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Abstract

Precise detection of invasive cancer on whole-slide images (WSI) is a critical first step in

digital pathology tasks of diagnosis and grading. Convolutional neural network (CNN) is

the most popular representation learning method for computer vision tasks, which have

been successfully applied in digital pathology, including tumor and mitosis detection.

However, CNNs are typically only tenable with relatively small image sizes (200 × 200 pix-

els). Only recently, Fully convolutional networks (FCN) are able to deal with larger image

sizes (500 × 500 pixels) for semantic segmentation. Hence, the direct application of

CNNs to WSI is not computationally feasible because for a WSI, a CNN would require bil-

lions or trillions of parameters. To alleviate this issue, this paper presents a novel method,

High-throughput Adaptive Sampling for whole-slide Histopathology Image analysis

(HASHI), which involves: i) a new efficient adaptive sampling method based on probability

gradient and quasi-Monte Carlo sampling, and, ii) a powerful representation learning clas-

sifier based on CNNs. We applied HASHI to automated detection of invasive breast can-

cer on WSI. HASHI was trained and validated using three different data cohorts involving

near 500 cases and then independently tested on 195 studies from The Cancer Genome

Atlas. The results show that (1) the adaptive sampling method is an effective strategy to

deal with WSI without compromising prediction accuracy by obtaining comparative results

of a dense sampling (*6 million of samples in 24 hours) with far fewer samples (*2,000

samples in 1 minute), and (2) on an independent test dataset, HASHI is effective and
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robust to data from multiple sites, scanners, and platforms, achieving an average Dice

coefficient of 76%.

1 Introduction

The advent of whole-slide digital scanners has allowed for rapid digitization of histopathology

slides, making these digitized slides images easy to store, visualize, share and analyze using

computational tools. This rapidly growing field of Digital Pathology [1–3] is resulting in one of

the newest forms of “big data”. Whole-slide images (WSI) in histopathology are large, typically

each WSI could have a full spatial resolution of 80,000 × 80,000 pixels and approximately 20

GB in storage size at 40× magnification. Additionally, projects like the The Cancer Genome

Atlas (TCGA) [4] have resulted in the creation of very large digital slide repositories. The

TCGA currently hosts 11,079 cancer studies involving 34 different types of cancer and hosting

over 1,095 Terabytes (*1 Petabyte) of data [4]. This high volume of data requires the develop-

ment and application of high throughput computational image analysis approaches for mining

the digital image data. In particular, representation learning and deep learning approaches are

the current state-of-the-art in several computer vision tasks such as object detection, object

recognition and image annotation [5, 6]. Deep representation learning refers to a family of

machine learning methods which attempt to learn multiple levels of representation to model

complex relations among data. These methods attempt to discover more abstract features via

higher levels of representation which then could help facilitate high-level decision tasks such as

classification or prediction [5]. For image analysis, convolutional neural networks (CNN) is

the most successful deep representation learning method. CNNs are multilayer neural net-

works, combining different types of layers (convolutional, pooling, classification) which then

need to be trained in a supervised manner [5] for image analysis and classification tasks, which

have focused on very small images [7–9].

Recently, fully convolutional networks (FCN) have shown the capability to extend CNN

architectures, thereby achieving state of the art classification and segmentation performance

for images of relatively small size [10, 11]. A fully convolutional network (FCN) is a neural net-

work composed of convolutional layers without any fully-connected layer at the end of its net-

work architecture. A convolutional neural network (CNN) is a neural network composed of

convolutional layers and at least one fully-connected layer. FCNs can be seen as a generaliza-

tion of CNNs. CNNs combine local information to make predictions at the global level. FCNs

can make these predictions in a dense way at the pixel level. Each output pixel of a FCN can be

seen as an individual CNN.

Some of the previous works have involved the application of CNN to histopathology image

analysis [12–21] and very recently FCN was successfully applied to the problem of gland seg-

mentation in colon histology images [22, 23]. However, these approaches have limited their

analysis to small regions of interest (ROI) within the larger WSI. The main reason is that the

overall size of the network depends on the size of the input image. For instance, a CNN with

an input image of 200 × 200 pixels and 250 feature maps in the first convolutional layer would

involve 10 million hidden units, while the same architecture with an input RGB color image of

size 80,000 × 80,000 (a typical full resolution digitized WSI at 40× magnification) would

require around 4.8 trillion hidden units, far exceeding the computational capabilities of most

current high performance computing clusters by several orders of magnitude. Even a scaled

down version (1:32) from the original full resolution WSI would require around 4.6 billions
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hidden units. This means that a direct application of the traditional CNN approach for object

detection or pixel-level classification in WSIs for a full resolution or a scaled down version

(1:32) is not tenable. The nearest alternative are FCNs as long as the image size can be allocated

into the GPU memory [10, 11].

Some approaches have been proposed for tissue classification, tumor detection or grade

scoring on WSIs [24–29]. However, most of the image processing tasks in WSIs for problems

in digital pathology have focused mainly on image registration and preprocessing [30–32].

Increasingly, a number of deep learning approaches have begun to be applied for whole-slide

histopathology image analysis [28, 29].

Precise invasive tumor delineation on the pathology slide is typically the first step for subse-

quent interrogation of tumor differentiation by the pathologist [33]. While approaches for

breast cancer grading have been previously presented [34–36], these approaches require to

define first the target ROI. Breast cancer (BCa) is the most common type of cancer in women

and the second cause of death in developed countries [37]. Invasive BCa refers to those

breast cancers that have spread from the original site and typically tend to have poorer

prognosis [38].

