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Abstract

The R-package BIOdry allows to model and compare fluctuations of Tree-ring Width

(TRW) and climate, or dendroclimatic fluctuations, while accounting for source variability.

The package eases multilevel modeling and multivariate comparison in dendroclimatic anal-

ysis using the nlme and ecodist packages, respectively. For implementing such libraries,

the in-package algorithms transform the dendroclimatic fluctuations into Multilevel Dendro-

climatic Data Series and maintain categorical variables and time units in the outputs. The

dendroclimatic modeling is developed with two functions: modelFrame and muleMan. The

first function binds core-level cumulative TRWs to the processed data sets and subtracts

trends in TRWs by fitting multilevel log-linear growth formulas or multilevel linear formulas.

modelFrame can also model within-group fluctuations in dendroclimatic variables other

than tree-radial increments such as aridity indices or allometric components of tree growth:

e.g. diameters at breast height over bark, tree basal areas, total tree biomass, among other.

The second function compares fluctuations in modelFrameobjects that share outermost

categorical variable and annual records. Here, we use BIOdry to model dendroclimatic rela-

tionships in northern and east-central Spain to illustrate future users in the implementation

of the package for modeling ecological relationships in space and time.

1 Introduction

Dendrochronological studies date and analyze tree-rings from woody plants to understand

past and current environmental processes. Dendroclimatology uses tree rings to study past cli-

mate conditions. It is one of the most prominent dendrochronological application to study

global climate change [1]. Most standard approaches to model Tree-ring Width (TRW) and

climate fluctuations implement time-series decomposition at specific levels of variance (single-

level modeling) [2, 3]. The TRW data extraction usually requires sampling with specialized

hardware [4] and/or specific statistical software [2, 3, 5, 6]. These procedures have been effi-

ciently implemented not only for climate change studies [1] but also in paleoclimatic recon-

structions [1, 7–9], the assessment of forest response to water availability [10, 11], among
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others [12–15]. Even though these methods are widespread applied, they have not always con-

sidered the sampling design and the different levels of variation in tree-ring series. Sampling

dendroclimatic variables in forest ecosystems results in hierarchical sources of variability from

ecological factors. For instance, variability in core replicates (number of samples per each ana-

lyzed tree) of TRW from forest communities would have at least three hierarchical levels: tree-

radial morphology [16], individual-tree genetics or phenotype [17], and stand quality [15].

Additional ecological factors such as site elevation [18], fire intensity [14], tree decay [19], or

water regimes [10, 11] can further complicate hierarchical variance in TRW. Meteorological

records, which are used to model climatic variables in dendroclimatic analyses, also contain

temporal and spatial variability [20, 21].

Developing software for dendroclimatic analysis in forest ecosystems can help to address

these sources variability. This new software should account for the effects of both ecological-

factors and sampling schemes, and should integrate tree-growth/yield modeling into dendro-

climatic analysis [22–24] based on multilevel modeling and multivariate comparison.

One example of multilevel modeling methods is mixed-effects regression [25–28], which

can be implemented to detrend dendroclimatic data by considering random effects from eco-

logical factors. Another example is dissimilarity analysis [29–32], which can be used to com-

pare and organize dendroclimatic fluctuations into common ecological-factor levels. However,

the implementation of these methods using statistical environments requires dendroclimatic

inputs stored in special formats [33] such as Multilevel Dendroclimatic Data Series (MDDS),

or sequences of observations ordered according to spatial/temporal hierarchies which are the

result of sampling schemes, with sample variability confined to ecological factors.

The dendroclimatic modeling in forest ecosystems should also integrate information about

tree allometry, growth, and yield. For example, allometric scaling can help transform TRW

data into other serial components of tree growth [34–38]. Similarly, organic growth theory has

provided simplified equations [39–41] that can be used to subtract ontogenetic trends from

TRW data. Such equations are log-linear expressions of tree growth that are easily fitted to the

multilevel data applying mixed-effects-modeling procedures: e.g. lmemethods in R [42].

In addition, dendroclimatic modeling can also involve time-series transformations at spe-

cific levels in the ecological factors. Such modeling is important for evaluating allometric

parameters for TRW [36–38], computing water-availability indexes from climatic MDDS [20,

43–45], developing statistical process control for TRW series [2, 46–48], or for time-series

smoothing and decomposition [49, 50]. Procedures to evaluate this kind of routines should be

efficient and preserve MDDS structures and be adaptable to new methods in dendroclimatic

modeling. Consequently, efficient implementation of all these procedures requires of pro-

gramming higher-order functions which can recursively evaluate diverse routines, control

multilevel detrending, and compare fluctuations in MDDS.

In this work, we present the R-package BIOdry, a statistical package that processes MDDS

using higher-order functions to integrate processes for input derivation, multilevel analysis,

and multivariate comparison of dendroclimatic fluctuations. Here, we explain the functional-

ity of the package by modeling relationships between TRW fluctuations and drought using

MDDS from pine forests in the Iberian Peninsula. We also test the hypothesis that accounting

for ecological factors improves statistical analysis for dendroclimatic modeling compared to

other conventional alternatives, such as linear regression. To do so, we compare parameters

from implementing two procedures: conventional single-level modeling and the multilevel

procedures in the package. The examples of dendroclimatic modeling developed here are also

intended as a guideline for future BIOdry users interested in implementing the package for

modeling other ecological relationships in time and space.

