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Abstract

Strontium isotope ratios (87Sr/86Sr) are gaining considerable interest as a geolocation tool

and are now widely applied in archaeology, ecology, and forensic research. However, their

application for provenance requires the development of baseline models predicting surficial
87Sr/86Sr variations (“isoscapes”). A variety of empirically-based and process-based models

have been proposed to build terrestrial 87Sr/86Sr isoscapes but, in their current forms, those

models are not mature enough to be integrated with continuous-probability surface models

used in geographic assignment. In this study, we aim to overcome those limitations and to

predict 87Sr/86Sr variations across Western Europe by combining process-based models

and a series of remote-sensing geospatial products into a regression framework. We find

that random forest regression significantly outperforms other commonly used regression

and interpolation methods, and efficiently predicts the multi-scale patterning of 87Sr/86Sr var-

iations by accounting for geological, geomorphological and atmospheric controls. Random

forest regression also provides an easily interpretable and flexible framework to integrate

different types of environmental auxiliary variables required to model the multi-scale pattern-

ing of 87Sr/86Sr variability. The method is transferable to different scales and resolutions and

can be applied to the large collection of geospatial data available at local and global levels.

The isoscape generated in this study provides the most accurate 87Sr/86Sr predictions in

bioavailable strontium for Western Europe (R2 = 0.58 and RMSE = 0.0023) to date, as well

as a conservative estimate of spatial uncertainty by applying quantile regression forest. We

anticipate that the method presented in this study combined with the growing numbers of

bioavailable 87Sr/86Sr data and satellite geospatial products will extend the applicability of

the 87Sr/86Sr geo-profiling tool in provenance applications.

Introduction

Strontium isotope ratios (87Sr/86Sr) are a commonly used geochemical tracer to investigate

provenance of modern and ancient organisms and materials in archaeology, ecology, and

PLOS ONE | https://doi.org/10.1371/journal.pone.0197386 May 30, 2018 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bataille CP, von Holstein ICC, Laffoon JE,

Willmes M, Liu X-M, Davies GR (2018) A

bioavailable strontium isoscape for Western

Europe: A machine learning approach. PLoS ONE

13(5): e0197386. https://doi.org/10.1371/journal.

pone.0197386

Editor: Jennifer Cotton, California State University

Northridge, UNITED STATES

Received: September 4, 2017

Accepted: May 1, 2018

Published: May 30, 2018

Copyright: © 2018 Bataille et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file.

Funding: CPB and XML were supported by the

University of North Carolina start-up fund awarded

to Xiao-Ming Liu (http://www.unc.edu/). GRD,

ICCvH and JEL were supported by the ERC-

Synergy project NEXUS1492 under the European

Union’s Seventh Framework Programme (FP7/

2007-2013)/ERC grant agreement no. 319209

(https://ec.europa.eu/research/fp7/index_en.cfm).

https://doi.org/10.1371/journal.pone.0197386
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197386&domain=pdf&date_stamp=2018-05-30
https://doi.org/10.1371/journal.pone.0197386
https://doi.org/10.1371/journal.pone.0197386
http://creativecommons.org/licenses/by/4.0/
http://www.unc.edu/
https://ec.europa.eu/research/fp7/index_en.cfm


forensics [1,2]. 87Sr/86Sr varies predictably between different geologic provinces, based on

their age and composition, and through weathering is transferred into the hydrosphere and

ecosphere. Animals take up 87Sr/86Sr from the environment and diet and incorporate this ratio

into their skeletal and organic tissues. Many organic tissues of animals also grow continuously

(e.g., otoliths, hair, teeth, bones, tusks, feathers) and record time-series of 87Sr/86Sr variations

that can be used to reconstruct movement or migration patterns of individuals or entire popu-

lations. For instance, the 87Sr/86Sr ratio has successfully been used in many archeological stud-

ies to distinguish between locals and non-locals population, in forensics to track the origin of

illicit products or human remains, in food science to certify food origin or in ecology to track

modern and ancient animal migration [3–5]. The growing interest in applying 87Sr/86Sr ratio

as a geolocation tool resides primarily in its unique pattern of geographic variations [6]. Geolo-

cation information derived from traditional isotope systems will always be limited because of

their broad gradients on the Earth’s surface (e.g., hydrogen and oxygen isotope systems) [1]

and the difficulty in accurately predicting their high resolution spatiotemporal variations (e.g.,

carbon and nitrogen isotope systems). The 87Sr/86Sr ratio displays a high resolution but pre-

dictable scalar spatial pattern following geological regimes and limited temporal variability. As

such, spatiotemporal patterns of 87Sr/86Sr values in the geosphere, ecosphere and hydrosphere

provide precise and unique geolocation potential for provenance studies.

The basis of 87Sr/86Sr geolocation is to compare the 87Sr/86Sr profile of a sample of interest

with that of a 87Sr/86Sr baseline to estimate geographic origin. This geographic assignment can

be performed using two different approaches: the nominal approach and the Bayesian contin-

uous approach [7]. In the nominal approach, the study area is divided into small blocks of

potential areas of origin defined through a priori knowledge. The 87Sr/86Sr values in these

small blocks are calculated as the mean value and variance of a series of local bioavailable
87Sr/86Sr data analyzed within each block. The 87Sr/86Sr value of the sample of interest is then

compared to these possible a priori locations using a classification tree to generate the geo-

graphic assignments. In the Bayesian continuous approach, 87Sr/86Sr values of the sample of

interest are compared to models predicting the 87Sr/86Sr values over the entire study area.

These continuous predictive models also include spatial explicit uncertainty assessment allow-

ing the evaluation of the probability of origin of a sample at each location relative to all other

locations. Since Sr isotopes are distributed continuously throughout the environment, and

since there is often overlap in 87Sr/86Sr ratios among geographically distinct locations (further

complicating a priori group determination), the continuous probability approach makes geo-

graphic assignments more realistic and preferable. However, applying this Bayesian continu-

ous approach of geographic assignment requires the development of accurate predictive
87Sr/86Sr models with spatially explicit uncertainty assessments [7]. These type of models have

been developed for riverine environments and have been used successfully within a continu-

ous probability framework, for example to manage a population of salmon across an entire

watershed [8,9]. In terrestrial environments, however, the application of this powerful contin-

uous assignment approach is hampered by the low accuracy of predictive 87Sr/86Sr models and

their inability to provide spatially explicit uncertainty assessment [10]. Consequently, improv-

ing the accuracy of the predictive 87Sr/86Sr models for terrestrial ecosystems is an essential step

to unlock the potential of the 87Sr/86Sr geolocation tool in terrestrial provenance studies.