This paper presents a High-throughput Adaptive Sampling for whole-slide Histopathology

Image analysis (HASHI), a novel, accurate and high-throughput framework that combines the

powerful capabilities of CNN models for image recognition and an adaptive sampling method

for rapid detection of precise extent of invasive BCa on WSIs. The method is based on a CNN

tile classifier which estimates the probability of the presence of invasive BCa within a WSI

through adaptive sampling because CNN is only able to classify small regions, not the full

WSI. Hence, instead of applying the tile classifier densely over the entire WSI, the method

adaptively chooses regions with high uncertainty of a tissue tile being invasive or not. Regions

of ambiguity tend to cluster on the border of the tumor regions, representing in most cases, a

mixture of tumor and benign regions. The rationale behind HASHI is that regions where the

predictor has a greater uncertainty about the type of tissue, will require more tile samples to be

classified by the CNN in order to improve the confidence of the adaptive sampling method for

those regions of ambiguity. Thus, homogenous regions tend to present the same morphologi-

cal and architectural attributes within their local neighborhood and therefore low uncertainty

about the type of tissue. While, heterogeneous regions tend to present mixtures of tissue types

(invasive and non-invasive) with different morphological and architectural attributes within

their local neighborhood representing high uncertainty about the type of tissue, and therefore

requiring more tile samples. In this paper, we present a new sampling strategy that alternates

between exploration and exploitation. The initial exploration involves a pseudorandom sam-

pling in turn providing a coarse overview of the tissue type distribution in the WSI, distribu-

tion here representing the predictor likelihood associated with each tile. The regions identified

as being ambiguous represent candidate regions for more dense local sampling or “exploita-

tion”. This process is iterated several times. In this work we apply HASHI to the problem of

automated detection and quantification of invasive BCa extent on WSIs. The HASHI classifier

is trained with a cohort of nearly 500 patient studies drawn from multiple institutions and

with a wide variation in staining and scanning attributes. The model is independently vali-

dated on a hold out test of almost 195 cases from the TCGA. Extensive results of model optimi-

zation and evaluation and parameter sensitivity are presented.

The rest of the paper is organized as follows: previous related works are described in Section

2; details of our approach are presented in Section 3; Section 4 details the experimental design;

Section 5 presents the evaluation results and discussion; finally, in Section 6 we present our

concluding remarks and directions for future work.
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2 Previous related work

A number of recent histopathology image analysis methods have focused on identification of

image features in conjunction with a machine learning classifier to predict presence or severity

of disease from surgical or biopsy tissue specimens [3, 35, 36, 39–43]. Most approaches involv-

ing feature extraction from digital pathology images are based off a hand-crafted feature

design. These hand-crafted features aim to capture different tissue morphologic and spatial

properties including nuclear shape, nuclear architecture, color intensity, and tissue texture.

Table 1 details a set of state-of-the-art hand-crafted features in histopathology image analysis

and breast cancer digital pathology tasks [17, 36, 44]. These features are used as the baseline

for comparative evaluation against HASHI approach based on CNN features.

While work on hand-crafted feature design is an active area of research, these features tend

to be sensitive to staining and scanning artifacts [3, 42, 45]. Hand-crafted features are approxi-

mations, based on mathematical and statistical formulations, of the visual content designed by

human experts according to prior knowledge of the visual regions of interest. Consequently

these features may not capture all the relevant characteristics and complex relationships

embedded within the disease patterns manifest on histopathology images [46]. By contrast,

representation learning aims to automatically learn the transformation of data that facilitates

high-level prediction and classification tasks using one level or multiple levels of representa-

tion (i.e. deep learning) [5–7]. Compared to hand-crafted features, representation learning

based approaches attempt to learn the most appropriate representation directly from the data.

While these approaches tend to be domain agnostic (i.e. not specifically invoking visual fea-

tures that represent the domain), they are focused on identifying image features geared

towards maximizing high-level classification tasks in pattern recognition. More recently, fully

convolutional networks (FCN), and other types of CNNs [10, 11, 47, 48], have been shown to

outperform state-of-the-art approaches for semantic segmentation tasks involving natural

images. FCN is an extension of CNN architectures for pixel wise prediction resulting in high-

level salient maps for each class. However, these models are trained using the same CNN archi-

tecture as employed by patch-based learning approaches.

Recently, approaches based on representation learning and deep learning have been applied

for histopathology image analysis, either in a supervised or unsupervised manner [13–16,

18–21, 29, 49–51]. Most previous studies have been based on supervised learning (e.g. tumor,

mitosis and tubule nuclei detection [13–16, 20, 51]), with relatively few approaches being

Table 1. Set of hand-crafted features used for comparison against the CNN based feature learning approach.

ID Category Length Features

CF Color/intensity 56 First order statistics of 14 color channels [34, 35, 42].

GeF Geometrical 48 First order statistics of geometrical / morphological features [35, 40, 42].

CH Color Histograms 8 × 3 8-bin histogram for each RGB channel [35, 42].

SH Shape Index Histogram 8 × 3 Shape index 8-bin histogram for each RGB channel [54].

MLBP Multi-scale LBP 8 × 3 Multi-scale local binary patterns, 8-bin histogram for each RGB channel [42].

HF Haralick features 26 × 3 First order statistics of 13 Haralick gray-level concurrence features from 4 orientations for each RGB channel [35, 42,

55].

RLF Run-Length features 11 × 3 11 higher-order statistics of gray-level run-length matrices properties at 4 orientations for each RGB channel [40].

GWF Gabor wavelet features 71 × 3 First order statistics of 71 Gabor filters from 8 orientations for each RGB channel [34, 35, 42, 55].

TGF Topography / Graph

features

51 Voronoi diagram (12), Delaunay triangulation graph (8), minimum spanning tree (4) and nuclei (27) [34, 40, 42, 45].

https://doi.org/10.1371/journal.pone.0196828.t001
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geared towards unsupervised learning [16, 49, 50, 52]. In fact, the most successful representa-

tion learning approaches in histopathology image analysis have been supervised approaches

involving CNNs, outperforming hand-crafted features in several problems [53]. Recently,

FCNs have been successfully applied to the problem of gland segmentation in colon histology

images [23].