R-package BIOdry
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2 Package installation and requerimients

The primary focus of this paper is on BIOdry 0.5 (R versions� 3.4.2). This and further ver-

sions of the package can be easily installed in any R session using the install.packages
command. Once installed, the package is loaded in the R environment with the library
command. The in-package routines are programmed with generic functions in base, stats
and rutils packages. Functions for developing the multilevel modeling and the multivariate

comparison depend on two R packages in CRAN: nlme [42], and ecodist [30]. These are

automatically loaded in R after the package has been requested. A further dependence, the

nlme package, is used to extract fluctuations in MDDS, or Multilevel Dendroclimatic Data

Series, with linear mixed effects models (detrending); while ecodist is used to compute mul-

tivariate correlations (Mantel correlograms) between two compared MDDS.

2.1 Data inputs

BIOdry processes three kind of data sets: TRW (mm), monthly cumulative precipitations

(mm), and monthly average temperatures (˚C). These can have wide or long formats. In the

wide data format, the rows are ordered and labeled from earliest to latest year and the columns

contain the dendroclimatic variables referred above. Names of the columns must be dot-sepa-

rated codes representing the hierarchy of ecological factors, where higher ecological levels are

defined first and lower levels after. For instance (truncations are indicated with ellipses):

> data(Pchron)
> tail(Pchron, 3)

P16106.17.a P16106.17.b. . . P44005.7.b
2003 0.926 0.882. . . 0.621
2004 1.205 0.638. . . 0.368
2005 0.964 0.295. . . 0.038

Pchron is a TRW (1861-2005) for Pinus pinaster Ait. forests (P. pinaster) in northern and

east-central Spain [51]. These two regions have contrasting climate regimes with forests in cen-

tral areas of the country being more affected by drought than forests in northern regions. To

account for source variability, two trees were selected per site, and two cores were extracted

from each tree. Consequently, the column names have within-plot levels representing variabil-

ities in the plot qualities (alphanumerics), tree genetics/phenotypes (numbers), and tree-radial

morphology (lowercase letters).

Meteorological records in wide formats have the rows labeled with years and the columns

labeled with dot-separated codes of nearby plots and monthly abbreviations. For instance:

> data(Prec)
> data(Temp)
> names(Prec) # or names(Temp)
[1] “P16106.Apr” “P16106.Aug” “P16106.Dec” “P16106.Feb”. . .

The Prec sample data set, included in BIOdry, consists of cumulative precipitations,

while Temp contains corresponding monthly temperatures. These were provided by the Span-

ish Meteorological Agency (AEMET).

On the other hand, long data formats should have the chronologies and time units in the

initial columns, followed by ecological factors. In the factor hierarchy, columns of lower time
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units or classification factor levels are defined first, and columns of higher levels are specified

later. For instance,

> data(Prings05)
> head(Prings05, 3)

x year sample tree plot
1 0.698 1897 a 17 P16106
2 0.878 1898 a 17 P16106
3 0.842 1899 a 17 P16106

where Prings05 is a long format of data stored in Pcrhon.

An alternative vector of tree radii can also be specified although this is not mandatory. In

this case, the year of measurement of the radii should also be recorded. Until recently, core

samples often lacked the initial rings of the pits producing truncated growths [22]; so these ref-

erence radii can be used to scale the cumulative growth. This vector should be named with dot

separated codes and contain codes in the tree factor of the TRW.

> data(Pradii03)
> Pradii03
P16106.17 P16106.18 P44005.56 P44005.7
122.2343 139.7485 158.5184 114.9109

3 Package functionality

Dendroclimatic modeling has evolved from paleoclimatic sciences where the ecological vari-

ability is seen as noise [9]. Consequently, statistical procedures in dendroclimatic research tra-

ditionally consider ecological variability as irrelevant. These standard methods model signs by

independently detrending TRW/climatic fluctuations (Fig 1, upper panels) and comparing the

extracted signs with cross-correlation functions.

Procedures in the BIOdry package can complement these approaches by modeling and

comparing dencroclimatic fluctuations while accounting for ecological variability (Fig 1, lower

panes). To do so, the package implements methods to derive, detrend and correlate multilevel

dendroclimatic fluctuations while accounting for factors defined in MDDS (Appendix A).

These are programmed using a variety of in-package routines (Tables 1 and 2) which could be

implemented independently if users are interested in running specific calculations or better

understanding the sequence of steps for dendroclimatic modeling. However, implementation

of these can be burdensome. Consequently, the routines can also be recursively evaluated on

MDDS using two higher-order functions: modelFrame and muleMan. Former model-
Frame can either derive allometric components of tree-growth fluctuation from TRWs data

or compute aridity indexes from meteorologic records depending on whether defaults in the

function are maintained or modified.