Several approaches have been tested in recent years to develop regional-scale predictive
87Sr/86Sr maps for terrestrial environments. These models are either created by spatially inter-

polating empirical 87Sr/86Sr data [11–14] or by developing process-based spatial models pre-

dicting 87Sr/86Sr ratios on a given substrate [6,15–17]. Empirical interpolation methods rely on

analyzing a large number of 87Sr/86Sr ratios to estimate the “bioavailable Sr pool” (the Sr pool

locally available to ecosystems). This bioavailable Sr pool integrates Sr from different local
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sources and its resulting 87Sr/86Sr value is assumed to estimate the 87Sr/86Sr signature of local

ecosystems. The choice of a reference substrate to represent this bioavailable Sr pool is non-

trivial, as different sample materials can incorporate and integrate Sr at different spatial and

temporal scales and from different sources [4,18–21]. The most common substrates used to

represent the local bioavailable Sr pool include 87Sr/86Sr analyses of surface water, which inte-

grates Sr sources at the watershed scale [22], soil leachates, which reflect local soil mineralogy

[23], flora, which can uptake Sr from different soil depths depending on the rooting zone

[12,13,23–26], fauna with limited feeding ranges, which source Sr from their local water

and food [13,24,27] or combinations of these sample types. These bioavailable data can then

be interpolated often in combination with other auxiliary variables (e.g. geological maps,

sea salt aerosol deposition, landcover) to further refine the empirical 87Sr/86Sr prediction

[11,14,25,28]. However, the accuracy of these empirical interpolation methods is generally low

due to the non-normal distribution of 87Sr/86Sr data and the non-continuous scalar patterning

of 87Sr/86Sr variability. As a result, these empirical models still require very high sampling den-

sity to produce spatial 87Sr/86Sr predictions at the regional scale [14], limiting their application.

Process-based spatial 87Sr/86Sr models rely on our current knowledge of Sr isotopes cycling

from rocks to hydro- and ecosystems. The starting point of these predictive efforts is to model
87Sr/86Sr variations in bedrock using the age and/or lithology from geological maps [16]. The

propagation and mixing of this geologically-derived Sr into the hydrosphere and ecosphere is

further predicted through modeling of chemical weathering, atmospheric deposition and soil

mixing processes [15–17]. The models are validated using bioavailable 87Sr/86Sr datasets. How-

ever, the predictive power of these process-based models has remained limited due to the low

resolution of regional geological maps in many countries and the complexity of integrating the

multiple factors (e.g. geomorphology, pedology, hydrology, climate) and sources (geological,

atmospheric, biological) influencing the 87Sr/86Sr variations at different spatial scales [17].

In this work, we combine process-based model products and regression techniques to

model 87Sr/86Sr variations across Western Europe and overcome, by statistical means, the

present lack of quantitative understanding of the controls of the bioavailable 87Sr/86Sr variabil-

ity at regional scales. While we test several regression techniques, we focus primarily on ran-

dom forest algorithms. Random forest [29] is an ensemble, multiple decision tree classifier

that has been demonstrated to be highly accurate, adaptable and interpretable to map environ-

mental variations and processes. The reasoning behind using random forest regression for

mapping 87Sr/86Sr variations is that the algorithm can integrate non-normal, binary, continu-

ous, categorical and non-independent predictor variables into a unified framework and is

relatively insensitive to outliers. The objectives of this work are to generate more accurate

bioavailable 87Sr/86Sr prediction and uncertainty maps for Western Europe to facilitate the

application of the Bayesian continuous assignment approach in this key region of the world.

Generating such a model will allow the application of the 87Sr/86Sr geolocation across western

Europe for a variety of high-profile forensic, ecological and archeological applications from

certifying wine origin to tracing the movement of ancient Neanderthal populations.

Materials and methods

Study area and target variables

Georeferenced bioavailable 87Sr/86Sr data are only available for a few countries in Europe. The

dataset used in this study is a compilation of 2551 published 87Sr/86Sr analyses from 1400 geor-

eferenced locations in France, Great Britain, the Netherlands, Germany and Denmark (Fig 1)

[12,21–23,28,30–35]. Data from plants, small animals (bone, dentine, enamel, snail shell),

soils, rocks and surface waters were included as they estimate the local bioavailable Sr; aerosol
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dust (n = 2) and insect samples (n = 1) were excluded as the Sr from these substrates originate

from non-local Sr sources (i.e., distant arid regions for dust, non-local feeding areas for flying

insects). There are further bioavailable 87Sr/86Sr datasets in existence, for example from archae-

ological [36], hydrological [37] or food authenticity [11] studies, but these were not used

because they either did not provide geographic coordinates or the raw 87Sr/86Sr data and/or

targeted a sample type that was not considered sufficiently location-specific (e.g., large migra-

tory mammal integrates Sr from different sources along their migratory pathways). Geo-

graphic coordinate systems differed between studies; all were converted to decimal latitude

Fig 1. Sample locations and types of data included in the compilation dataset. Coastlines and rivers are from http://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0197386.g001
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and longitude. Additional bioavailable 87Sr/86Sr data from agricultural and grazing soils has

been generated by the GEMAS project [38] though not yet fully published, and is not included

in the model.

Auxiliary variables

Predictive models. We used the published model by Bataille et al. (2014) [15] and applied

it to the study area. Briefly, the bedrock model is based on the radiogenic equation that speci-

fies that the 87Sr/86Sr ratio in a given rock progressively increases due to the decay of rubidium

-87 into strontium-87 through time. At present day, the 87Sr/86Sr ratio in a rock is a function

of both its rubidium to strontium ratio (Rb/Sr), which controls the rate of radiogenic decay

and its age. The bedrock model uses lithological and age information from geological maps to

parameterize the age and Rb/Sr ratios of individual rock units and apply the radiogenic equa-

tion. The bedrock model predicts the median, quartile 1 and quartile 3 87Sr/86Sr values of each

rock unit of a geological map at present-day. We applied this model in western Europe using

the GLiM geological map as primary source of geological information. For more information

on the exact parameterization steps of the bedrock model, refer to the supplementary material

in [15] including Table A1 and A3.

Other auxiliary data. Covariates were selected to represent factors of bioavailable
87Sr/86Sr variations according to Capo et al. (1998) [39]: parent rock, aerosols, biological pro-

cesses, relief, climate, and water dynamics. Bioavailable 87Sr/86Sr variations are also controlled

by processes that occur over timescales ranging from years (erosion, aerosol inputs) to millions

of years (geology, topography). Consequently, we only used biological, hydrological and cli-

matic datasets that represent multi-year averaging and with global coverage so that our method

can be applied in other regions (Tables 1 and 2).