Kothari et al. [26] provided an excellent review of the state of the art in image analysis and

classification tasks related to histopathological whole-slide imaging informatic methods. They

describe how most approaches to feature analysis of WSIs are typically limited to manually

selected ROIs. In [24], the authors describe a multi-resolution framework for tile-based tissue

classification to determine the grade of neuroblastomas. Kothari et al. [25] proposed a visuali-

zation framework for studying visual morphological patterns across 1,301 histopathological

WSIs from 571 patients with ovarian serous cystadenocarcinoma from TCGA. In [27], the

authors assessed the impact of different classification algorithms and features sets on both

accuracy and computing time for quantification of necrosis in WSIs. Huang et al. [28]

attempted to address the problem of time-efficient determination of the nuclear pleomor-

phism score from breast cancer WSIs. They used a sparse coding approach for unsupervised

learning of the visual representation of the content in the WSIs and then combined this repre-

sentation with first- and second-order statistics of multivariate Gaussian distributions. These

statistics were then employed in conjunction with a support vector machine classifier to iden-

tify invasive and non-invasive cancer patches over WSIs, albeit at a low magnification. ROIs

are then selected from regions that secure a higher nuclear pleomorphism score using a

dynamic sampling based on Voronoi tessellation. The final nuclear pleomorphism score is cal-

culated from higher-scaled versions of the ROIs selected. Finally, we successfully applied CNN

with a regular/dense sampling over WSI to predict invasive tumor regions of BCa but spending

a lot of computing time [29].

The main limitations of these previous approaches has been that the analysis has been lim-

ited to small ROIs within the larger WSIs or performing time-consuming regular/dense sam-

pling. Additionally, hand-crafted features tend to be very specific to particular domains or data

sources and not seamlessly generalizable to different tasks or applications. Finally most of

these approaches have involved evaluating the methods on a relatively small cohort of cases

typically originating from a single institution. Consequently it is not clear whether these

approaches will actually be useful for routine clinical practice. In contrast, our method has the

following advantages and makes the following contributions: i) accurate and reproducible

detection of invasive breast cancer regions on new unseen WSIs, ii) ability to generalize to

images acquired from different data sources and domains, and iii) a new high-throughput

adaptive sampling method that makes our approach feasible for WSIs and is an order of mag-

nitude more efficient compared to a naive implementation of CNNs, while not compromising

detection accuracy. In order to explicitly address the issues of variability in staining, slide prep-

aration, and scanning across multiple sites, our training and validation sets were comprised of

slide images from multiple different institutions.

3 Methodology

3.1 Brief overview of HASHI

Fig 1 presents the general overview for the HASHI framework for invasive BCa detection in

WSI. Training exemplars for the CNN are generated by pathologists on digitized WSIs. The

training phase of the CNN uses as input, a tile-based dataset obtained by applying a regular

sampling of WSIs from the training data cohort. This process is used to extract tiles of a fixed

square size both from pathologist annotated invasive and non-invasive tissue regions. The
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prediction stage on new unseen WSIs involves the following steps: first, tiles are extracted

from the WSI using pseudorandom sampling; the CNN classifier is applied to each tile; the

prediction produced by the CNN is used to build an interpolated probability map which is

then used to identify regions where the classifier has high uncertain with regard to the tissue

type or class (invasive or not). These regions are then determined as needing a more dense

sampling. This is achieved by choosing the high gradient magnitudes of the probability map

associated with the tumor borders; the newly sampled exemplars are used to produce an

improved probability map estimation; the process is iterated producing a final invasive BCa

probability map. The details of each step are explained in the following subsections.

3.2 Adaptive gradient-based sampling

Algorithm describes the adaptive gradient-based sampling strategy, which iteratively refines

an initial coarse estimation of an invasive BCa probability map. Inputs to the algorithm include

Fig 1. Overview of HASHI method. Overview of the high-throughput adaptive sampling for whole-slide histopathology images method (HASHI) based on CNNs for

automated detection of invasive breast cancer (BCa) in WSIs. Training data cohorts: Hospital of the Univ. of Pennsylvania (HUP) and Case Western Reserve Univ.

(CWRU). Validation/Testing data cohorts: Cancer Institute of New Jersey (CINJ) and The Cancer Genome Atlas (TCGA).

https://doi.org/10.1371/journal.pone.0196828.g001
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a WSI X, the algorithm parameters: maximum iterations T and number of sample points per

iteration N. The algorithm begins with a tile sampling process resulting in the generation of N
tiles. Each tile is classified using the CNN-trained modelM to obtain the probability of the

presence of invasive BCa at the particular location occupied by each tile. By interpolating the

probabilities calculated at each tile, a probability map P for the WSI is obtained. In order to

determine regions with higher uncertainty, the gradient, G, of the probability map is calcu-

lated. G is then used to prioritize the sampling selection of new tiles for the next iteration. The

process is repeated until the maximum number of iterations T is reached.

Algorithm: Adaptive gradient-based quasi-Monte Carlo sampling

INPUT:
M: CNN-trained model
X: WSI
T: maximum iterations
N: number of samples per iteration
samples  pseudorandom sampling (X, N)
for i = 1 to T do
predictions  tile classification (M, samples)
P  invasive BCa probability map interpolation (predictions,

samples)
G  probability gradient (P)
samples  gradient based sampling (G, X, N)

end for
return invasive BCa probability map P

3.3 Tile-based CNN classifier training

3.3.1 Ethics statement. Data analysis was waived review and consent by the IRB board, as

all data was being analyzed retrospectively, after de- identification. All experimental protocols

were approved under the IRB protocol No. 02-13-42C with the University Hospitals of Cleve-

land Institutional Review Board, and all experiments were carried out in accordance with

approved guidelines.

3.3.2 Tile-based dataset construction and preprocessing. Similar to [29], a regular sam-

pling was performed on each WSI from the training set to extract tissue samples for the train-

ing of the tile-based classifier. Only tiles corresponding to tissue regions were included, fatty

tissue and slide background regions were ignored. The criterion for considering that a tile is

non-tissue is based on the standard deviation and average statistics of the illumination of the

tile. If the standard deviation is close to zero, i.e. homogenous color, and the average close to

255, i.e. white color, it is considered to be a non-tissue tile. Additionally a tile sample was con-

sidered to be a positive example (i.e. invasive BCa) if a certain pre-defined proportion of its

area overlaps with the region manually annotated by pathologists as being invasive tumor, oth-

erwise it is labeled as a negative example (i.e. no cancer) [15]. Each image patch or tile is con-

verted from RGB to YUV color space and normalized to a mean of zero and variance of one.