3.1 Modeling features

3.1.1 Function defaults. By default, the modelFrame function synchronizes, cumulates,

and detrends TRW by evaluating three routines and a detrending formula (Table 3). The rou-

tines are defined in the fn argument and vectorized over factors in the lv argument. The syn-

chronization circumvents biases causing artificial increases or decreases in the modeled tree

growth: slow-grower survivorship, big-tree selection, among other [22] while enhancing con-

vergence of parameters during the detrending procedure [42]. The cumulative TRW are used

to model ontogenetic growth fitting detrending formulas [41]. These are specified with the

R-package BIOdry

PLOS ONE | https://doi.org/10.1371/journal.pone.0196923 May 17, 2018 4 / 23

https://doi.org/10.1371/journal.pone.0196923


Fig 1. Comparison of procedures to model dendroclimatic fluctuations. Standard approaches (upper panels) usually account for

sample variability (gray areas). These implement cross-correlation analyses to compare the detrended fluctuations. On the other

hand, the BIOdry package (lower panels) consider hierarchical structures from sample design (gray layers) to account for source

variability: e.g. tree morphology. The package implements dissimilarity analysis to compare the detrended fluctuations.

https://doi.org/10.1371/journal.pone.0196923.g001
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Table 1. Routines (rt) and detrending formula (df) used to model tree-growth fluctuations from TRW with modelFrame. These are specified in the form of lists with

the fn and lv arguments (see second argument in Table 3). Arguments of these one-level functions are specified in modelFrame in either a MoreArgs list argument

or directly, depending on whether they are vectors (e.g. mp) or constants, respectively.

Type Name Details Arg. Arg. definition

rt rtimes Unique observations in time-units data with replicates (time-

series replicates) are excluded to avoid biases during

subsequent multilevel detrending [22].

only.
dup = TRUE

logical. Extract only relative times that are duplicated. If

TRUE then unique observations are replaced with NA. If all

computed times are unique then this argument is ignored. This

function binds to the processed data set a new column time.

rt scacum Cumulative sums of time-series replicates (e.g. radial

increments) are scaled on reference constants (e.g. individual

tree diameters).

sc.c = NA numeric. Scaling constant, or vector if the processed time-

series replicates have several levels, to scale the computed

cumulative values. If NA then the computed cumulative sums

are not scaled.

rf.t = NA numeric. Constant or vector of reference time(s) in range(s) of

the vector names to scale the cumulative values. If NA then

maximum value in the range is used.

rt amod Simple allometric model: y = a � xb is recursively evaluated to

derive allometric components of organisms from longitudinal

variables (e.g. Cumulative radial increments).

mp = c(1, 1) numeric vector with allometric parameters: a, b. Default

maintains the original radii, c(2,1) produces diameters, and

c(0.25 � pi,2) computes basal areas. Further parameters of

tree volume or biomass equations can also be implemented.

This argument can have more than two parameters: c(a1,b1,
a2,b2,. . .,an,bn), with n being the number of times that

the allometric model is recursively implemented.

fun = y˜a�

(x ^ b)
formula.Allometric model.

df tdform log-linear time-decline formula with random effects structure:

‘log(x) ˜ log(csx) + f(time) | group’; where x is

the relative organic growth; csx is the cumulative organic

growth; f(time) is a function of time.

on.
time = TRUE

logical. If TRUE then t = ‘time’ (see rtimes function in

this Table). If false then t = ‘year’

log.t = FALSE logical. If TRUE then f(time) = log(time) or f
(time) = log(year) depending on the on.time
argument.

lev.rm = NULL NULL or character vector. name(s) of the factor(s) to be

removed from the group term.

https://doi.org/10.1371/journal.pone.0196923.t001

Table 2. One-level functions (rt) and detrending formula (df) used to model AAI fluctuations from monthly average temperatures and monthly cumulative precipi-

tations. Implementation of these is similar to what was explained for tree growth modeling in Table 1.

Type Name Details Arg. Arg. definition

rt moveYr Monthly records in time-series replicates (usually of climate)

are labeled for the years can begin in a month other than

January.

ini.mnt =
‘Oct’

character, or numeric from 1 to 12. Initial month of the

seasonal year. If character then the months are built-in

constants in R-package base. Default ‘Oct’ makes the years

begin in October, for example.

rt wlai Annual aridity indexes from Walter-Lieth diagrams are

computed from monthly precipitation sums and monthly

average temperatures.

sqt = TRUE logical. Print the square root of the aridity index. If TRUE
then computed aridity index is normalized with a square root

transformation.

df lmeform LME formula with random effects structure: ‘resp ˜ cov
| group’; where resp is the response; cov is the primary

covariate; and group is the random-effects structure.

resp = NULL NULL or character. Column name of the response. If NULL
then the name of the first numeric column in the MDDS is

used.

covar = NULL NULL or character. Column name(s) of the covariate(s). If

NULL then the name of the first time-units column in the

MDDS is used.

lev.rm = NULL NULL or character vector. Name(s) of the factor(s) in the

MDDS to be removed from the group term.

https://doi.org/10.1371/journal.pone.0196923.t002
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form argument in modelFrame. The defaults are maintained by only specifying the pro-

cessed MDDS. For instance,

> trwf <- modelFrame(Pchron)

On the other hand, muleMan compares TRW and aridity-Index fluctuations while main-

taining hierarchical structures in the MDDS, see Section 7.1.

3.1.2 Detrending formulas. Currently, the ‘tdForm’ or ‘lmeForm’ methods can be

implemented automatically with the form argument to evaluate formulas with the same

names. The ‘tdForm’ method is a linear generalization from growth theory (Appendix A.1)

used here to subtract ontogenetic growth from TRW. This method considers either time units

or classification factors in MDDS as random effects, see details about formulation of ‘tdForm’

method in Section A.1.2. The ‘lmeForm’ method implements a more flexible linear formula,

which is implemented here to detrend normalized aridity indexes. See also structure of ‘lme-
Form’ method in Section A.1.3.

