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Abstract

Despite the technological progress made with cochlear implants (CI), impedances and their

diagnosis remain a focus of interest. Increases in impedance have been related to technical

defects of the electrode as well as inflammatory and/or fibrosis along the electrode. Recent

studies have demonstrated highly increased impedances as the result of corroded platinum

(Pt) electrode contacts. This in vitro study examined the effects of Pt ions and compounds

generated by corrosion of the electrode contacts of a human CI on cell metabolism. Since

traces of solid Pt in surrounding cochlear tissues have been reported, the impact of com-

mercially available Pt nanoparticles (Pt-NP, size 3 nm) on the cell culture model was also

determined. For this purpose, the electrode contacts were electrically stimulated in a 0.5%

aqueous NaCl solution for four weeks and the mass fraction of the platinum dissolute (Pt-

Diss) was determined by mass spectrometry (ICP-MS). Metabolic activity of the murine

fibroblasts (NIH 3T3) and the human neuroblastoma (SH-SY5Y) cells was determined using

the WST-1 assay following exposure to Pt-Diss and Pt-NP. It was found that 5–50 μg/ml

of the Pt-NP did not affect the viability of both cell types. In contrast, 100 μg/ml of the nano-

particles caused significant loss in metabolic activity. Furthermore, transmission electron

microscopy (TEM) revealed mitochondrial swelling in both cell types indicating cytotoxicity.

Additionally, TEM demonstrated internalized Pt-NP in NIH 3T3 cells in a concentration

dependent manner, whereas endocytosis in SH-SY5Y cells was virtually absent. In compari-

son with the Pt-NP, the corrosion products (Pt-Diss) with concentrations between 1.64 μg/

ml and 8.2 μg/ml induced cell death in both cell lines in a concentration dependent manner.

TEM imaging revealed both mitochondrial disintegration and swelling of the endoplasmic

reticulum, suggesting that Pt ions trigger cytotoxicity in both NIH 3T3 and SH-SY5Y cell

lines by interacting with the respiratory chain.
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Introduction

Cochlear implantation (CI) represents the only therapeutic intervention for patients with pro-

found sensory neural hearing loss to date [1–2]. However, insertion of the CI into the scala

tympani induces trauma in turn resulting in inflammation processes, fibrosis on the implant

surface and new bone formation inside the scala tympani [3–8]. It was shown that those for-

eign-body reactions result in an increase of electrode impedance and consequently in a

decrease of the electrical dynamic range for stimulation. Thus, greater electrical stimuli are

required for sufficient neuronal stimulation leading to higher energy consumption [9–12]. In

cases of persistent high-impedance values neural response telemetry and reprogramming of

the implant in conjunction with administration of cortisone and antibiotics usually lead to

normalization of the impedance values. Recently, several cases of recurrent increases in imped-

ance in the same channels have been found which could not be explained by inflammation

processes alone [13–14]. Investigation of explanted electrodes by scanning electron micros-

copy (SEM) revealed not only the presence of connective tissue with traces of blood, but also

corrosion of the platinum surface of the electrode contacts [8, 14–15]. Furthermore, SEM

micrographs of platinum microelectrodes demonstrated corrosion of Pt following stimulation

in various biological buffer solutions [16].

Due to its electrochemical stability and biocompatibility Pt has been preferentially used as

electrode material for neuroprostheses for some decades now. There are, however, electro-

chemical processes at the electrode-electrolyte interface involving corrosion of noble metals:

Intrinsic charge injection is limited for every electrode and, therefore, the voltage that can be

safely generated at the electrode surface is restricted. In the event that this voltage is exceeded,

it is not possible to maintain purely capacitive charge transfer and, subsequently, irreversible

faradaic processes occur. Those reactions comprise both cathodic and anodic water hydrolysis,

the oxidation of chloride ions, release of oxygen gas and the oxidation of platinum [17–20].