Modelling

Random forest regression. In this study, our primary goal was to test the potential of ran-

dom forest regression algorithms to overcome some of the difficulties in predicting 87Sr/86Sr

variations on the Earth’s surface. While we use other algorithms as a point of comparison

(Fig 2; Table 3), for conciseness, we only describe the random forest algorithm in detail (for

information about the other algorithms refer to the associated R packages given in Table 3).

Random forest belongs to the family of tree-based machine learning algorithms. It predicts a

response from a set of predictors by creating multiple decision trees and aggregating their

results [29]. The decision trees themselves are constructed through recursive partitioning of

a bootstrapped subset (bagging) of the training data (root node). The root node is split by

defining an optimal threshold based on a randomly selected subset of predictor auxiliary vari-

ables to provide two resulting data partitions, each with the greatest purity (the least variation

in the target variable). This process is then repeated successively on each data partitions until

the terminal nodes are reached. The terminal node is reached, and the mean value of the target

variable recorded, when the number of samples present in the last partition reach the value

specified by the user.

Table 1. List of bedrock model outputs from [15] used in the regression. D = discrete.

Variables Description Resolution Type Source

r.m1 Median bedrock model 1 km D This study

r.srsrq1 Quartile 1 bedrock model 1 km D This study

r.srsrq3 Quartile 3 bedrock model 1 km D This study

https://doi.org/10.1371/journal.pone.0197386.t001
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Workflow for regression modeling. Spatial prediction, fitting of models and generation

of maps, was implemented in R (the script is available in the supporting information) follow-

ing the workflow of the caret package [50]. The process of generating the 87Sr/86Sr isoscape

consisted of the following steps (Fig 2):

• Project all auxiliary data into WGS84-Eckert IV and resample at 1km resolution (bilinear

interpolation for continuous variables and nearest neighbor interpolation for categorical

variables).

• Extract covariate values at the geolocation of samples and build the regression matrix.

• Train the spatial prediction models using the caret package.

• Apply spatial prediction models using raster brick (covariates).

• Assess accuracy using cross-validation.

We compared random forest regression with other regression methods available in the caret
package [50] and with ordinary and universal kriging implemented in the automap package

[50]. A series of algorithms were tested (Table 3) that belong to different categories including:

• Linear regression models that aim to explain the spatial distribution of a dependent variable

by means of a linear combination of predictors.

• Non-linear regression models that are similar to linear regression models but do not require

linear relationship to be known a priori.

Table 2. List of geological, climatic, environmental and topographic variables used in the regression. D = Discrete; C = Continuous; GLiM = Global Lithological Map;

CCSM.3 = Community Climate System Model 3; SRTM = Shuttle Radar Topography Mission.

Variables Description Transformation Resolution Type Source

r.xx

r.litho

GLiM 1st lithological class attribute

GLiM 2nd lithological class attribute

1 km D [40]

r.maxage_geol.t GLiM age attribute Log 1 km D [40]

r.minage_geol.t GLiM age attribute Log 1 km D [40]

r.meanage_geol.t GLiM age attribute Log 1 km D [40]

r.age Terrane age attribute 1 km D [41]

r.salt.t CCSM.3 simulation Log 1.4˚×1.4˚ C [42]

r.dust.t Multi-models average Log 1˚×1˚ C [42]

r.elevation SRTM 90 m C [43]

r.cec Cation Exchange Capacity 250 m C [44]

r.ph Soil pH in H2O solution 250 m C [44]

r.phkcl Soil pH in KCl solution 250 m C [44]

r.clay Clay (weight %) 250 m C [44]

r.silt Silt (weight %) 250 m C [44]

r.sand Sand (weight %) 250 m C [44]

r.orc Soil organic carbon (weight %) 250 m C [44]

r.bulk Bulk density (kg m−3) 250 m C [44]

r.bouguer WGM2012_Bouguer 2 min C [45]

r.soilthickness Global soil thickness 1 km C [46]

r.map.t Mean annual precipitation (mm.yr-1) Log 30-arc sec C [47]

r.pet Global Potential Evapo-Transpiration 30-arc sec C [48]

r.ai Global Aridity Index 30-arc sec C [48]

r.lc Global Land Cover 2009 300 m D [49]

https://doi.org/10.1371/journal.pone.0197386.t002
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• Regression trees that split the training dataset into sub-groups having similar response values.

• Ordinary kriging that predict the spatial variations of a dependent variable by modeling spa-

tial autocorrelation.

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

87Sr/86Sr data

Bedrock Model
m1...... mn  

Step 4

Overlap

Covariates
x1 ..... xn Climate

Environmental
Geological

Topographic
Soils

ID        lat         long       87Sr/86Sr obs   m1...... mn          x1 ..... xn
  

Step 2

Step 1 Step 3

Optimize & compare
models

Step 5
Store 

”best model”
parameters

Regression matrix
Target variable

Model variables
Spatial covariates 

Regression methods
Linear regression models

Non-linear regression models
Regression tree models

Cross-validation
Random data-splitting
10-fold cross-validation

Spatial predictions
Mean

Median
Quartiles

0.975
0.05

Step 6

Apply model

Step 7

Residuals
Moran’s I test

Fig 2. Flowchart summarizing the workflow used for the regression analysis. Tested covariates are given in Tables 1 and 2. The R script is provided in the supporting

information.

https://doi.org/10.1371/journal.pone.0197386.g002
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Models were computed for the total dataset, and for sub-datasets for each sample category

(plants, soils, waters).