3.1.3 Correlation functions and variance structures. The package can implement proce-

dures for serial normalization in the nlme package. Heteroscedasticity and serial autocorrela-

tion of the detrended MDDS can be modeled with arguments in lmemethods that are

specified in modelFrame: e.g. weights and correlation arguments in the nlme package

(Appendices A.3 and A.4). Likewise, autocorrelation in detrended MDDS can be assessed with

empirical autocorrelation functions.

3.1.4 Multivariate comparison. Mantel correlograms between two MDDS with a com-

mon classification factor are established by comparing distances in one of the MDDS with sets

of binary model matrices that specify membership in the other MDDS classes (Appendix A.5).

The multivariate comparison is implemented here to compare detrended aridity indexes with

detrended TRW.

4 Tree-growth modeling and diagnostics

Parameters of tree growth can be enhanced by changing arguments of the routines in the

modelFrame function or updating modelFrame objects with the new arguments. The new

model updating can help for properly scaling truncated fluctuation [22] and correctly defining

shape of tree ontogeny [41]. TRW lacking initial rings in the pits can be scaled around the vec-

tors of reference radii specifying the tree radii and corresponding measurement year in sc.c

Table 3. Formulation order of parameters in modelFrame. This function is used to model fluctuations of Tree-ring Widths (TRWs) (cm) and Annual Aridity Indexes

(AAIs) (dimensionless).

Order Arguments and defaults Description

1 rd Individual data.frame of TRW or twofold list of data frames with monthly cumulative precipitations

and monthly average temperatures.

2 fn = list
(‘rtimes’,‘scacum’,‘amod’)

list. characternames of functions for one-level modeling (one-level functions) that are recursively

implemented. See arguments in Tables 1 and 2.

3 lv = list
(‘tree,‘sample’,‘sample’)

list. Either column names or numeric positions in the column factors in the MDDS that are used to

evaluate the one-level functions.

4 Arguments and defaults in one-level functions See one-level functions (ofn) and respective arguments in Tables 1 and 2.

5 form = ‘tdForm’ Detrending formulas (Tables 1 and 2)

6 Arguments in lme function

https://doi.org/10.1371/journal.pone.0196923.t003
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and rf.t arguments, respectively. Likewise, the detrending formula can be modified from

Chapman-Richards to Levakovic forms, changing default log.t = FALSE to log.
t = TRUE respectively. The forms are simplified expressions of most growth equations used

in forest sciences to model tree growth [41]. Here, we update the trwf object modifying these

parameters with the update call:

> trwf <- update(trwf,
sc.c = Pradii03,
rf.t = 2003,
log.t = TRUE)

The trwf object contains a threefold list of model parameters in model, TRW fluctua-

tions in fluc, and the model call in call. Parameters in trwf can be inspected calling the

model element with currency or bracket operators and using plenty diagnostic functions in

the nlme package [42]. Alternatively, we have developed five in-package S3 methods to

directly inspect parameters in modelFrame objects with lme functions: summary,plot,

getData,anova, and Empiric Autocorrelation Function (ACF). These are implemented

here to inspect significances of fixed-effects parameters, compare models with similar fixed-

effects structures, and detect serial patterns in normalized fluctuations.

4.1 Model diagnostics

The summary function provides information about the estimation method (default

method = REML), information-based criteria (Akaike Information Criterion (AIC), Bayes-

ian Information Criterion (BIC), and Log-Likelihood (logLik)), fixed-effects formula

(default form = ‘tdForm’), random-effects standard deviations, and conditional t-tests, as

shown in following summary output:

> summary(trwf)
Linear mixed-effects model fit by REML
Data: fixed

AIC BIC logLik
1425.193 1488.797 -699.5963

Random effects:
Formula: ˜log(csx) + log(time) | plot
Structure: Diagonal

(Intercept) log(csx) log(time)
StdDev: 0.9541355 0.00115044 0.226334
Formula: ˜log(csx) + log(time) | tree %in% plot
Structure: Diagonal

(Intercept) log(csx) log(time)
StdDev: 0.872989 2.42083e-07 0.2220615
Formula: ˜log(csx) + log(time) | sample %in% tree %in% plot
Structure: Diagonal

(Intercept) ˜log(csx) log(time) Residual
StdDev: 0.09011541 6.108796e-24 0.02288596 0.4784995
Fixed effects: log(x) log(csx) + log(time)

Value Std.Error DF t-value p-value
(Intercept) -3.171448 1.4210373 978 -2.231784 0.0259
log(csx) 1.398107 0.3585760 978 3.899055 0.0001
log(time) -0.953834 0.2296603 978 -4.153239 0.0000
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Correlation:
(Intr) lg(cs)

log(csx) -0.822
log(time) 0.423 -0.521
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-6.9065514 -0.5052164 0.1119620 0.6316315 3.5025194
Number of Observations: 988
Number of Groups:

plot tree %in% plot
2 4

sample %in% tree %in% plot
8

The random effects of the summary output define the limits of the hierarchical levels and

are expressed in standard deviations. The fixed effects show conditional t-tests testing marginal

significances of fixed effects. These suggest that all the fixed-effects terms of multilevel model

in trwf are significant (p� 0.026). We can infer that tree-growth parameters derived from

the TRW conforms to the theoretical growth patterns implied by the Levakovic expression of

tdForm. Diagnostic plots for assessing the quality of the fit are obtained using the method for

the plot function.

> plot(trwf) ## Fig (2)
Accounting for the within-plot variability affected patterns between the TRW fluctuations

(Fig 2). Fluctuations from trees in similar plots were more comparable than these in different

plots. This could be explained by the different biophysical conditions of the plots, for instance:

genetic adaptations of the populations, local variations in nutrients and water availability,

competition [52].