The color space transformation and normalization allow for decorrelation and accentuation of

the differences between the input image tiles, independently of the color variability. This

approach therefore helps accelerating the process of gradient-based learning during the train-

ing stage [5].

3.3.3 Tile-based CNN classifier. Using the same methodology from [29], we trained

three different CNN architectures (this is detailed in Section 4.2), such as it was presented in

[29], the best architecture identified was found to be a 2-layer CNN (CS256-FC256), illustrated

in Fig 2. This architecture is composed of a convolutional and a pooling layer of 256 units
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followed by a fully-connected layer of 256 units. The classification layer is a softmax classifier

with two outputs (invasive and non-invasive) activated by the softmax function. Since this is a

two-class problem, softmax functions are therefore equivalent to logistic functions. The convo-

lution layer involves application of a 2D convolution of the input image with a kernel of 8 × 8

pixels. The pooling (or subsampling) layer applies a spatial L2-pooling function without over-

lapping, employing a pooling kernel of 2 × 2 pixels for each feature map obtained from the

convolution step. An advantage of the L2-pooling function is that it allows the learning of local

translationally invariant features [56, 57]. The output of the pooling layer is fed to a fully-con-

nected layer followed by a final classification layer. The training process uses the set of tiles

sampled from both the invasive and non-invasive tissue regions. The CNN model is then

trained using a stochastic gradient descent approach [5] in order to minimize a softmax loss

function (Eq 1):

LðWÞ ¼ �
1

m

Xm

i¼1

XC

j¼1

1fyðiÞ ¼ cg log
ewcsðiÞ

PC
l¼1
ewlsðiÞ

" #

þ
l

2
kW k2

F; ð1Þ

wherem is the number of training examples, C is the number of classes,W 2 RC�n are the

weights of the network in the last layer with wc as the vector associated to class c, s(i) = f(x(i)) is

the feature vector for example i and x(i) is the output of the full-connected layer, yðiÞ 2 N is the

label associated to example i and λ is the regularization parameter. 1{statement} function out-

puts 1 if statement is true, 0 otherwise. The CNN training process involves searching for a

weight vectorW which aims to minimize the loss function (Eq 1). The implementation of the

CNN model, its training and testing were performed using Torch 7, a scientific computing

framework for machine learning [58].

3.4 Adaptive prediction of invasive BCa regions

In order to predict the likelihood of individual tiles representing invasive cancer, the classifier

would need to be repeatedly applied to each tile in the WSI. For a WSI of size 80,000 × 80,000

pixels, a tile sampling approach involving patch sizes of 101 × 101 pixels translates to over

6.39 × 109 predictions, which is clearly computationally infeasible. Hence our approach

involves making predictions on a sample of patches from the WSI and then extrapolating from

these predictions to the whole image. Traditional ways of performing this sampling include:

dense, regular and random with a uniform distribution [59]. The method presented in this

Fig 2. Illustration of the CNN architecture used to distinguish between invasive and non-invasive breast cancer

(BCa) image tiles. The architecture is a 2-layer CNN with 256 neurons in the first layer convolutional (C1) and

subsampling/pooling layer (S2) and 256 neurons in the fully-connected layer (FC), (i.e. CS256-FC256). Amongst the

various architectures considered, this architecture was selected because it has a good trade-off between classification

performance and a shallower architecture (fewer layers).

https://doi.org/10.1371/journal.pone.0196828.g002
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paper uses an adaptive scheme which performs a guided sampling that focuses on those image

areas with higher uncertainty. Each of the individual steps involved in the adaptive tile based

classification are described below.

3.4.1 Tile sampling. The goal of this step is to select a set of tiles (each of 101 × 101 pixels)

from the WSI, which will be used to create a probability map over the entire WSI. The tiles

may be selected by deterministic (dense or regular) or random sampling. The different sam-

pling approaches are discussed here below.

Regular sampling This strategy involves sampling tiles at equally spaced intervals on a reg-

ular grid. For instance, given a WSI of K × K size and tiles of k × k size, the step size s, in both

the X and Y directions is 1� s� k. The extreme case involves using a step size s = 1, which

means an expected number of samples of (K − k)2. This case corresponds to a dense sampling

of the WSI.

Uniform random sampling Regular sampling is deterministic. An obvious alternative

strategy is random sampling, i.e. to select the tiles using random coordinates generated from a

particular probability distribution. Without a priori knowledge of the image content, a uni-

form probability distribution is a natural choice for the random sampling algorithm.

Quasi Monte Carlo sampling Uniform random sampling may involve over-sampling tiles

in some regions of the image while leaving other regions under-represented. This may not be

the most efficient strategy since the predictions on overrepresented regions tend to be redun-

dant. Quasi Monte Carlo (QMC) sampling represents a good compromise between regular

and random sampling. QMC sampling enables an efficient sampling strategy and a regular

spatial exploration. The random sampling procedure employs deterministic (pseudo-random)

sequences designed to have low discrepancy, where discrepancy is a measure of the uniformity

of a distribution of finite point sets [60]. This property is an advantage for QMC in contrast to

Monte Carlo methods (based on random sampling) since QMC does not result in clumping

(i.e. accumulation of samples in a small area), which in turns results in better accuracy for the

sampling process [60]. We chose the Sobol and Halton sequences [61] for our iterative adap-

tive sampling method. With these sequences it is possible to incrementally add sample points

without discarding those already previously generated.

3.4.2 Invasive BCa probability map estimation. The sampled tiles are fed to the CNN

classifier to determine the probability of the presence of invasive or non-invasive BCa in each

particular tile. Cubic interpolation is then applied to extend this estimation to all the pixels in

the WSI, resulting in an invasive BCa probability map at the end of each iteration.