Model optimization and predictors selection. We fitted each of the above models

(Table 3) for a combination of tuning parameters using the train function of the caret package

[50]. The train function selected the optimal parameters in the different regression using root

mean squared error (RMSE) as primary metric and a 10-fold repeated cross-validation scheme

with 5 repetitions using 80% of the data for training at each iteration. The average RMSE val-

ues obtained from the k-fold cross-validation is used as the primary metric to compare the pre-

dictive power of models with each other. A potential issue, however, is that the predictive

power of linear and non-linear regression models is often decreased by the multicollinearity of

predictors and by the non-normal distribution of predictors and target variables. Regression

trees are not as sensitive to these issues and can generally produce better models without pre-

processing of the input variables. While this is convenient, we wanted to assess the full poten-

tial of linear and non-linear models to predict 87Sr/86Sr variations. To limit the problem of

multicollinearity for linear models, generalized least squares (GLS) was conducted to identify

significant predictors needed to model 87Sr/86Sr variations using generalized linear models fol-

lowing Beguerı́a et al. (2013) [51]. To verify that the non-normality of predictor and target var-

iables did not significantly decrease the performance of the linear and non-linear models, we

tested different transformations of the covariates when fitting linear models. For random for-

est, we optimized our model using the variable selection procedure of the VSURF package

[52], focusing on variable selection for prediction. Variable importance and predictive rela-

tionships with the target variable were further visualized using the variable importance purity

measure and partial dependence plots to visualize the importance of different predictors. Vari-

able selection was not independently optimized for other non-linear models, only the variables

selected by VSURF as optimum for random forest were submitted to the other models. As a

last step, spatial autocorrelation in relation to geographic distances between sites was examined

for the residuals of all created models using Moran I statistics.

Isoscape. The 87Sr/86Sr isoscape maps were produced using the best performing regres-

sion random forest model constructed on the whole dataset (n = 1400 individual sites) and the

associated predictors. While random forest provides a mean 87Sr/86Sr prediction using the

selected predictors, there are no built-in features to assess spatially explicit model uncertainty

other than the cross-validated RMSE. Spatial uncertainty assessment is critical for using iso-

scapes in continuous-probability surface models of geographic assignment [10]. To circumvent

Table 3. Statistical algorithms tested in this study.

Name Model R package

Linear regression models

Glm Generalized linear model Base

svmLinear Support Vector Machines with Linear Kernel Kernlab

Gam Generalized Additive Model using Splines Mgcv

Non-linear regression models

Nnet Neural Network Nnet

svmRadial Support Vector Machines with Radial Basis Function Kernel Kernlab

Regression tree models

Gbm Stochastic Gradient Boosting Gbm

rf (and qrf) Random forest (and quantile random forest) Randomforest (and ExtraTrees)

Geostatistical models

Ok Ordinary Kriging Autokrige

https://doi.org/10.1371/journal.pone.0197386.t003
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this issue, we used quantile random forest regression to generate spatially explicit raster of

uncertainty around the prediction. Where random forest takes the mean of the outputs of the

ensemble of decision trees as the final prediction, quantile regression forests also take specified

quantiles from the outputs of the ensemble of decision trees. The mean of the outputs of the

ensemble of decision trees was used as the predicted value, and for each prediction the 2.5th

and 97.5th percentiles of the ensemble were used as the lower and upper limits of a 95% predic-

tion interval. We generated 87Sr/86Sr predictions (mean and median) and uncertainty (width of

the 95% prediction interval) at 1 km2 resolution.

Results and discussion

Limitations of the bioavailable dataset

The bioavailable dataset compiled in this study is highly variable in terms of sample density,

geographic distribution and sample type (Fig 1). The compiled dataset is largely a reflection of

varying national and scientific interest and funding for archaeological provenance research.

Sample collection strategies and types (waters, rocks, soils, dust, plant tissue and animal tissue)

differ greatly between studies, reflecting research study context, e.g., systematic/opportunistic

sample collection, the scale of the archaeological enquiry, local and regional geological context,

and current land use.

Variability in sample type occurs across the study area, e.g., there are no soil samples ana-

lyzed from mainland Denmark and no shell samples from France. This is problematic because

the different sample types characterize different parts of the total Sr available to the biosphere,

deriving from a combination of mineral, atmospheric and anthropogenic sources [4]. Subsoil

and topsoil can have different 87Sr/86Sr ratios due to differential mineral weathering, deposi-

tion types and soil management [53]. In addition, plants with different rooting depths draw on

differing Sr pools [18,54]. Animals differ in the nature, spatial scale and temporal scales of

their Sr inputs: e.g., snail shells reflect soil carbonate values [21] or rainwater values [12] rather

than bulk local soil values. Different bodies of surface water also differ in the nature and scales

of their Sr inputs [55]. Soil 87Sr/86Sr ratios are dependent on the leaching methodology used

[22], which differs between studies included in this dataset. The regional variability in sample

types across the study area therefore means that regionally different fractions of local total bio-

available Sr contributions are reflected in the dataset. This is not ideal, as it will bias the predic-

tions derived from this dataset towards the dominant sample type used in each region. The

forthcoming GEMAS dataset [38] may provide more systematic coverage and a homogeneous

dataset of soil 87Sr/86Sr ratios should substantially improve the quality of bioavailable isoscapes

for Western Europe. Sampling in the GEMAS project is, however, also biased as it is restricted

to agricultural and grazing soils, which are likely to have received exogenous addition of Sr in

the form of fertilizer, lime or animal waste [21,22].

In the present study, we estimate the 87Sr/86Sr variability between sampled substrates

(within-population uncertainty) by calculating the median standard deviation of 87Sr/86Sr

ratios between samples at each location where more than one substrate was collected

(median = 0.0003). This uncertainty is primarily controlled by the local bedrock 87Sr/86Sr

ratios (Fig 3). The difference between 87Sr/86Sr ratios from different substrates at the same site

tends to be higher in complex geological regions such as felsic and metamorphic units (Fig 3)

or when the 87Sr/86Sr ratio of the local bedrock differ significantly from the 87Sr/86Sr ratios of

other local sources of Sr (e.g., aerosols or local erosion). While in the long term developing

substrate specific models would probably be more appropriate, the uncertainty represented by

using multiple substrates is less than 1% of the total range of bioavailable 87Sr/86Sr ratios of the

dataset. In this study, we opted to use the whole bioavailable dataset with multiple substrates
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Fig 3. Within-population 87Sr/86Sr uncertainty visualization. Bubble map of the standard deviation of 87Sr/86Sr analyses of different

substrates from the same site plotted over the lithological map of Western Europe from the GLiM database. A boxplot in the bottom-right

corner shows the variability of 87Sr/86Sr ratios by geological group with the thick black line representing the median value, the

box representing the quartiles and the tails representing minimum and maximum value. We added the mean value as a red diamond for
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and we used the median of the 87Sr/86Sr ratios when several samples were collected from the

same site. Considering the small variance of 87Sr/86Sr values between substrates, using multiple

substrates will not significantly increase the uncertainty but will allow testing the random for-

est model on a larger dataset with a broader spatial extent. As such, using multiple substrate

appears appropriate for the resolution and accuracy targeted by this study but the approach

should be re-evaluated for more local and targeted studies.