To analyze improvements in model fitting by accounting for within-core variability, we

ignore the grouping structure of the tdForm formula and fit a single linear regression without

random effects to the TRW data. The model is fitted with lm regression in default R-package

stats. The cumulative TRW are recycled from the trwf object with getData function. Parame-

ters fitted with the new lm model are compared with parameters of the multilevel model in

trwf doing a log-Likelihood ratio test(logLik) with the anova function.

> trwfl <- lm(log(x) ˜log(csx) + log(time),
data = getData(trwf))

> anova(trwf,trwfl)
Model df AIC BIC logLik Test L.Ratio p-value

trwf 1 13 1425.193 1488.797 -699.5963
trwfl 2 4 1525.847 1545.418 -758.9235 1 vs 2 118.6543 <.0001

This suggests that accounting for within-core variability significantly reduces AIC, BIC,

and logLik (p� 10−4). Consequently, we assert that multilevel model in trwf fits better

than the tdFormmodel with only fixed effects.

4.2 Allometric components of tree grotwth

Allometric relationships in components of tree growth other than TRW: e.g. tree diameters,

basal areas, or tree biomasses, have not been fully explored to understand non-linear relation-

ships between tree growth and drought [53]. The modelFrame function can help to explore

such relationships by recursively evaluating allometric parameters in mp and formatting metric
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units of the TRW in to argument. However, this recursive evaluation of allometric parameters

must be done with care because excessive iteration of parameters could exponentially increase

errors of the allometric models. Here, we specify two pairs of parameters in mp to compute

fluctuations in Diameters at Breast Height over bark (DBH). The first pair of parameters

c(2, 1) is used to compute diameters at breast height inside bark (dib) from the TRW. Met-

ric units of the TRW are transformed from mm to cm before the dib are computed. This is

done by writing to = ‘cm’. The other two parameters c(2.87, 0.85) are used to

Fig 2. Fluctuations in the chronology of P. pinaster. Residual autocorrelations in the chronology has been accounted

for with an auto-regressive structure for lags� 2 (ARMA(p = 1, q = 1)) after normalizing the fitted residuals via

Choleski factorization.

https://doi.org/10.1371/journal.pone.0196923.g002
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predict the DBH (cm) from the dib. The four allometric parameters are formulated in a com-

mon vector inside a MoreArgs list. This avoids the modelFrame function to vectorize over

the allometric constants along the within-core levels.

> tdf <- update(trwf,
to = ‘cm’,

MoreArgs = list(mp = c(2, 1, 2.87, 0.85)))
> summary(tdf)
Linear mixed-effects model fit by REML
Data: fixed

AIC BIC logLik
1425.903 1489.507 -699.9515

#. . .

Fixed effects: log(x) ˜log(csx) + log(time)
Value Std.Error DF t-value p-value

(Intercept) -3.185970 1.3154323 978 -2.421995 0.0156
log(csx) 1.469242 0.4220967 978 3.480818 0.0005
log(time) -0.954741 0.2298998 978 -4.152858 0.0000
#. . .

5 Random-effects structures

Hierarchical sources of variability from endogenous and exogenous disturbances in the stands

are usually masked in the error terms of the TRW chronologies or the climatic fluctuations

[54]. BIOdry implements methods to account for this variability using the modelFrame
function. By default, this function constructs random effects with pdDiag constructor class

in nlme [42], a primary covariate from the formula in form, and the factors in the MDDS.

However, users of the package can specify other constructor classes, see p. 157 in [42], and dif-

ferent random-effects covariates while removing factors from the processed MDDS. These are

specified in either the modelFrame or update functions with the random and lev.rm
arguments. We update here the trwf object with new parameters to modify original random-

effects structure in trwf by specifying the pdIdent constructor class and the ˜time covari-

ate while removing the sample random effect.

> trwfr <- update(trwf,
random = pdIdent(˜time),
lev.rm = ‘sample’)

> summary(trwfr)
Linear mixed-effects model fit by REML
Data: fixed

AIC BIC logLik
1510.969 1540.325 -749.4844

Random effects:
Formula: ˜time | plot
Structure: Multiple of an Identity

(Intercept) time
StdDev: 8.272046e-07 8.272046e-07
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Formula: ˜time | tree %in% plot
Structure: Multiple of an Identity

(Intercept) time Residual
StdDev: 0.001311275 0.001311275 0.512138
#. . .

6 Serial modeling

Multilevel analysis of dendroclimatic data involves spatial and temporal pseudoreplication:

i.e., series in the hierarchical levels are correlated introducing dependencies among the mod-

eled fluctuations [55]. BIOdry can print ACF plots to inspect such dependencies. The inspec-

tion process is controlled with two arguments: maxLag and alpha. The first argument

controls the number of lags for which the autocorrelations are computed. The second argu-

ment specifies the significance level for two side critical bounds.

> plot(ACF(trwf, maxlag = 10),
alpha = 0.01) ## Fig (3), upper panel

The plot shows that fluctuations in trwf are autocorrelated at three annual lags (Fig 3,

upper panel). Part of this occurred because the core samples are replicated across the within-

plot levels introducing dependencies among the residuals [55]. Another part of the autocorre-

lation could be explained by common climatic signals of the series [56].