Early studies on Pt dissolution suggested that Pt2+ ions and their complexes with chloride

oxidation products as like as ClO- and ClO3- are the most likely dissolved species at the Pt/

saline interface [17, 21]. Additionally, time of flight secondary ion mass spectrometry (TOF-

SIMS) analysis of the tissue-platinum electrode interface following CI explantation identified

not only oxidized PtO- and PtO2-, but also associates of Pt with sodium and calcium ions, Pt-

protein-complexes and carbohydrates [8]. In previous studies, it was found that the presence

of Pt-protein-complexes significantly reduced the extent of Pt dissolution. They were, by phys-

ical adsorption, able to form protective films which restrict the diffusion of reactants and prod-

ucts to and from the metal surface [22–24]. Furthermore, both platinum oxidation and oxide

reduction were blocked following absorption of certain amino acids on the platinum surface.

It has been suggested that several amino acids compete with chloride derived from phosphate-

buffered saline [24]. However, amino acids with sulfur-hydrogen groups such as cysteine were

known to interact strongly with platinum increasing the corrosion in a concentration-depen-

dent manner [24].

Regarding the potential cytotoxicity of Pt ions and complexes, there is evidence of long-

term toxic effects on bacteria, eukaryotic cells, and both mammalian and non-mammalian tis-

sues [25–29]. In particular, cis-platinum compounds, e.g. cis-diamminedichloroplatinum(II)

(cis-[Pt(NH3)2Cl2]), are used as potent anti-cancer drugs [26, 30–31].

In addition to Pt ions and its complexes traces of solid Pt particles were also found in the

spiral ligament, connective tissue around the electrode, macrophages and even in the middle

ear [8, 14, 32–34]. In vitro cytotoxic and genotoxic effects of Pt nanoparticles with average size

below 10 nm have not been demonstrated at concentrations below 80–100 μg/ml in several

cell lines thus far [35–38]. However, it has also been reported that–depending on the cell type
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and organism–Pt-NP induced oxidative stress, DNA damage, inflammation or other negative

biological effects in a concentration-depending manner [39–44].

Therefore, it is of great clinical interest that we comprehend the process involved in forma-

tion of Pt corrosion products at the electrode-tissue interface, their distribution within the

cochlea and their interaction with the neuronal cells. The present study examined the effects of

Pt particles and compounds on an in vitro cell culture model. This involved electrically stimu-

lating the electrode contacts of a human CI electrode for four weeks in an aqueous 0.5% NaCl

solution. The Pt-containing dissolute (Pt-Diss) was administered to both the murine fibroblast

cell line NIH 3T3 and the human neuroblastoma cell line SH-SY5Y in varying concentrations.

Since previous studies reported traces of solid Pt within cochlear structures [8, 14, 32–34],

commercially available Pt nanoparticles (Pt-NP, size 3 nm) were included in this study. The

potential cytotoxicity of both Pt-Diss and Pt-NP in a concentration-dependent manner was

examined using the WST-1 assay, and the ultrastructural changes were documented by trans-

mission electron microscopy (TEM).

Materials and methods

Electrical stimulation of the human CI electrode

The cochlear implant electrode used for this study was constructed in accordance with the

design of the RE24 Contour Advance™ electrode for research purposes (Cochlear Ltd., Mac-

quarie University, NSW, Australia). Electrical stimulation was performed in an electrolyte con-

sisting of 0.5% NaCl (Braun, Melsungen, Germany) in deionized water for 600 h at room

temperature; it was carried out. using a function generator (Agilent Technologies, Santa Clara,

CA, USA) and amplified using a linear amplifier (Brüel & Kjær, Nærum, Denmark). The stim-

ulation signal was a biphasic square wave with a duty cycle of 50% and a frequency of 5,000

Hertz resulting in alternating impulses of 100 μs with no interpulse delay. The voltage ampli-

tude was 20.0 volts with a current of 0.3 amperes.