Model performance

Comparison of random forest regression with other regression methods. Comparison

of cross-validated RMSE and correlation coefficient (R2) values between random forest, and

other regression algorithms indicates that random forest regression is the best performing

regression algorithm to predict 87Sr/86Sr variations over Western Europe (rf model on Fig 4).

The model performance of the 10-fold cross-validated model (R2 = 0.58 and RMSE = 0.0023)

significantly outperforms all other tested regression algorithms (Fig 4). Fig 4 shows that, algo-

rithms from the machine learning class perform significantly (Wilcox test p-value << 0.05),

better than linear, and non-linear regressions at predicting 87Sr/86Sr variations over Western

Europe. Among the machine learning algorithms, although random forest shows the best pre-

dictive power and significantly outperforms other methods (Wilcox test p-value<0.05), gener-

alized regression boosting tree and cubist regressions also perform well at predicting 87Sr/86Sr

variations (Fig 4B). The better performance of machine learning algorithms probably stems

from their ability to make use of different types of predictor variables (categorical and continu-

ous) and from their insensitivity to non-normal distribution and outliers of the training data-

set. Both advantages are critical when trying to predict 87Sr/86Sr variations that are usually

positively skewed and display multiscale patterning of variations [16].

The above comparisons used models built with variables selected by the VSURF process for

rf models, which might not be optimal for linear models. We independently optimized the

generalized linear regression models, by log-transforming the target variable and the covariates

and by recursive elimination of multicollinear covariates. The best generalized linear regres-

sion model gave a RMSE of 0.0028. Counterintuitively, transformation of auxiliary and target

variables decreased model fit (RMSE = 0.004).

Comparison of random forest regression with ordinary kriging. We used the self-opti-

mizing algorithms from the R automap package to interpolate 87Sr/86Sr variations using an

ordinary kriging model. With a RMSE of 0.0026, the ordinary kriging prediction accuracy is sig-

nificantly lower than that of all the machine learning algorithms but outperforms parametric

regression models. The better performance of machine learning algorithms over ordinary kriging

is not surprising as kriging methods assume second order stationarity and spatial autocorrela-

tion. Those assumptions are generally incorrect for 87Sr/86Sr variation that primarily depends on

the discrete bedrock unit distribution. Some additional work could be attempted to circumvent

this issue. For instance, applying a kriging based on geological units or groups of units might

help train better variograms and make better use of categorical geological variables [14].

Comparison of random forest regression with Bataille et al. 2014’s model. Random

forest significantly outperforms the Bataille et al. (2014) [15]process-based model (RMSE =

0.0031) for predicting 87Sr/86Sr variations over Western Europe (BB14 model on Fig 4). This

result is unsurprising as Bataille et al. (2014)’s model is used as an auxiliary variable in the

comparison. mt = metamorphic rocks; pa = felsic plutonic rocks; va = felsic volcanic rocks; pb = mafic plutonic rocks; vb = mafic volcanic

rocks; sm = mixed sediments; sc = carbonate sediments; ss = siliciclastic sediments; su = unconsolidated sediments. Coastline features are

from http://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0197386.g003
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random forest regression (Fig 2 and Tables 1 and 2). We tested a random forest regression

model that did not include Bataille et al. (2014)’s model products (rf-B14 model on Fig 4). This

model gives slightly lower performance (RMSE = 0.0024) than the regression model trained

using Bataille et al. (2014)’s model products (RMSE = 0.0023). However, the small difference

in performance suggests that random forest regression is a powerful algorithm to integrate

complex, non-linear relationship using geological auxiliary variables (i.e., age and lithology

layers from the GLiM database) to model geologically-derived 87Sr/86Sr variability.
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Fig 4. Model performance metrics. Summary of tested regression algorithm performance after 10-fold cross validation with 5 repetitions using: A.

boxplots of the correlation coefficient (R2) and B. boxplots of the root mean square error (RMSE). The regression methods are sorted by their

predictive power from top to bottom. For model abbreviations please refer to Table 3. rf-B14: Random forest regression without Bataille et al. 2014

products; B14: Random forest regression using only Bataille et al. (2014)’s model products (Table 1).

https://doi.org/10.1371/journal.pone.0197386.g004
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Comparison of random forest regression by sample category. Random forest regression

was independently performed on the plant, soil and waters subsets of the bioavailable dataset

(n = 800, 689 and 395 locations respectively) to compare with the results of the complete data-

set (n = 1400 locations, i.e., some locations are sampled for multiple substrates). The VSURF-

optimized random forest models including Bataille et al. (2014)’s products remained the best-

performing regression technique for all substrates. However, in comparison with the whole

dataset, the performance was worse for the plant (0.0026) and soil (0.0028) subsets and better

for the waters subset (0.0016). The improvement in predictive power between the water model

and those for plants and soils is probably partly related to the differences in Sr contributions

between sample types: surface water integrates Sr inputs over larger spatial scales than plants

and soils decreasing the isotopic variability [4]. The difference in predictive power is also

dependent on the biased spatial distribution of different sample substrates (Fig 1) and their

relationship to geological complexity [4]. For instance, a large proportion of the water samples

come from Denmark, which has relatively homogenous geology, compared to France from

where the bulk of the plant and soil samples derive from varied geological units (Fig 1).

Random forest regression model

In the following section, we further explore the predictive power, variable importance and

uncertainty of the best performing random forest regression using the whole bioavailable data-

set (rf model on Fig 4).

Performance of the random forest regression. The trained random forest regression

model resulting from the k-fold cross-validated procedure explains 94% of the variance with a

RMSE of 0.0009 over the training datasets (Fig 5A) and 58% of the variance with a RMSE of

0.0023 over the testing datasets (Fig 5B). The remaining training error is higher than the

within-population uncertainty (see section 3.1) but represents less than 3% of the full range of

observed bioavailable 87Sr/86Sr ratios of the dataset. The low training error demonstrates that

random forest regression can fit highly accurate models for bioavailable 87Sr/86Sr variations.

The actual model uncertainty is calculated using the k-fold cross-validated RMSE over the test-

ing datasets (Fig 5B). The value of 0.0023 represents less than 8% of the full range of observed

bioavailable 87Sr/86Sr ratios over the study area. This is a significant improvement over other

regression methods and models (Fig 4). Increased data coverage should further increase the

accuracy and resolution of 87Sr/86Sr predictions. Keeping the k-fold cross-validated RMSE

over the testing datasets below 10% of the observed 87Sr/86Sr range should constitute a reason-

able goal to integrate 87Sr/86Sr isoscapes within the continuous-probability surface model

approach [7,56].