The residual autocorrelation in multilevel models can be accounted for with standard cor-
Struct classes in nlme, see p. 234 in [42]. Here, we account for the three annual-lag auto-

correlation updating multilevel model in trwfwith an auto-regressive structure for time

lags� 2, see Appendix A.3. This is developed with correlation argument in the update
function. Adequacy of the fitted correlation model is tested with diagnostic plots of ACFs

applied to normalized fluctuations. Choleski decomposition of lme is implemented to nor-

malize the fluctuations, see Appendix A.2. This is controlled with resType=‘n’ argument

in ACF. We also test improvements in parameters of the correlation model using the in-pack-

age anovamethod.

> trwfAC <- update(trwf,
correlation = corARMA(p = 1, q = 1))

> plot(ACF(trwfAC, maxlag = 10,
resType = ‘n’),
alpha = 0.01) ## Fig (3), middle panel

> anova(trwf, trwfAC)
Model df AIC BIC logLik Test L.Ratio p-value

trwf 1 13 1425.193 1488.797 -699.5963
trwfAC 2 14 1292.074 1360.571 -632.0371 1 vs 2 135.1184 <.0001

The ACF plot indicates fluctuations in trwfAC to be uncorrelated (Fig 3, middle panel),

and the anova output evinces that accounting for the residual autocorrelation improves

parameters of the multilevel model (p�10−4).

7 Aridity-index fluctuations

The Annual Aridity Index (AAI) is a good indicator of seasonal drought. This is constructed

under the assumption that 1˚C of monthly temperature amounts to 2mm month−1 of evapora-

tion [57, 58] helping to identify periods of relative water surplus or deficit. modelFrame can

model and detrend series of AAI processing the meteorological MDDS. Formulating
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Fig 3. Empiric Autocorrelation Functions (ACFs) for the chronology of P. pinaster and the aridity-index fluctuations in three modelFrame
objects. Labels indicate level-codes in the plot factor.

https://doi.org/10.1371/journal.pone.0196923.g003

R-package BIOdry

PLOS ONE | https://doi.org/10.1371/journal.pone.0196923 May 17, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0196923.g003
https://doi.org/10.1371/journal.pone.0196923


parameters to model aridity indexes from Prec and Temp data sets using modelFrame is

similar to what was explained for modeling tree-growth fluctuations. Here, new functions

moveYr and wlai are specified in fn argument (Table 2). The moveYr function transforms

time units into climatic variables for the years considered begin with October (default ini.
mnt = ‘Oct’, which is the beginning of meteorological year in Spain). The wlai function

calculates square-root annual aridity indexes (default sqt = TRUE). Both functions are eval-

uated at the year level with the lv argument. Fluctuations in the aridity-index are extracted

using alternative lmeForm formula. This is a linear expression developed to detrend square-

root aridity indexes, see Appendix A.1.3. Default Restricted Maximum Likelihood (REML)

method is maintained.

> aif <- modelFrame(list(Prec, Temp),
fn = list(’moveYr’,’wlai’),
lv = list(’year’,’year’),

form = ‘lmeForm’)
> summary(aif)
Linear mixed-effects model fit by REML
Data: fixed

AIC BIC logLik
44.47932 57.40416 -17.23966
#. . .

Fixed effects: AI ˜ year
Value Std.Error DF t-value p-value

(Intercept) -18.928112 3.648494 97 -5.187925 0
year 0.009985 0.001842 97 5.420766 0
#. . .

> plot(aif) ## Fig (4)

In this case, the fixed effects terms of the aridity-index model are significant (p� 0) sug-

gesting that drought increased throughout the study area during the 50 years prior to sam-

pling, even though the slope is very low (9.9 × 10−3). Detrended plot-level aridity indexes

fluctuate around zero over time and display constant variance (Fig 4).

Similarly to the TRW modeling, we compare parameters of the multilevel model in aif
with parameters of an lmmodel without grouping structure. We also inspect presence of serial

patterns in the aridity-index fluctuations.

> aifl <- lm(AI ˜ year,
data = getData(aif))

> anova(aif, aifl)
Model df AIC BIC logLik Test L.Ratio p-value

aif 1 5 44.47932 57.40416 -17.23966
aifl 2 3 42.43269 50.18759 -18.21635 1 vs 2 1.953366 0.3766
> plot(ACF(aif, maxlag = 10, resType = ‘n’),

alpha = 0.01) ## Fig (3), lower panel

Parameters in the multilevel model in aif exhibit non-significant differences with regard

to parameters in the lmmodel (p� 0.38) suggesting that more extensive meteorological rec-

ords are needed to properly account for plot-level variability within the multilevel model. On

the other hand, the ACF plot of normalized fluctuations in aif indicates no significant auto-

correlations (Fig 3, lower panel). Considering that the fixed-effects parameters in aif are
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significant and that the corresponding fluctuations are not autocorrelated, we use the aif
model during the final process of multivariate comparison.

7.1 Multivariate comparison

The BIOdry package can measure relationships and patterns between classes of the dendro-

climatic fluctuations by computing Mantel correlograms (Appendix A.5). This comparison is

performed by evaluating the muleMan function. Here, we use this function to correlate dis-

similarity matrices between fluctuations in the trwf and the aif objects which have com-

mon levels in the plot factor. We test significances of the multivariate correlations by

repeatedly permuting the standardized dissimilarity matrices by rows and columns with the

nperm argument.