Determination of the platinum (Pt) content following electrical

stimulation

The total amount of platinum (Pt) in the 0.5% NaCl solution was analysed by inductive coupled

plasma-mass spectrometry (ICP-MS). The sample solution was diluted 1:10 with Millipore1

high purity water and ultrapure nitric acid (p.a., Merck KGaA, Darmstadt, Germany), further

purified by sub-boiling distillation to achieve a matrix matching of standards and samples. The

standards were prepared by using ICP platinum standards (Carl Roth GmbH, Karlsruhe, Ger-

many) and diluted ultrapure nitric acid (ω = 2.5%). Quantification was performed with external

calibration by ICP-MS (X-Series 2, Thermo Fisher Scientific Inc., Waltham, USA). Evaluation

and validation of the analysis was carried out in accordance with relevant DIN standards [45–46].

Dispersion of platinum nanoparticles (Pt-NP)

A 20 mg/ml stock solution of hydrophilic Pt-NP powder (average particle size: 3 nm), stabi-

lized with polyvinylpyrrolidone (PlasmaChem, Berlin, Germany) was prepared by dispersion

in sterile aqua bidest., followed by sonication in a water bath for 15 min.

Seeding and cultivation of NIH 3T3 and SH-SY5Y cells followed by

supplementation of Pt nanoparticles (Pt-NP) and dissolutes (Pt-Diss)

Both the murine cell line NIH3T3 and the human neuroblastoma cell line SH-SY5Y (Leibniz Insti-

tute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig,
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Germany) were seeded into 96-well microtiter plates (Nunclon, Thermo Fisher Scientific, Kem-

pen, Germany) at a density of 2 x 103 NIH 3T3 and 5 x 103 SH-SY5Y cells per well. Cultivation

was performed in 100 μl high glucose DMEM containing 10% fetal bovine serum (FBS) (all com-

ponents by Biochrom AG, Berlin, Germany) at 37˚C and 5% CO2 for 24 h. The culture medium

was removed and replaced by 100 μl of the Pt-containing solutions at their final concentrations

(Pt-Diss, pH 5.0: 0.82–8.2 μg/ml in culture medium, pH 7.5–8.0, Pt-NP: 5–100 μg/ml in culture

medium, pH 7.5–8.0). Cell cultivation was continued for another 48 h (NIH 3T3 cells) and 6 d

(SH-SY5Y cells).

As described above, NaCl was used as the electrolyte for electrical stimulation and, there-

fore, changes in the NaCl concentration of the culture medium have to be considered due to

supplementation of the cell culture assays with varying Pt-Diss concentrations. In order to

exclude adverse effects of NaCl on cell metabolism, cultivation assays containing medium with

final NaCl concentrations of 6.26, 6.12 and 5.93 mg/ml were included in this study. For this

purpose NaCl (Merck GmbH, Darmstadt, Germany) was dissolved in bi-distilled water to a

stock concentration of 5 mg/ml and sterile filtrated. Cultivation assays for both cell lines were

set up as described above, and cultivated for 24 h prior to incubation in culture medium sup-

plemented with the NaCl solution.

Since the completed DMEM culture medium also contains NaCl at a concentration of 6.4

mg/ml, dilution with 1:10, 1:5 and 1:3 NaCl stock corresponded to the final NaCl concentra-

tion of 6.26, 6.12 and 5.93 mg/ml respectively.

All cultivation assays were analysed using light microscopy (Zeiss Axio Observer Z1, Zeiss,

Jena, Germany) and the images were captured digitally by a CCD colour camera (Hitachi

HV-D30, Hitachi Kokusai Electric, Japan).

Determination of the effects of Pt-NP and Pt-Diss on the metabolic activity

of NIH 3T3 and SH-SY5Y cells using the WST-1 assay

The metabolic activity of both cell types was determined by the conversion of the tetrazolium

compound WST-1 to a formazan dye as the result of the reduction of WST-1 by mitochondrial

dehydrogenases [47]. It was found that an increase in the optical density (OD) of the formazan

dye directly correlates with the metabolic activity of the cells following exposure to either Pt-

Diss or Pt-NP. For measurement of the formazan dye intensities, the cell culture medium was

exchanged with those containing WST-1 solution at the final concentration of 1 mg/ml.