3.4.3 Probability gradient. A gradient imagerP is calculated to identify the directional

changes of the probability map P as follows:

rP ¼
@P
@x
x̂ þ

@P
@y
ŷ ð2Þ

where @P
@x is the gradient in the X direction and @P

@y is the gradient in the Y direction. Then, the

gradient magnitude image jrPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@P
@x

� �2
þ @P

@y

� �2
r

is calculated to identify regions with high

or low variations among tissue types in the probability map P. High values correspond to a het-

erogeneous spatial distribution of both invasive and non-invasive tissue types along tumor

boundaries (strong changes), whereas low values correspond to a homogeneous distribution

of either invasive or non-invasive tissue types (soft changes). Thus, the magnitude |rP| has

low values if the local spatial regions of P have similar values. In contrast, the magnitude |rP|

is high, if the local spatial regions of P dramatically change their probability values.
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3.4.4 Gradient-based sampling selection. The probability gradient enables a more intelli-

gent spatial sampling of points, with a more dense sampling directed at high magnitude

regions within the gradient map (representing transitional areas from one tissue type to

another), while fewer samples are extracted from homogeneous regions (possibly representing

a single tissue type region). This is accomplished by the following procedure: first, 2N samples

are generated using either the random or QMC sampling mechanism; second, the samples are

ranked according to the magnitude of the gradient; finally, the top N samples are returned.

4 Experimental design

4.1 Breast cancer data cohorts

The data used in this study are H&E-stained histological slides from patients with estrogen

receptor-positive (ER+) breast cancer. The images correspond to slides from four different

sites. The WSIs were digitized with Aperio or Ventana scanners. We used only those images

which had been scanned in at a 40x magnification (i.e. 0.2456 μm per pixel for Aperio and 0.23

μm per pixel for Ventana). Images were further downsampled by a factor of 32:1. As illustrated

in Table 2, different data cohorts were used for training, validation or testing. The training and

validation sets were used for model parameter tuning and optimization. Independent model

evaluation was performed on the hold out test set.

Three expert pathologists (NS+MF, HG) independently provided the ground truth annota-

tions of invasive breast cancer regions on digitized WSIs for each data cohort (NS+MF for D1,

D4 and D5; HG for D2 and Dtest; NS+MF and HG for D3). The pathologists manually delineated

the invasive regions at 2x magnification using the viewing software ImageScope v11.2 from

Aperio and Image Viewer v3.1.4 from Ventana.

4.2 Experiment 1: Comparing CNN vs handcrafted features

Using the same methodology from [29], the goal in this experiment was to compare the most

commonly used hand-crafted features in histopathology image analysis for breast cancer diag-

nosis, (Table 1) [35, 40, 42, 44, 62], against different CNN based architectures for tile-based tis-

sue classification of invasive BCa. This experiment uses as training data set the D3 data cohort

(349 cases) and D4 as test data cohort (40 cases). Parameter tuning was performed using cross

validation over the D3 training dataset. The performance of the classifier was evaluated using

the area under the receiver operating characteristic curve (AUC). Both training and testing

were performed using a NVIDIA1GPU Tesla™ C2050 (448 Cores, 2.6 GB Memory).

Each hand-crafted feature listed in Table 1 was combined with each of two classifiers: ran-

dom forests (RF) and support vector machines (SVM). For RF, the training step involved opti-

mizing the parameters corresponding to the number of trees, while for the SVM, different

Table 2. Breast cancer data cohorts used for training, validation and testing in the experimental evaluation.

ID Site Cases Scanner Dataset

D1 Hospital of the Univ. of Pennsylvania 239 Aperio Training

D2 Univ. Hospitals Case Medical Center/Case Western Reserve Univ. 110 Ventana Training

D3 (D1 + D2) Hospital of the Univ. of Pennsylvania and Univ. Hospitals Case Medical Center/Case Western Reserve Univ. 349 Aperio, Ventana Training

D4 Cancer Institute of New Jersey 40 Aperio Validation

D5 Cancer Institute of New Jersey (subset) 12 Aperio Validation

Dtest The Cancer Genome Atlas (https://tcga-data.nci.nih.gov/) 195 Aperio Testing

https://doi.org/10.1371/journal.pone.0196828.t002
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kernel functions were evaluated: linear, radial basis function (RBF), intersection, Chi-square

(χ2), and Jenson-Shannon’s. For the CNN-based approach, three different architectures were

evaluated, such as in [29]. The first was the architecture employed in [15] which was a 3-layer

CNN, called ConvNet. This architecture comprises of 16 neurons in the initial convolutional

and pooling layers, 32 neurons in the second stage, and 128 neurons in the third fully-con-

nected layer (CS16-CS32-FC128). The second architecture explored was the one that was pre-

viously successfully applied to the problem of mitosis detection in breast cancer

histopathology images [13], which comprises four layers of convolutional and pooling neurons

with 16 neurons in each, and a fully-connected layer of 128 neurons

(CS16-CS16-CS16-CS16-FC128). The third architecture explored was a 2-layer CNN with 256

neurons in the first layer and 256 neurons in the fully-connected layer (CS256-FC256) (Fig 2).

In order to determine the statistical significance of the difference in performance between

methods, we applied a multiple comparison Kruskal-Wallis test using the following procedure:

we built 100 different data groups with 60% of the instances randomly chosen from D3, apply-

ing bootstrap sampling. The AUC for each method trained from each of 100 different training

datasets was evaluated on D4. Then, the methods were ranked according to their performance

for each data group. Based on the rankings, the Kruskal-Wallis test statistic was calculated and

a post-hoc Tukey’s honestly significant difference criterion was applied to check for pairwise

differences between methods.