> mcomp <- muleMan(trwf,
cd = aif,

nperm = 103)
> plot(mcomp) ## Fig (5)

The plot-level panels suggest that relationships between fluctuations in trwf and aif
depend on the within-plot hierarchy, and plot location is the most important driver of dendro-

climatic correlations (Fig 5). Within-plot variability affects the patterns of the computed corre-

lations over time, while within-tree variability influences correlation trends and scales across

the computed distance classes. Trends in the two sites exhibit oscillating pulses, and pulse fre-

quency was significant for distance classes around 2 or 6. Although dendroclimatic interac-

tions are stronger in East-Central Spain (P16106), they are more regular in Northern Spain

(P44005) than in East-Central Spain (P16106). The Mantel correlogram also illustrates that

dendroclimatic relationships are affected by within-core variability, such as radial-increment

morphologies in this case. The core replicates of the same trees indicates both significant and

no significant responses to drought (Fig 5, filled and empty circles, respectively), and discrep-

ancies are more evident in P16106 than in P44005.

Fig 4. Normalized aridity-index fluctuations in aif object. Labels indicate level-codes in the plot factor.

https://doi.org/10.1371/journal.pone.0196923.g004
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8 Conclusion

The BIOdry package is an useful tool for multilevel dendroclimatic modeling by integrating

recursive evaluation of one-level functions, multilevel modeling, and multivariate comparison

of dendroclimatic fluctuations. A larger community of researchers will find it relatively easy to

use, as it only requires implementation of the modelFrame and muleMan functions. Most

arguments in other functions of the same package, or in the nlme or the ecodist libraries,

can be implemented with the same modelFrame and the muleMan functions. The

Fig 5. Multivariate correlations between the TRW chronology and the AAI fluctuations. Red circles indicate significant

correlations (p� 0.05).

https://doi.org/10.1371/journal.pone.0196923.g005
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implementation of the functionalities within the BIOdry package to study the effects of den-

droclimatic factors on forest-ecosystem dynamics could be greatly relevant for managing natu-

ral forests or monocultures, or for understanding the role of species mixtures in forestry. In

the latter case, effects from dendroclimatic factors representing complementary resource uses

(root stratification, nutrients, facilitative improvements, etc.) or even commercial productivity

might be modeled with the package. We hope that other scientists can implement the BIOdry
package to study the effect of such factors on many species and at different successional stages.

A Appendix: Multilevel and multivariate analyses with the BIOdry
package

A.1 Trend subtraction

Currently, the R-package BIOdry has two detrending formulas:‘tdForm’ and ‘lmeForm’.

The first formula uses growth theory to subtract trends in organic variables. The second for-

mula is a more flexible linear expression developed to detrend normalized aridity indexes and

to formulate further linear relationships in MDDS: e.g. gropedData structures for panel

plotting.

A.1.1 Growth theory. Ontogenetic component of organic growth (e.g. tree growth)

behaves like a mechanistic open system with inputs and outputs of energy [40, 59, 60]. Diverse

growth equations have been postulated on this basis to model, for instance, forest growth

[39, 61–63], with most of the proposed equations being particular cases of following log-linear

expression [41]:

lnðY0Þ ¼ b0 þ b1 lnðYtÞ � b2 f ðtÞ ð1Þ

where ln is logarithm natural; Y0 is the relative growth of the organism; β are parameters to be

fitted; Y is cumulative organic growth; and t is the time. f(t) is a function of time which can be

ln(t) or t. When f(t) = t, Eq (1) is called a Time-Decline Form (TD), and when f(t) = ln(t) then

the equation is a Logarithmic Time-Decline Form (LTD). Even though growth theory has pro-

vided theoretical balance equations, such as the TD or the LTD forms, to detrend tree growth

series, conventional dendroclimatical software implements particular cases of growth or arbi-

trary equations, such as polynomials or even straight lines [2, 64]. These procedure has been

successful in subtracting fluctuations and signals from dendrochronologic analysis [54].

Growth equations can help to enhance detrending process in dendrochronolgical research.

A.1.2 Multilevel detrending of MDDS. The ‘tdForm’ method in BIOdry package is a

linear generalization of Eq (1) which considers either time units or classification factors in

MDDS as random effects. This method function has the following structure:

lnðY0
��� ic; tÞ ¼ A ��� ic þ B ��� ic lnðY ��� ic; tÞ � C ��� ic f ðtÞ þ ϵ ��� ic; t ð2Þ

A ��� ic ¼ b0 þ u ���; 0 þ u ��� i; 0 þ u ��� ic; 0 ð3Þ

B ��� ic ¼ b1 þ u ���; 1 þ u ��� i; 1 þ u ��� ic; 1 ð4Þ

C ��� ic ¼ b2 þ u ���; 2 þ u ��� i; 2 þ u ��� ic; 2 ð5Þ

ϵ ��� ic � Nð0;RÞ; ð6Þ

where the β are the model parameters, υ� � � = (υ� � �,0, υ� � �,1, υ� � �,2)T are vectors of outermost levels

of grouping, υ� � �i is a vector of tree random effects nested in the outermost levels of grouping,
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and υ� � �ic is a vector of core random effects nested in trees that are nested in the outermost lev-

els. The vector ϵ� � �ic,t contains the within-group residual errors ϵ� � �ic,t and follows a multivari-

ate normal distribution ϵ� � �ic,t * N(0, R).