Depending on cell type, the samples were incubated at 37˚C for 45 min (NHI 3T3 cells) and 2

h (SH-SY5Y cells). The absorption of the formazan dye was measured at λ = 450 nm and at λ =

650 nm (the reference wave length) using the microplate reader (SynergyH1, Biotek, Bad Frie-

drichshall, Germany). Cells without any treatment were used as a reference, and wells contain-

ing culture medium alone served as a background control. To determine the relative metabolic

activity of the culture assays supplemented with either Pt-Diss or Pt-NP, the resulting ODs

were related to those obtained from the reference and calculated as a percentage [%]. In accor-

dance with ISO 10993–5 [48], cell viability lower than 70% (in comparison with the reference)

was deemed cytotoxic.

Each assay was performed at least in triplicate in n = 3 independent experiments.

Scanning electron microscopy (SEM)

The Pt electrode contacts of the human cochlear implant that underwent electrical stimulation

were examined using SEM (Supra 55 VP, Carl Zeiss GmbH, Jena, Germany). Using the BSE

detector, images were generated at a pressure of 6.64 x 10−6 mbar, a working distance of 11.5

mm and a tube voltage of 15 kV.
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Transmission electron microscopy (TEM)

Both cell lines were seeded into a 6-well microtiter plate (Nunclon, Thermo Fisher Scientific,

Kempen, Germany) at densities of 3.5 x 105 cells per well and cultivated in 3 ml supplemented

high glucose DMEM for 24 h as described above. In order to investigate the effects of Pt–as

either nanoparticles or ionic components–on the ultrastructure both cell lines were cultivated

in 5 ml culture medium containing either 5–100 μg/ml of Pt-NP or 0.02–6 μg/ml of the Pt-

Diss for another 48 h and 6 d, respectively. Additionally, untreated cells–both in the medium

alone and in culture medium supplemented with the same NaCl concentration as present in

the Pt-Diss solution–were included as controls. The cells were collected using a cell scraper

and centrifuged at 1000 rpm for 4 min (Micro Star 17, VWR, Radnor, PA, USA) and fixed

with 2.5% glutardialdehyde (Polysciences, Warrington, PA, USA) in 0.1 M sodium cacodylate

(Th. Geyer, Hamburg, Germany). After post-fixation with 2% osmium tetroxide (Poly-

sciences) in 0.1 M sodium cacodylate the cell pellets were embedded in epoxide resin (Serva,

Heidelberg, Germany). Ultra-thin sections stained with 2% uranyl acetate (Serva) and lead cit-

rate (Serva) were examined under the transmission electron microscope (Tecnai G2 200 kV

TEM, Eindhoven, Netherlands). The digital images were processed using Adobe Photoshop

CS6.

Statistical analysis

All data achieved from the in vitro cell culture assays were presented as mean ± standard error

of mean (SEM). One-way nonparametric analysis of variance (ANOVA) and Newman-Keuls

multiple comparison tests were used for statistical assessment.

Results

Determination of the effects of additional NaCl in the cell cultivation assay

To exclude adverse effects of NaCl on cell growth and functionality cell culture assays contain-

ing medium with final NaCl concentrations of 6.26, 6.12 and 5.93 mg/ml were included in the

investigation of potential cytotoxicity of Pt-Diss. In comparison to the reference with 6.4 mg/ml