4.3 Experiment 2: Evaluating the impact of the sampling strategy on the

effectivity and efficiency of probability map prediction

Seven different sampling methods were evaluated to determine the more efficient strategy in

terms of both detection accuracy and computing time. The baseline sampling method chosen

was (a) the regular sampling (regular) which takes equally-spaced samples by varying the step

size. For the random and pseudo-random sampling methods, we evaluated (b) uniform ran-

dom sampling (uniform), (c) quasi-Monte-Carlo sampling using the Sobol sequence (qmc-
sobol), and (d) quasi-Monte-Carlo sampling using the Halton sequence (qmc-halton). In addi-

tion, sampling strategies which involve using image gradients to identify regions of uncer-

tainty, were combined with the previous sampling strategies, (e) gradient-based uniform

sampling (grad-uniform) and (f) gradient-based quasi-Monte-Carlo sampling, using either

Sobol (grad-qmc-sobol) and (g) Halton (grad-qmc-halton) sequences. All sampling approaches

(with and without incorporation of gradient image information) were applied iteratively with

the same set of parameters: 20 iterations and 100 samples per iteration, resulting in 2000 sam-

ples for each sampling approach. This experiment used the best performing CNN model iden-

tified in Experiment 1 in conjunction with all the various sampling strategies that were

evaluated. The performance of HASHI for each sampling strategy was evaluated on D5. The

classification of the tiles with the CNN model was done using only a single CPU core in a Intel

64-bit Linux server (12 CPU cores, 28GB). This was done in order to simulate the type of gen-

eral purpose computing environment that one might expect to see in a typical pathology clini-

cal practice, one that does not avail of any special purpose high end hardware.

The output of our method is an invasive BCa probability map over the WSI, i.e. a measure

of the probability of presence of invasive BCa for each pixel in the WSI. The probability map is

used to calculate a predicted region with invasive BCa, by selecting those pixels where the

probability is above a given threshold.

Additionally, an equivalent FCN architecture based on the best CNN model obtained from

Experiment 1 was evaluated to evaluate FCN with respect to HASHI for generating the inva-

sive cancer probability map.

High-throughput adaptive sampling for WSI via CNN: Application to invasive BCa detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0196828 May 24, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0196828


Each scheme was quantitatively evaluated by measuring the Dice coefficient [63] between

the predicted BCa region and the ground truth annotation from the expert pathologist. The

Dice coefficient is defined as follows: Dice ¼ 2jP\Gj
jPjþjGj, where P corresponds to the predicted

region by our method, and G is the ground truth binary mask obtained via the pathologists

annotation. For each of seven sampling strategies, the average Dice coefficient over the test

data set is calculated for a different number of samples.

4.4 Experiment 3: Evaluating performance on a hold-out independent test

set

We trained a CNN model with the best configuration found in Experiment 1. Additionally a

linear SVM was also trained with the best performing handcrafted features (CF). Both

approaches were trained with D3 and evaluated on Dtest. The evaluation on Dtest was performed

using a NVIDIA1GPU Tesla™ C2050 (448 Cores, 2.6 GB Memory).

The performance measures used to evaluate and compare the different methods were Dice

coefficient (Dice), positive predictive value (PPV), negative predictive value (NPV), true posi-

tive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false negative rate

(FNR).

5 Results and discussion

5.1 Experiment 1: Comparing CNN vs handcrafted features

Table 3 shows the AUC values (mean and standard deviation) for the best performing three

CNN models described in Subsection 4.2 (CNN1, CNN2, CNN3) evaluated on D4. Also shown

in Table 3 are the best performing models of hand-crafted features (see Table 1) combined

with RF and SVM classifiers (M1 toM7). The experimental results in Table 3 show that the

three CNN classifiers outperform the best combinations of hand-crafted features and machine

learning classifiers. Additionally, the CNN classifiers exhibit a smaller variance in terms of the

AUC measure compared to hand-crafted features.

The multicomparison Kruskal-Wallis test, using a post-hoc Tukey’s honest significant dif-

ference criterion, reveals that there is no statistical difference (p< 0.05) in terms of critical dif-

ference among the CNN classifiers (CNN1, CNN2, CNN3). Mean differences above the critical

difference are suppose to be statistically significant. Additionally the two top performing CNN

models significantly outperformed the best performing hand-crafted features. Such as in [29],

Table 3. Comparison between CNN models and state-of-the-art hand-crafted features trained with D3 and evaluated on D4 in terms of AUC.

ID Methodology AUC

CNN1 CS16-CS16-CS16-CS16-FC128 0.9021 ± 0.0097

CNN2 CS256-FC256 0.9018 ± 0.0093

CNN3 CS16-CS32-FC128 0.8915 ± 0.0093

M1 CF + SVM-Linear 0.8711 ± 0.0947

M2 RLF + SVM-Linear 0.8689 ± 0.0963

M3 CH + SVM-Linear 0.8448 ± 0.1047

M4 SH + SVM-Linear 0.8444 ± 0.1065

M5 HF + SVM-Linear 0.8385 ± 0.0942

M6 TGF + SVM-Linear 0.7998 ± 0.1068

M7 RLF + RF 0.7985 ± 0.0892

https://doi.org/10.1371/journal.pone.0196828.t003
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the subsequent experiments and evaluation we employed CNN2 (i.e. CS256-FC256), since it

has a simpler architecture (fewer layers).

5.2 Experiment 2: Evaluating the impact of the sampling strategy on the

effectivity and efficiency of probability map prediction

Fig 3 shows the invasive BCa probability map produced for a representative WSI using the

sampling strategies presented in Subsection 4.3. Fig 3A shows a test WSI while Fig 3B shows

the ground truth annotation provided by an expert pathologist. Fig 3C is the prediction of the

invasive BCa probability map using CNN2 and regular grid sampling with a step size of 50 pix-

els. While this sampling strategy is fast (31 secs), the resulting probability maps are extremely

coarse and imprecise. Fig 3D shows the invasive BCa probability map obtained using CNN2

and dense regular sampling, which is the extreme case of regular grid sampling where the step

size is 1 pixel. The resulting probability map is highly specific and detailed, but unfortunately

with a run time of 22 hours it is also quite unfeasible for application in a clinical setting. Fig

3E-3L show the iterative process using CNN2 and the new adaptive sampling method (grad-
qmc-halton). Fig 3E-3H illustrate the sampled points for the CNN2 classification process at iter-

ations 1, 2, 8 and 20, respectively. As may be appreciated from Fig 3I-3L, grad-qmc-halton

Fig 3. Comparison between sampling methods (regular and dense) with HASHI using gradient-based quasi-Monte Carlo sampling (grad-qmc-halton) [59, 61]. The

new unseen WSI (A) with its corresponding ground truth annotation from an expert pathologist (B). The probability maps using regular sampling with a step size equal to

the patch size (C) and regular dense sampling with step size equal to 1 pixel (D). HASHI involves an iterative process of extracting patch samples (E-H) and obtaining the

corresponding probability maps (I-L) for the 1st (E, I), 2nd (F, J), 8th (G, K) and 20th iteration respectively (H, L).

https://doi.org/10.1371/journal.pone.0196828.g003
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sampling yields a result that appears comparable to that obtained via dense sampling. This is

also reflected in the quantitative evaluation results shown in Fig 4.