A.1.3 Trends in aridity indexes. Algorithms in BIOdry can construct Walter-Lieth dia-

grams and compute annual aridity indexes as the ratios between dry and wet areas in the dia-

grams. The inputs are MDDS of monthly average temperatures (˚C) and monthly

precipitation sums (mm). This integrates seasonal precipitations and temperatures to identify

periods of relative water surplus and deficit [65]. Square root transformation of the aridity

indexes are usually stationary [20]. Transformed aridity indexes also exhibit weak linear trends

[52] that can be subtracted with simple linear equations, without further filtering the low and

high frequencies observed in the raw precipitation and temperature records [43]. Autocorrela-

tion in climatic proxies has been a frequent problem in dendroclimatology [47]. The square

root transformed indexes use are weakly autocorrelated [52].

The ‘lmeForm’ method implements a flexible linear formula, which was developed to

enable users formulate their own multilevel linear expressions. For instance, form = ‘lme-
Form’ can be used to detrend the aridity indexes. In such a case, the ‘lmeForm’ method for-

mula would have the following structure:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAI k; t

p
¼ Dk þ Ek tþ ω k; t ð7Þ

Dk ¼ g0 þ t k; 0 ð8Þ

Ek ¼ g1 þ t k; 1 ð9Þ

ω k; t � Nð0;RÞ; ð10Þ

where the γ are the model parameters, τk = (τk,0, τk,1)T is the vector of location random effect.

The vector ωk,t contains the location-level residual errors ωk,t and follows a multivariate nor-

mal distribution ωk,t * N(0,R). These are ordered on time and depict climatic fluctuations.

A.1.4 Back-transformation of model parameters. In some applications involving eco-

logical analysis of dendroclimatic variables, it might be necessary to back-transform tree-

growth and aridity-index predictions from Eqs (2) and (7) to the original scales. It is well

known that exponential and power transformations could introduce biases and correction fac-

tors must be applied [66, 67]. However, it is not an objective of the BIOdry package to find

how correction factors could best be incorporated in mixed effects models. Analyses with the

package focus on comparing dendroclimatic fluctuations without the need of back-transform-

ing variables and the mixed-effects models include no correction factors. Therefore, inferences

with the package apply only to the untransformed values of the parameters.

A.2 Residual normalization

Multilevel fluctuations in modelFrame objects are normalized via Choleski decomposition

of the residual variance-covariance matrix, see p. 239 in [42]. For the innermost level of Resid-

uals of Annual Biomass Increment (RABI) the normalized residuals are defined as follows:

ϵ norm; c; t ¼ ðC c; t
TÞ
� 1
ðy c; t � X c; tb̂ Þ; ð11Þ

where Ci
T is the lower triangle of the Cholesky decomposition of the variance-covariance

matrix Vi, Xi is the design matrix, b̂ contains the parameter estimates and yi is the vector of

observed responses.
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A.3 Autocorrelation function

Autocorrelation of normalized fluctuations in multilevel models is assessed with ACF, see

p. 183 in [28]. As an example, the autocorrelation model for the lowest level of ϵ� � �ic,t normal-

ized residuals is

r̂ ðlÞ ¼
Pni

c¼1

Pnc� l
t¼1

ϵ c; tϵ c; ðt� lÞ=NðlÞ
Pni

c¼1

Pnc
t¼1
ϵ2

c; t=Nð0Þ
ð12Þ

where l is the lag in years, and N(l) is the number of residual pairs defining the numerator of

r̂ðlÞ. Any correlation structure of nlme package can be implemented in modelFrame func-

tion to model residual autocorrelation. For the case of dendroclimatic data, autocorrelation in

MDDS is modeled with an autoregressive-moving average models ARMA (1,1), which have

exponentially decaying auto-correlation functions for lags� 2. For the lowest level of the ϵ� � �ic,
t normalized residuals the autocorrelation model is

ϵc; t ¼ �ϵc; ðt� 1Þ þ yac; ðt� 1Þ þ ac; t; ð13Þ

where ϕ was the autoregressive parameter; θ was the moving average parameter; and ac,t was

the noise term, see p. 128 in [50].

A.4 Variance function

Heteroscedasticity and serial autocorrelation of ^ϵ ��� ic; t and Residuals of Annual Aridity Index

(RAAI) can be modeled with correlation and weights arguments [42] in model-
Frame function. However, such modeling would take a long time depending on the complex-

ity of the classification factors in the MDDS. For example, the variance model for the

innermost level of ϵ� � �ic,t normalized residuals is:

Varðϵ c; tÞ ¼ s2ð%1 þ jn c; tj
%2Þ

2
; ð14Þ

where σ2 was the variance; %1 and %2 were constants; νc,t had the same structure of the fixed

effects from Eqs (2) and (7).

A.5 Multivariate comparison

Mantel correlograms between two MDDS with a common classification factor are established

by comparing distances in one of the MDDS with sets of binary model matrices specifying

membership in particular classes of the other MDDS. Euclidean distances from both MDDS

are standardized to z-scores by subtracting the means from individual distances and then

dividing the differences by the corresponding standard deviations. The Mantel statistic is

rðdÞ ¼
Pn

i

Pn
j wijzij

Pn
i

Pn
j wij

ð15Þ

where d is the distance class from one of the MDDS; zij is the distance between each pair i and j
from the other MDDS; wij is a weight for the pair: typically 1 if zij is in d and 0 if it is not. The

number of classes d is calculated with the Sturges rule [29]:

d ¼ 1þ 3:3 � log
10
ðmÞ ð16Þ

where m is the number of distances in the upper-triangular binary model matrix.
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