Variable importance assessment. The regression forest model for 87Sr/86Sr finds Bataille

et al. (2014)’s data products and geological variables from the GLiM database to be the most

important predictors of 87Sr/86Sr variations (Fig 6). When Bataille et al. (2014)’s data products

are not used in the regression, age of geological units (minimum, maximum and mean age

layer in Table 2) are the most important predictors selected by the VSURF algorithm (Fig 6B).

When Bataille et al. (2014)’s data products are included as covariates, the maximum and mean

age of geological units from the GLiM database remain among the top predictors selected by

the VSURF algorithm (Fig 6A). This observation suggests that Bataille et al. (2014)’s model

does not make full use of the information contained in the GLiM database and that random

forest regression is able to incorporate additional information from those layers. Overall, this

exercise confirms the predominance of geological variables in controlling 87Sr/86Sr variations

on the surface [17]. Other important predictors of 87Sr/86Sr variations include dust and seasalt
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aerosol deposition (r.dust.t and r.salt.t), elevation (r.elevation and r.bouguer), climate variables

(r.pet, r.map and r.ai) and soil pH (r.ph) (Fig 6A and 6B).

In plant, soil and water sample subsets, VSURF optimization of variable selection also con-

sistently selected GLiM age attributes and the Bataille et al. (2014)’s model products as the

most important predictive variables. When these products were excluded from model optimi-

zation, GLiM age attributes remained the most important variables for all subcategories. Other

variables differed in importance between sample categories. The plant and water sample sub-

sets are very similar to the whole dataset in terms of variable selection and importance. The

importance of elevation in the whole dataset is probably related to soil data, as this is the only

subset in which this auxiliary variable is selected by the VSURF optimization procedure.

Potential evapo-transpiration (r.pet) appeared important only in the plant and water subsets.

Those observations suggest differences in the control of Sr cycling between substrates. The

relationship between potential evapo-transpiration and 87Sr/86Sr in plants and water might be

linked to the important role of water table height in controlling the mixing of Sr sources [18].

The 87Sr/86Sr of the most surficial reservoirs, such as water and plants, will be particularly
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sensitive to small changes in potential evapo-transpiration as they would affect groundwater

circulation and control the contribution of bedrock Sr vs. aerosol Sr to the surface [39].

The independent exploration of variable importance using the generalized linear model

regression also confirmed the significance of Bataille et al. (2014)’s data products and geologi-

cal variables (transformed and untransformed) from the GLiM database. Other variables of

importance included climate variables (r.map and r.pet) and soil pH (r.phk1 and r.ph). For

models built without Bataille et al. (2014) data products, RMSE was always lower than for the

model which included them, regardless of variable transformation.

Relationship between covariates and 87Sr/86Sr variations. We used a partial dependence

plot to further investigate the form of the relation between bioavailable 87Sr/86Sr ratios and

covariates (Fig 7). The visualization of the partial dependence plots demonstrates the advan-

tages of using random forest to predict 87Sr/86Sr variations rather than linear regression

models. In linear or non-linear regression, relationships between variables are reduced to
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parametric relationships, and cannot account for non-continuous, discrete or non-monoto-

nous relationships between variables. Conversely, the random forest regression applied in this

work shows multiple forms of linear, non-linear and threshold-based relationships (Fig 7).
87Sr/86Sr variations are exponentially correlated with the log-transformed maximum age of

geological units (r.meanage_geol.t) (Fig 7A). However, the age of geological units only

becomes an important control of 87Sr/86Sr variations for older rock units (age >> 100 Ma)

(Fig 7A). This observation is in line with the 48.8 billion year half-life of 87Rb such that
87Sr/86Sr ratios of rocks are significantly affected over time periods of several tens of millions
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of years (Fig 7A). The relationship between 87Sr/86Sr variations and the mean 87Sr/86Sr predic-

tion from Bataille et al. (2014)’s model (r.m1) is linear between 0.704 and 0.713 but remains

constant above this value (Fig 7B). This observation suggests that this version of Bataille et al.

(2014)’s model cannot be efficiently used to inform prediction of high 87Sr/86Sr ratios. This is

expected as in Bataille et al. (2014), an interpolation step is used to model the spatial variability

of 87Sr/86Sr ratios by lithology. In this work, we bypass this interpolation step and use an aver-

aging parameterization more comparable to Bataille and Bowen (2012). Bataille and Bowen

noted that when using an averaging approach for the parameterization, the lack of spatiotem-

poral resolution of geological maps, the rapid intra-unit geochemical variations of felsic rock

units, and the skewed distribution of 87Sr/86Sr ratios in those rock types lead to large underesti-

mates in the 87Sr/86Sr predictions of high 87Sr/86Sr ratios.

The relationship between 87Sr/86Sr variations and the log-transformed sea salt (r.salt.t) and

dust (r.dust.t) deposition is more complex (Fig 7C and 7E). In general, 87Sr/86Sr ratios decrease

with increasing sea salt deposition (Fig 7C), probably reflecting the low 87Sr/86Sr ratios of

marine-derived Sr. Conversely, 87Sr/86Sr ratios increase with increasing dust deposition (Fig

7E), probably reflecting the contribution of radiogenic Sahara dust to ecosystems in Europe

[57]. However, for both these variables, the form of the relationship with 87Sr/86Sr ratios is

complex, reflecting the geological, pedological and climatological processes controlling the

incorporation and contribution of aerosol derived Sr to ecosystems [39].

Climatic and topographic variables also contribute to 87Sr/86Sr variability as suggested by

the importance of the potential evapo-transpiration (r.pet) and elevation variables (r.elevation)

(Fig 7D and 7F). 87Sr/86Sr ratios increase with increasing potential evapo-transpiration (Fig

7D), possibly reflecting the increased contribution of radiogenic aerosol dust in regions with

higher potential evapo-transpiration [58]. 87Sr/86Sr data have a complex relationship with ele-

vation with highest 87Sr/86Sr ratios for intermediate elevation (500 m to 1,000 m). This rela-

tionship is probably due to a geographic bias in the compiled dataset. Most of the samples

located within the 500 m to 1,000 m range of altitude are from the eroded remnant of the Var-

iscan and Caledonian orogenies (i.e., Massif Central, Brittany, Western England and Scotland).

These old radiogenic mountain ranges are oversampled in comparison with the younger

mountain ranges (e.g., Pyrennees, Alps).

