mathematical model is fitted to data. There are a few statistical

techniques that are usually used to undertake parameter estimation when building a statistical

model. In particular, maximum likelihood estimation (MLE) and Bayesian estimation are the

most novel statistical tools used. As with the usage of MLE, a mathematical model that con-

fronts a data can be influenced by the exact relationship between the parameters or by the

complexity of the model [38, 39]. The Bayesian method combines the likelihood of the data as

well as the prior distribution of the parameters of the model to obtain the posterior distribu-

tion of the parameters of the model. This allows one to make inference based on the posterior

mean/ median of the parameters.

In this study we utilise Markov Chain Monte Carlo (MCMC) to obtain the posterior sam-

ples of the parameters of the model. The model fitting was undertaken by using weekly malaria

data of 2011 for each region under investigation (shown in Figs 5–7) using MCMC. The model

is run from the year 2000 to reach a steady state before being fitted to data from the year 2011.

We assume that weekly malaria data were reported according to a Poisson process with report-

ing rate γ. Since the reporting rate is unknown we assume it to be no larger than 85%. Assume

also that xij(i = 1, . . ., n; j = 1, . . ., 3) are the observed weekly malaria cases for state j during

week i. We used uniform distributions to model the prior belief regarding the mosquito biting

rate � and the clinical duration of infections α1. Specifically we assume �* U(0, 200) and

α1 * U(0, 50) [34]. During this fitting process the model parameters described in Table 1,

b, �j, α1, and α3 were estimated and δ, α2, ρ and ηwere fixed (in agreement with previous stud-

ies) in each setting. These parameters were assumed to be constant and were jointly estimated

by utilizing fitR (version 0.1 [40]) to obtain posterior samples 10000 iterations and a burn-in

of 1000 iterations used for three chains. The credibility intervals produced in Figs 5–7 was a

95% confidence intervals with different accepting rate of each figure. It seems as if the model

does not fit the weekly malaria data very well since the seasonality observed in the data has not

been accounted for. Below we attempt to do so.

In the second model, we calculate the mean of postorier distribution for further validation

and better fitting results, using weekly malaria data between 2011 to 2015 (see S1 Dataset) plot-

ted in Fig 8. This includes a simple parametric model to account for seasonality, as the weekly

malaria count displayed strong seasonality. We specifically assume that the seasonal compo-

nent is modelled as

b0t ¼
X2

j¼1

aj cosðtwjÞ þ bj sinðtwjÞ; ð8Þ

where wj = 2πj/52 and t represents time. We assume that the prior distribution of aj and bj are

both Gaussian random variables with mean 0 and variance σj = 1.67001 [34]. For a given set

of parameters, let the model-predicted malaria in site j be θj, the number of initial susceptible

Malaria transmission modelling
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Fig 5. Parameters estimation by fitting model to weekly malaria cases of CES. The deterministic model (for both human and vector) trajectories

and model assessment (lines) run against the CES data (points) with � = 91.60, b = 0.4356804, α1 = 0.02169197 (duration of infections 46.1),

σi = 0.6792, α3 = 0.5882 and initial state value (S = 882846, E = 0, I = 300, A = 0, R = 0, X = 600, Y = 0, Z = 0) with the mean and the median as well

as the 95th and 50th percentiles of the replicated simulations are displayed.

https://doi.org/10.1371/journal.pone.0198280.g005
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Fig 6. Parameters estimation by fitting model to weekly malaria cases of WBGZ. The deterministic model (for both human and vector)

trajectories and model assessment (lines) run against the WBGZ data (points) for 2011, with � = 79.50, b = 0.79836, α1 = 0.025, α3 = 0.01785714,

σi = 0.06274 and initial state value (S = 266745, E = 0, I = 200, A = 0, R = 0, X = 500, Y = 0, Z = 0); the mean and the median as well as the 95th and

50th percentiles of the replicated simulations are displayed.

https://doi.org/10.1371/journal.pone.0198280.g006
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Fig 7. Parameters estimation by fitting model to weekly malaria cases of WRP. The deterministic model (for both human and vector)

trajectories and model assessment (lines) run against the WRP data (points), with � = 56.0, b = 0.63984, α1 = 0.0191938, α3 = 0.05, σi = 0.789852

and initial state value (S = 778342, E = 0, I = 200, A = 0, R = 0, X = 500, Y = 0, Z = 0); the mean and the median as well as the 95th and 50th

percentiles of the replicated simulations are displayed.

https://doi.org/10.1371/journal.pone.0198280.g007
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individuals at risk and number of malaria cases be Ej and xij respectively. The hierarchical

model used to validate the model for the observed malaria counts is thus:

xijjyj; b0 � PoissonðEjeb0tyjÞ;

yi � Uðl1; l2Þ;

where l1 and l2 are known constants. The Ej values were obtained using [32].