Fig 4 shows the quantitative results obtained for the different sampling strategies in order

to predict the extent and location of invasive BCa regions as a function of the number of tile

samples required per iteration. The cases from D3 were used to train CNN2 and those from D5

were used to evaluate the probability map prediction corresponding to CNN2 and to each of

the different sampling strategies. The x-axis, in a logarithmic scale, corresponds to the number

of tile samples required by each sampling method and the y-axis corresponds to the Dice coef-

ficient. Note that the number of samples (x-axis) is proportional to the computing time. Each

sampling strategy is depicted as a line. The regular sampling strategy was evaluated using dif-

ferent step sizes (200, 150, 100, 75, 50, 25, 1 pixels), while the random and pseudo-random

sampling strategies (uniform, qmc-sobol, qmc-halton) were evaluated using a total of 20 itera-

tions, with 100 samples employed per iteration.

The experimental results reveal that adaptive sampling (grad-qmc-sobol, grad-qmc-halton
and grad-uniform) not only outperforms regular sampling and non-adaptive random sampling

(uniform, qmc-sobol, qmc-halton), but also manages to achieve the same detection performance

as dense sampling but with a substantial reduction in the overall computation time. While

dense sampling employs an average of 6 million tile samples, with a corresponding compute

time of around 24 hours per WSI, our adaptive sampling strategies (grad-qmc-sobol and grad-
qmc-halton) achieve a comparable detection performance while only employing 2000 samples

and a corresponding run time of less than one minute per WSI using only CPU for CNN2

predictions.

Additionally, HASHI was compared against the equivalent architecture of CNN2, one

employed by a FCN. Fig 5 shows the comparison between image dimensions and the GPU

memory requirements for prediction. This experimentation was performed on a NVIDIA1

Fig 4. Quantitative evaluation of the different sampling strategies in terms of average Dice coefficient (y-axis)

versus the number of samples (x-axis) used. All strategies were trained withD3 and evaluated withD5.

https://doi.org/10.1371/journal.pone.0196828.g004
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GPU Titan X with a GPU memory of 12GB because it allows to allocate larger image sizes for

invasive probability maps generation in contrast to the GPU used for training that only sup-

port image sizes of 530 × 650 pixels.

This reveals that the generation of the invasive probability map is limited by the GPU mem-

ory size. The smaller image size in D5 had 2431 × 1853 pixels, which is a larger image size than

the image sizes that can be allocated in GPU memory according to the experiments of Fig 5.

Hence, in order to compare the performance of our approach against FCN, the test images had

to scaled down to make it possible to invoke the FCN approach. Thus, the generation of the

probability map for the larger image analyzed by the FCN (i.e. *1500 × 1500) took 1 second.

Table 4 shows the invasive BCa detection performance comparison between HASHI and

FCN. We report the average and standard deviation of the Dice coefficient values for both

approaches for images within D5. The parameter configuration for HASHI involved 20 itera-

tions with 100 samples per iteration using the CNN2 model. For FCN, the equivalent architec-

ture based on CNN2 model was used, but the images had to be scaled because of the previously

described constraint with the GPU memory. While the mean performance for FCN is 4%

higher compared to HASHI, the difference between the two approaches was not found to be

statistically significantly different across all images in D5.

Table 4. Invasive BCa detection performance of HASHI and the equivalent FCN architecture on D5 in terms of

Dice coefficient.

Dice

HASHI 0.67 ± 0.22

FCN 0.71 ± 0.21

https://doi.org/10.1371/journal.pone.0196828.t004

Fig 5. GPU memory size requirements (Megabytes) for different image dimensions (height × width × channels)

for the experimentation of FCN based on CNN2 model.

https://doi.org/10.1371/journal.pone.0196828.g005
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5.3 Experiment 3: Evaluating performance on a hold-out

independent test set

We applied the best combination of tile-based tissue classifier (CS256-FC256) and adaptive

sampling method (grad-qmc-halton). HASHI was subsequently evaluated on Dtest. Table 5

summarizes and compares the performance ofHASHI versus the best classifier obtained with

the hand-crafted features (i.e.M1) using the same adaptive sampling method (grad-qmc-hal-
ton), in terms of average Dice, TPR, TNR, FPR and FNR. A more detailed analysis of the distri-

bution of Dice coefficient per case reveals that for most of WSI, HASHI had a Dice coefficient

between 0.7 and 0.9 and an overall median value of 0.8228, whereas the best classifier based on

hand-crafted features achieved a median value of 0.8007. Some of the cases with the lowest

Dice coefficient were because the classifier also identified ductal carcinoma in situ (DCIS), a

stage 0 breast cancer that is considered as a pre-malignancy. However, since we set a very strin-

gent requirement on only identifying invasive cancer, the detection of DCIS was deemed to be

a false positive error. Most other cases with a low Dice coefficient corresponded to slides with

a poor quality of staining.