Understanding the remaining spatial uncertainty. In addition to the cross-validated

RMSE, our approach uses quantile regression forest to provide a conservative measure of the

range of 87Sr/86Sr ratios at each pixel. The 95% uncertainty interval (2.5th to 97.5th forest quan-

tiles) is unique at each pixel and is controlled by the strength of the dependency to auxiliary

variables. The cross- validation showed that this 95% uncertainty interval is an accurate proba-

bilistic estimate for 87Sr/86Sr ranges as more than 90% of the testing data fell within the inter-

val. As such, the quantile regression maps can be used to generate envelopes around the

prediction and to apply continuous-probability surface model approaches [10].

The spatial correlograms do not show any spatial correlation in the residuals of the random

forest regression (Moran’s test I p-value>>0.05 for all distance classes) suggesting that ran-

dom forest regression has successfully modeled the spatial dependence of 87Sr/86Sr variations

(Fig 8). The residual 87Sr/86Sr variations can be attributed to processes that are spatially ran-

dom at the scale of the study area and at the resolution studied. However, a closer look at the

performance of the random forest regression reveals that, while no spatial correlation can be

deciphered in the residuals, the RMSE values vary for different geological classes (Fig 8). Most

of the extreme residual values are located within metamorphic and felsic rock units (Fig 8).

The average 87Sr/86Sr ratios of felsic units and of their minerals is on average higher but more

variable than other rock types because minerals contained in felsic rocks have a wide range of

Rb/Sr ratios [16]. As felsic and metamorphic rocks are more resistant to weathering than other
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Fig 8. Bubble map of 87Sr/86Sr residuals for the training dataset plotted over the lithological map of Western Europe from the

GLiM database. In the bottom-right corner, a plot shows the p-value of the Moran’s I test for different distance class with p-value>0.05

indicating no spatial autocorrelation. mt = metamorphic rocks; pa = felsic plutonic rocks; va = felsic volcanic rocks; pb = mafic plutonic

rocks; vb = mafic volcanic rocks; sm = mixed sediments; sc = carbonate sediments; ss = siliciclastic sediments; su = unconsolidated

sediments. Coastline features are from http://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0197386.g008
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rock types, they also tend to have a higher average age on the Earth’s surface as observed for

western Europe [59]. When soils develop on one of these rock units, the 87Sr/86Sr values of the

bioavailable Sr coming from the bedrock will change through time reflecting the progressive

evolution of the soil mineralogical composition with differential weathering [60]. For instance,

at equal age, the 87Sr/86Sr ratios of highly weathered granite will be higher than in other granite

because most plagioclases with lower 87Sr/86Sr values have been weathered while biotite with

higher 87Sr/86Sr values is more resistant [61]. Differential weathering processes or soil age can

lead the 87Sr/86Sr values of a soil to differ largely from its bulk 87Sr/86Sr composition. These

processes are not accounted for in our modeling approach and limit the accuracy of predic-

tion, particularly for felsic and metamorphic rock units. Similarly, the RMSE for siliciclastic

sediment rock units is higher than for other sediment types. Siliciclastic sediments are com-

posed of minerals from different provenance and with different age. Depending on their geo-

logical history, the 87Sr/86Sr range of these individual grains can be large and can differ

significantly from the depositional age of the sediment (i.e., recycling). Additionally, the differ-

ent minerals composing these siliciclastic rock units can weather at different rates, further

complicating the prediction of 87Sr/86Sr values. A primary focus to improve 87Sr/86Sr isoscapes

is to find appropriate auxiliary variables to model the mineralogy of rock units and/or the

provenance of sediment minerals. However, global geospatial datasets providing some infor-

mation about bedrock mineralogy are not currently available and limit our ability to represent

the geological 87Sr/86Sr variability at high resolution. To improve the model prediction for
87Sr/86Sr values in siliciclastic sediment, it might be beneficial to use an approach that is capa-

ble of learning higher-order context (learning textures and spatial patterns rather than just

point proprieties) to account for fluvial transport and sediment provenance. However, this

type of model would also increase the effective degrees of freedom within each model, and

would require more training data. Consequently, the most reasonable approach to improve

the learning of the distribution of bioavailable 87Sr/86Sr on rock units displaying a large range

and extreme 87Sr/86Sr ratios is to sample these rock units at higher density.

Another important source of remaining uncertainty for this regression model are the inac-

curacies of geological maps. Geological maps are generated by multiple geologists, agencies

and countries that use different mapping schemes, and nomenclatures. They contain some

obvious inconsistencies, as evidenced by the clear discrepancies of geological units at some

country boundaries. Geological map products strongly contribute to the 87Sr/86Sr prediction

in the random forest regression. The use of such geological map products adds a layer of

uncertainty that even the best machine learning algorithms will have difficulty to resolve.

While efforts to harmonize geological maps are underway (onegeology project), replacing geo-

logical maps with satellite or aerial covariate data would greatly enhance the consistencies of
87Sr/86Sr predictions. For instance, the replacement of geological maps by aerial gamma ray

survey products as auxiliary variable could resolve some of the inconsistencies of lithological

observations. However, to date, geological auxiliary variables are not available at global scale

and can only serve as covariates when training more local 87Sr/86Sr isoscapes.

To assess spatially the influence of aerosol deposition on our model predictions, we com-

pared the residuals of our optimized random forest model with two other random forest mod-

els for which sea salt deposition and dust deposition were not included as auxiliary variables.

We found that the sea salt deposition strongly contributes to the 87Sr/86Sr prediction in areas

dominated by igneous or metamorphic rock units including Scotland, Britany, Cornwall, the

Jura, the Pyrenees and the Massif central. The strong influence of sea salt aerosols in these

igneous and metamorphic regions was expected as these geological units have low Sr content,

low chemical weathering rate and their 87Sr/86Sr values diverge strongly from seawater
87Sr/86Sr ratio. Under these conditions, sea salt aerosols can contribute significantly to base
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cations in soils, particularly when mean annual precipitation is high [57]. Dust deposition

strongly contributes to the 87Sr/86Sr prediction in the south of France and Scotland. The strong

influence of dust deposition in southern France likely reflects the high level of deposition from

local and Sahara dust sources in this region, which can contribute up to 30% of the soil base

cations [57]. The strong influence of dust deposition to 87Sr/86Sr prediction in Scotland is

probably an artifact of the model and reflects the overall lower contribution of Sahara dust in

Scotland relative to other regions in southern Europe [42].