Intervention with bednets (LLINs)

The LLINs is the only intervention used in the study and hence, by testing its scale up effect on

malaria transmission. We use data of LLINs coverage at state level for 2009 as baseline calcu-

lated from the given number of LLIN distribution which is provided by MIS and has been pre-

sented in [32]. In our model, LLINs intervention results (shown in Table 2) in:

1. Mosquito biting rate: A reduction of the mosquito biting rate is given by

ð1 � wVÞ�

where χ is the proportion of LLINs coverage and V is the effectiveness of LLINs. For the

sake of calculating the basic reproduction number of the model with LLINs intervention,

we assume that V is constant. However, in simulation practice, we consider the efficacy of

LLINs wanes with time since mass distribution of LLINs campaigns were run in just one to

four states in any single year. To account for this, we use in our model simulations, the fol-

lowing formula taken from [41].

VðtÞ ¼ 1 � a exp ð� e� xðt� yÞÞ ð9Þ

where a and x are real numbers and y is a positive integer.

2. Mosquito mortality rate: LLINs intervention is also assumed to have three effects on the

adult mosquito population. Firstly, increase the overall mosquito death that land on the

nets. Secondly, repelling and possibly diverting mosquitoes to an animal blood host due to

either insecticide irritation or the physical barrier of the net. Thirdly, lengthening the dura-

tion of the gonotrophic cycle leading to a reduced oviposition rate. Interested readers may

also consult [42, 43] for further details.

Table 1. Model parameters: Description and value.

Symbol Description Estimate Ref

μ Natural death rate of humans 0.00006614 Est

σa Onward infectivity from an asymptomatic infectious 0.2 [19]

ρ Probability of asymptomatic infectious 0.0071 (fixed) [19]

α2 Asymptomatic infection rate 1/200 (1/180–1/250) fixed [42]

δ Humans death rate due to malaria 0.0004 (0.00027-0.0005) fixed [18]

η Probability of acquiring clinical disease 1/12 (fixed) day−1 [42]

Γ Birth rate of humans Humans/Day Est

σi Onward infectivity from a clinical infectious Derived from data

b Probability of infection Derived from data

�j Mosquitoes biting rate for state j Derived from data

α1 Clinical disease rate Derived from data

α3 Human Re-susceptibility rate Based on drug

Parameters description and value driving the mathematical model of malaria.

https://doi.org/10.1371/journal.pone.0198280.t001
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The probability that a surviving mosquito succeeds in feeding during a single attempt is

given by

W ¼ 1þ w�ðs � 1Þ ð10Þ

where ϕ is the proportion of people in bed when they are bitten and s is the probability of a

mosquito feeding successfully on a person sleeping under a bed net.

The probability of a mosquito being repelled without feeding is thus

ZðwÞ ¼ �wr: ð11Þ

where r is probability of a mosquito being repelled by a bed net. At χ LLIN coverage, the

duration of a feeding cycle is given by 1/f(χ) = τ1/(1 − Z)+ τ2 where τ1 is the time spent

Fig 8. Model validation by fitting to malaria cases on weekely basis between 2011-2015. The posterior mean densities of the mosquito bite rate � in CES, WBGZ and

WRP with 95% credibility interval at a chosen number of 10,000 iterations.

https://doi.org/10.1371/journal.pone.0198280.g008
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searching for a blood meal and τ2 is the time spent resting which is unaffected with inter-

vention.

Thus, the probability of a mosquito surviving one feeding cycle is given by

bðwÞ ¼
b1b2W
1 � Zb1

� �f ðwÞ
ð12Þ

where b1¼e� mð0Þt1 and b2¼e� mð0Þt2 are the probability of a mosquito surviving the periods of

feeding and resting.