Fig 6 shows the detection sensitivity of the threshold value from classifier of bothHASHI
andM1 with grad-qmc-halton as evaluated on Dtest. Interestingly, the performance ofHASHI is

more stable and robust, achieving a greater than 0.7 Dice coefficient, for most of the threshold

values employed and achieving an optimal average Dice coefficient of 0.7586 at a threshold of

0.24. By contrast,M1 in conjunction with grad-qmc-halton was found to be more sensitive to

the thresholds, achieving good results only in the interval between 0.35 and 0.45 with a best

Table 5. Invasive BCa detection performance of our method on the Dtest testing dataset in terms of Dice, PPV, NPV, TPR, TNR, FPR, FNR.

Dice PPV NPV TPR TNR FPR FNR

HASHI 0.76 ± 0.20 0.72 ± 0.22 0.97 ± 0.05 0.87 ± 0.16 0.92 ± 0.08 0.08 ± 0.08 0.13 ± 0.16

M1 + grad-qmc-halton 0.73 ± 0.21 0.68 ± 0.24 0.96 ± 0.05 0.86 ± 0.19 0.91 ± 0.08 0.09 ± 0.08 0.14 ± 0.19

https://doi.org/10.1371/journal.pone.0196828.t005

Fig 6. Performance comparison between HASHI and M1 in terms of Dice coefficient in the independent Dtest test

data cohort by varying the classification threshold of the invasive BCa probability map.

https://doi.org/10.1371/journal.pone.0196828.g006
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result of 0.7305 at a threshold of 0.39. Fig 7 shows good concordance between predictions of

HASHI and pathologists annotations of invasive cancer (ground truth) for representative

slides chosen from Dtest.

6 Conclusions

This paper presented a novel accurate and high-throughput method (HASHI) for automatic

invasive breast cancer detection in WSIs. While several previous works have proposed to use

deep learning methods for histopathology image analysis, these approaches tend to be compu-

tationally expensive. Additionally these approaches typically do not deal with WSIs and only

involve analysis of small ROIs. In contrast, our new approach HASHI is able to employ state-

of-the-art CNNs models to classify tissue regions through an efficient and smart new adaptive

Fig 7. Results of the invasive BCa probability maps (second and fourth rows) predicted by HASHI on representative WSIs from Dtest compared to the ground truth

annotations from expert pathologists (first and third rows). Red regions represent locations identified by HASHI as having a high likelihood of cancer presence while

the blue regions represent the lowest likelihood of cancer presence.

https://doi.org/10.1371/journal.pone.0196828.g007
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sampling method. We addressed the challenges of high complexity and visual variability of tis-

sues, invasive and non-invasive, and the large size of WSIs by combining a state-of-the-art

image analysis technique, CNNs, with an efficient adaptive sampling strategy. The model was

trained to learn the most appropriate representation using nearly 600 WSIs from 4 different

institutions. To deal with large-size images, we developed a novel adaptive sampling method

which integrates quasi-Monte-Carlo sampling with a gradient-based adaptive strategy which

focuses sampling on those areas with higher uncertainty.

The method was systematically evaluated using nearly 200 interdependent validation stud-

ies from the TCGA. The results revealed that our approach is effective and robust, with repro-

ducible results across data from different sources. The experimental results also ratified that

CNN models outperform hand-crafted state-of-the-art feature analysis approaches, several of

which have been recently employed for different tasks in histopathology image analysis. In

addition, our new adaptive sampling method was shown to yield comparable detection accu-

racy while having a computationally efficiency that was more than 3 orders of magnitude

(>1500×) faster compared to dense sampling. In addition, an evaluation of new fully convolu-

tional networks (FCN) [10, 11] was performed to compare against HASHI. FCN was found to

be more computationally efficient and yielded a marginally higher, but not statistically signifi-

cant detection accuracy. Unfortunately one of the caveats of the FCN approach is that it can

only be run on smaller images (no larger than 1500 × 1500 pixels). This is a concern with

whole slide images which can typically have sizes above 50K × 50K pixels. Additionally higher

resolution images are typically required for several tasks in breast cancer pathology, such as

grading, tubule and mitosis counting to name a few [13, 14, 17, 34–36]. In contrast, HASHI

does not have special hardware requirements, HASHI can be applied without a GPU card and

could take advantage of commodity CPU hardware to do the processing. Additional speed-up

can be achieved by using multi-core processing, potentially making this an approach that

could be more conducive for a clinical pathology workspace.

We do however acknowledge that the work had some limitations. Firstly the approach was

unable to distinguish DCIS from invasive BCa. While DCIS is considered as zero stage of

breast cancer, it is not invasive even though it is sometimes considered as a pre-malignancy.

However, since we set a very stringent requirement on only identifying invasive cancer, the

detection of DCIS was deemed to be a false positive error. The other few cases with low predic-

tion performance of invasive BCa were primarily in slides with poor staining quality.

The approach presented in this paper has potential to serve as a decision support tool to

help pathologists to speed up breast cancer identification and localization, significantly allevi-

ating their workload.

Future directions include, extending our dataset to involve manual ROI annotations of

DCIS and other tumor confounding non-malignant presentations. Also, we will seek to poten-

tially combine our approach with an FCN approach in conjunction with GPUs to further

speed up the analysis and interrogation of large whole slide images.
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46. Cruz-Roa A, Dı́az G, Romero E, González F. Automatic annotation of histopathological images using a

latent topic model based on non-negative matrix factorization. J Pathol Inform. 2011; 2(1):S4. https://

doi.org/10.4103/2153-3539.92031 PMID: 22811960

47. Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE. Toward automatic phenotyping of

developing embryos from videos. IEEE Transactions on Image Processing. 2005; 14(9):1360–1371.

https://doi.org/10.1109/TIP.2005.852470 PMID: 16190471

48. Giusti A, Cireşan DC, Masci J, Gambardella LM, Schmidhuber J. Fast Image Scanning with Deep Max-

Pooling Convolutional Neural Networks. In: 2013 IEEE International Conference on Image Processing;

2013. p. 4034–4038.

49. Cruz-Roa A, Arevalo J, Madabhushi A, Gonzalez F. A Deep Learning Architecture for Image Represen-

tation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection. In: Med Image

Comput Comput Assist Interv. vol. 8150 of LNCS. Springer; 2013. p. 403–410.
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