Comparing random forest 87Sr/86Sr isoscapes with other models. The 87Sr/86Sr isoscape

produced using random forest regression has a spatial resolution governed by that of the auxil-

iary variables (Fig 9). In this study, we used a resolution of 1 km2 for all covariates to limit

computing time. The maps generated resolve the spatial distribution of 87Sr/86Sr variations in

much more detail than traditional empirically-based 87Sr/86Sr models, which are limited by

the spatial density of the bioavailable 87Sr/86Sr sampling [11,12,22]. At large scales, the
87Sr/86Sr variations from the random forest model follow discrete variations reflecting the age

and lithology of geological units. Superimposed on the geological patterns, the 87Sr/86Sr iso-

scape predicts a gradient of decreasing 87Sr/86Sr ratios from the coast to more inland locations

in Brittany, Wales and Scotland. This pattern has been previously recognized as demonstrating

the influence of sea salt aerosols on bioavailable 87Sr/86Sr ratios [12].

Zooming in on a particular region such as the Massif Central (Fig 10), the pattern of
87Sr/86Sr variations can be interpreted in more detail to verify that the modeled 87Sr/86Sr varia-

tions fit with our current knowledge of Sr cycling on the surface [39]. The increase in predic-

tion detail is evident when comparing the 87Sr/86Sr isoscape produced by random forest

regression (Fig 10A) and those produced by ordinary kriging (Fig 10B). At the finer scale, we

observe the presence of directional linear features within geological units that follow geomor-

phological features such as river valleys. The influence of fluvial sediment transport on
87Sr/86Sr variations has been previously recognized [62], in particular, river valleys often accu-

mulate sediments from different upstream sources that have distinct 87Sr/86Sr ratios from the

local rock units. This is the case for the Loire and Lot rivers that show higher 87Sr/86Sr ratios

than the local marine sediments of the Aquitaine and Parisian basins respectively [55]. Both

rivers carry a proportion of sediment from the radiogenic rocks of the Massif Central, which

are deposited downstream in basins dominated by unradiogenic marine sediments.

In summary, the 87Sr/86Sr isoscape derived from random forest regression generates the

theoretically-expected multi-scale 87Sr/86Sr patterning, with discrete patterns following distinct

geological units, directional features following geomorphological processes (e.g., river valleys)

and continuous gradients following climate variables (e.g., aerosol deposition). This multi-

scale patterning is in sharp contrast with the relatively continuous 87Sr/86Sr variations pro-

duced by ordinary kriging that can only map 87Sr/86Sr variations as broad gradients with pre-

diction rapidly deteriorating away from the bioavailable sampling sites. The predicted surface

presented here is a distinct step forward for the generation of maps of 87Sr/86Sr variation on

the Earth’s surface, as it enables higher resolution mapping without requiring major sample

collection campaigns.

Applicability of the 87Sr/86Sr isoscape. The Western European isoscape generated in this

study provides, to date, the highest-resolution 87Sr/86Sr predictions and includes a spatially

explicit assessment of uncertainty. Together these two products give the possibility to integrate

terrestrial 87Sr/86Sr data from modern and ancient organic and inorganic materials collected

across Western Europe into continuous-probability surface models for geographic assignment.

Using this framework, 87Sr/86Sr data can be coupled with other isotope systems (e.g., H and O)

to enhance the accuracy of provenance assignment in forensic, food science, ecology and

archeology.
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It should also be remembered that creating a single bioavailable Sr map for a given area is

an artificial exercise because the “bioavailable” fraction varies between different parts of the

biosphere [4]. Though it has higher resolution than the maps previously generated by other

methods, this isoscape is still limited by the present availability and consistency of bioavailable
87Sr/86Sr data across Western Europe. As such, we encourage researchers to recalibrate their

Fig 9. Random forest regression bioavailable 87Sr/86Sr map for Western Europe. Coastline features are from http://www.

naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0197386.g009
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own isoscape using the framework presented here but by using empirical datasets, covariate

resolution and spatial extent more appropriate to their particular research question. The cur-

rent map is only valid for areas where data coverage was sufficient to calibrate and test the pre-

diction (France, Great Britain, Netherlands and Denmark). The accuracy and resolution of the

strontium isoscape could be further improved by integrating new data and we strongly urge

researchers to publish all environmental 87Sr/86Sr ratios with full latitude and longitude data.

The development of online repositories to store bioavailable data and potentially model
87Sr/86Sr variations [23] could be a great step-forward in this direction.

Provenance studies have underlying assumptions specific to the sample type and the ques-

tion being addressed. The map presented here is best suited as a broad scale approach to

exclude provenance areas and inform where targeted sampling for a specific research question

should occur. When the samples in question exhibit a limited range over which they incorpo-

rate bioavailable strontium, as is the case for plants, soils, and animals with small feeding

ranges, the map can further be used to predict areas of origin. For provenance studies that

investigate large scale animal movement and human migrations, it should be remembered that

large mammals incorporate and average strontium across a larger range. In these cases, it does

not make sense to match the sample to a specific geologic unit but this map can still be used to

identify large scale migratory patterns. Further modeling is required to predict 87Sr/86Sr in riv-

ers and the map will not perform well for those types of provenance studies. Finally, the stron-

tium isotope data can be easily combined with auxiliary information, including field data and

other isotope systems, and can thus provide a valuable geochemical tracer in a larger context.

Fig 10. Bioavailable 87Sr/86Sr maps for the Massif Central. A. Random forest regression bioavailable 87Sr/86Sr map; B. Ordinary kriging bioavailable
87Sr/86Sr map. Color scale is the same as Fig 9. Coastline features are from http://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0197386.g010
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Conclusions

In this study, we assessed the performance of random forest regression to generate a bioavail-

able 87Sr/86Sr isoscape for Western Europe. We highly encourage the application of random

forest regression to generate 87Sr/86Sr isoscapes at local to global scales because:

1. Random forest regression, in conjunction with process-based models and geospatial envi-

ronmental auxiliary data, outperformed other mapping methods in predicting 87Sr/86Sr

variations.

2. Random forest regression provides a flexible framework to integrate different types of auxil-

iary variables which are required to model the multi-scale patterning of 87Sr/86Sr variability.

3. Random forest regression yielded measures of variable importance and visualization tools

that make the 87Sr/86Sr isoscape easier to interpret.

4. Quantile regression forest can generate conservative uncertainty assessment, which is a crit-

ical component for integrating 87Sr/86Sr variations in continuous-probability surface mod-

els for geographic assignment.

Improving the accuracy, resolution and spatial extent of Sr isoscape using random forest

regression will require the compilation and generation of additional bioavailable 87Sr/86Sr data

coupled with further integration of environmental covariates from new geospatial products.
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