The mosquitoes mortality which depend on bed nets coverage is thus

mvðwÞ ¼ � log bðwÞ ð13Þ

On introducing the use of LLINs, R0 becomes

R0ðwÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � VwÞ
2
�2bbðwÞsar

mvðwÞðbðwÞþmvðwÞÞðZþrþmÞðmþa1Þ
þ

ð1 � VwÞ
2
�2bbðwÞsiZ

mvðwÞðbðwÞþmvðwÞÞðZþrþmÞðmþdþa2Þ

s

ð14Þ

We will now analyse the sensitivity index of R0 with respect to the parameters χ, V and �

according to the definition below.

Definition 1. The sensitivity index ofR0 with respect to a parameter p is given by

Gp
R0
¼
@R0

@p
p

R0

:

Rewriting Eq (14) as

R0ðwÞ ¼ C�ð1 � VwÞgðwÞ; ð15Þ

Table 2. Intervention parameters.

Symbol Description Estimate Ref

C Per ca-pita birth rate of mosquitoes 0.13 [26]

χ LLIN coverage Est from data

f Inverse of gonotrophic cycle 1/3 day−1 [29]

ϕ Proportion of bites taken on humans when in bed 0.89 [29]

s Probability that a mosquito feeds successfully by a bed net 0.03 [34]

r Probability of a mosquito being repelled by a bed net 0.56 [42]

τ1 Time spent seeking blood meal during gonotrophic cycle 0.69 days [29]

τ2 Time spent resting during gonotrophic cycle 2.31 days [34]

β1 Probability of a mosquito surviving the periods of feeding 0.91 [34]

β2 the probability of a mosquito surviving the periods of resting 0.74 [34]

V(t) The efficacy of LLIN Eq (9) [41]

W(χ) Probability of mosquito successfully feeding Eq (10) [42]

Z(χ) Probability of mosquito repeating Eq (11) [42]

β(χ) Daily survival probability Eq (12) [42]

μv(χ) Daily mosquito mortality Eq (13) [42]

Parameter values used in simulation and their sources.

https://doi.org/10.1371/journal.pone.0198280.t002
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where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

ðZþ rþ m

sar

mþ a2

þ
siZ

mþ dþ a1

� �s

and

gðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðwÞ

mvðwÞðbðwÞ þ mvðwÞÞ

s

and using the definition above, we have:

• The sensitivity index with respect to � is

G�

R0
¼
@R0

@�

�

R0

¼
C�ð1 � VwÞgðwÞ

R0

¼ 1:

This means that 10% increase (reductions) in � would results in 10% increase (reductions)

in R0.

• The sensitivity index with respect to V is

GV
R0
¼
@R0

@V
V
R0

¼ � CwgðwÞ
V

C�ð1 � VwÞgðwÞ
¼

� Vw

Cð1 � VwÞ
:

This means that 10% increase (reductions) in Vwould result in 10Vw

Cð1� VwÞ
% increase (reduc-

tions) in R0.

• The sensitivity index with respect to χ is

Gw

R0
¼
@R0

@w

w

R0

¼ ð1 � VwÞðgðwÞÞ0
w

C�ð1 � VwÞgðwÞ
¼

wð� VgðwÞ þ ð1 � VwÞðgðwÞÞ0Þ
C�ð1 � VwÞgðwÞ

:

This means that 10% increase (reductions) in χ would result in

10wð� VgðwÞ þ ð1 � VwÞðgðwÞÞ0Þ
C�ð1 � VwÞgðwÞ

% increase (reductions) in R0.

It is to be noted that we have omitted the explicit expression of g0(χ) to avoid presenting

long mathematical derivations.

Results

The model fitting results are presented first before evaluating the predicted partial impact of

the reduction-focused LLINs interventions. We simulate the model trajectory showing the

population dynamics of humans expressed in susceptible, pre-infectious, clinical infectious,

asymptomatic infectious, and in recovery compartments and vector population dynamics

while simultaneously fitting the infectious class to data, using package fitR (version 0.1 [40]).

The model does display some misfit due to missing values and the simplicity of the basic

model. In Fig 8 model parameters estimated are b, �j, α1, and α3, again projected to five years

of data after a run in order to reach a steady state, incorporating a seasonal model. We carried

out a sensitivity analysis of different parameters: all parameters are fixed and one is left to hold
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different values (+/- 10%) so that its influence on the system behaviour can be assessed. We

found that the disease transmission increases or decreases greatly with an increase or decrease

in the contact rate to susceptible mosquito σi and the biting rate �. We also observed that, a lon-

ger infection period 1/α1 enhances disease transmission, which may lead to an increased con-

tact rate to susceptible mosquitoes. To check the accuracy of our results, we ran the model

using various sets of parameter values (independent chains) and tested whether individual dis-

tributions converge to the expected parameter value. Indeed, we found that the parameter sets

converged to the posterior parameter values. Furthermore, on different occasions, the repro-

duction number, R0 is the parameter most sensitive to the biting rate. For instance, R0 reaches

15 when the bite rate is 117 per person per year but it is reduced to 6 when the bite rate is 34

per person per year, as obtained using Eq (7). This means that the prevalence of malaria will

increase with an increase in the corresponding rate of mosquito bites and it will decrease with

optimal mosquito control. The sensitivity index of R0 with respect to χ and V are simulated in

Figs 9 and 10 respectively where the parameter values from Tables 1 and 2 were used.

The model’s key parameters are estimated through data-fitting procedures and along with

those presented in Tables 1 and 2 are used to project the disease. The model results were rela-

tively robust to variations in the long lasting efficacy of LLINs which decrease the biting rate

and increase the mosquito mortality rate. The predicted potential impact of the use of LLINs

by humans as an intervention strategy for combatting malaria in the three study areas (differ-

ent states in different regions) is illustrated in Fig 11. For instance, a slight change in LLINs

coverage can drastically affect the lifespan and hence the patterns of mosquito bites.

Fig 9. Sensitivity index of R0 with respect to χ. Sensitivity index of R0 with respect to χ for different values of V.

https://doi.org/10.1371/journal.pone.0198280.g009
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We further derived and examined the basic reproduction number in relation to biteing rate

values and LLINs coverage from Eq (14) plotted in Fig 12. With the low transmission of a bites

rate of two infectious bites per person per year, the proportion of infections resulting in the

reproduction number falls to less than one with the impact of intervention seemingly higher.

But with more infectious bites per person per year LLINs coverage alone has less impact and

may not succeed in reducing the reproduction number to less than one. Measuring the basic

reproduction number can be difficult, but it can also be the most direct measurement for

examining the effect of vector control interventions.

Conclusion

In this paper, we presented a mathematical model in order to explore the impact of LLINs on

malaria transmissions using a system of ordinary differential equations. The model analysis

was based on a modification of a host-vector model presented by Filipe et al [30]. The Bayes-

ian framework was incorporated to provide a posterior distribution of the parameters of the

model given the malaria trial data. The threshold parameter, R0, is the number of humans

and mosquitoes expected to be infected with malaria by a single infected individual/mos-

quito introduced into a naive population. It was computed using the next ge neration matrix

method. Owing to the reproduction number’s sensitivity to the mosquitoes biting rate, it is

reasonable to recommend the use of LLINs as intervention strategy for malaria transmission.

Therefore, we modelled the intervention to behave like a function comprised of three param-

eters: the proportion of LLIN coverage, the proportion of individuals exposed to mosquito

Fig 10. Sensitivity index of R0 with respect to V. Sensitivity index of R0 with respect to V for different values of χ.

https://doi.org/10.1371/journal.pone.0198280.g010
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bites, and the effectiveness of the nets. Simulation results of R0 show that the use of bed nets

with long term effectiveness could reduces R0 to less than one in low transmission sites (at a

bites rate of two infectious bites per person per year). In the absence of any intervention, we

note a large number of R0, confirming a substantial increase in incidence of malaria in the

community. We cannot be sure whether the coverage of LLINs could eradicate malaria in an

equivalent setting. Nevertheless, in low-transmission areas, LLINs have the ability to reduce

malaria transmission to low levels, provided the interventions have high-use levels. Mean-

while, in moderate and high-transmission in these selected settings there was little change

in the incidence levels. Thus, in these settings, novel tools and/or substantial social improve-

ments might be required to achieve considerable reductions in malaria prevalence. Finally,

the model is useful for further understanding future cases of malaria in South Sudan. This

work shows that the use of LLINs with long term effectiveness may reduce R0 and hence

malaria transmission.

Fig 11. Prediction of malaria infections. Projected cases of malaria in hundred thousands of people with: No interventions of LLINs, coverage based

on 2009 LLINs distribution, and additional coverage of LLINs; (A) in Central Equatoria, (B) in Western Bahr-El-Ghazal and (C) in Warrap.

https://doi.org/10.1371/journal.pone.0198280.g011
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