NaCl in the completed DMEM culture medium (OD 1.445 ± 0.01, standard cultivation assay),

the metabolic activity of the NIH 3T3 cells did not significantly change in the different mixtures

of 0.5% NaCl and DMEM medium (Fig 1A): The OD of the fibroblast cultivation assays with

final NaCl concentrations of 6.26, 6.12 and 5.93 mg/ml varied between 1.175 ± 0.079 (NaCl 6.26

mg/ml) and 1.324 ± 0.092 (NaCl 5.93 mg/ml). Additionally, microscopic control revealed stable

attachment and normal morphology of the NIH 3T3 cells independently of NaCl supplementa-

tion. As shown in Fig 1B, no significant impairment of cell metabolism could be found in culti-

vation assays with varying NaCl concentrations: Metabolic activity in relation to the reference

ranged between 81.04% ± 3.31 (NaCl 6.26 mg/ml) and 87.5% ± 3.95 (NaCl 5.93 mg/ml).

As presented in Fig 1C, the neuroblastoma cell line SH-SY5Y demonstrated a significant

decrease in metabolic activity at final NaCl concentrations of 5.93 mg/ml (OD 0.348 ± 0.010)

and 6.12 mg/ml (OD 0.394 ± 0.019) in comparison with the reference (OD 0.467 ± 0.019). By

contrast, 6.26 mg/ml NaCl in the medium resulted in a slight, but distinct, decline in metabolic

activity (OD 0.410 ± 0.016) compared with the reference. Relative to the cell metabolism of the

reference, however, cell viability in culture medium containing 6.26, 6.12 and 5.93 mg/ml was

diminished to 88.50% (± 1.88), 86.17% (± 2.57) and 77.37% (± 2.76) respectively, presenting a

significant difference in relative metabolic activity between 6.26 mg/ml and 5.93 mg/ml NaCl

content. According to these findings, none of the cultivation assays with differing NaCl con-

centrations resulted in a decrease in cell viability below 70% relative to the reference indicating
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any cytotoxic effects. By contrast, microscopic imaging revealed stable adhesion and intact

morphology of the SH-SY5Y cells in medium containing 6.26 mg/ml, 6.12 mg/ml and 5.93

mg/ml NaCl. Only the growth rate seemed to be retarded (Fig 2B–2D). We concluded that

dilution of the culture medium with NaCl supplemention may limit the SH-SY5Y cell growth

(as indicated by a decrease in overall metabolic activity), but did not impair cell

differentiation.

SEM view of eroded Pt electrode contacts of a human CI

Following electrical stimulation of the human CI the surface structure of the electrode contacts

were examined by SEM. Fig 3 shows the electrode contacts before and after electrical stimula-

tion for 600 h. While the Pt contact had a glossy surface without any irregularities prior to elec-

trical stimulation (Fig 3A), strong corrosion was demonstrated as the result of induction of

faradaic processes (Fig 3B).

Pt-Diss showed strong cytotoxic effects in both cell lines

After electrical stimulation of the Pt-electrode contacts the Pt-Diss was added to the NIH 3T3

and SH-SY5Y cell cultures in varying concentrations.

The microscopic view of NIH 3T3 fibroblasts showed–in comparison with the reference

(cultivation assay without additional NaCl and Pt)–a strong reduction in cell growth (Fig 4A

Fig 1. Determination of the effects of additional NaCl input in cell cultivation. Metabolic activity of both NIH 3T3

(A, B) and SH-SY5Y cells (C, D) grown in culture medium containing 6.4 (Pos.Ctrl., reference), 6.26, 6.12 and 5.93

mg/ml NaCl corresponding to 1:10, 1:5 and 1:3 dilution of the NaCl stock in culture medium was determined by

indirect reduction of WST-1 by mitochondrial dehydrogenases to a formazan dye. Optical densities (OD) were

measured in 48 h and 6 d cultivation assays (NIH 3T3, n = 13–23; SH-SY5Y, n = 24–27). The resulting formazan dye

intensities were also related to those obtained from the reference and calculated as a percentage [%]. Each data point is

presented as mean and SEM. ANOVA with Newman-Keuls multiple comparison test was performed for statistical

assessment (���p� 0.001, �p� 0.05).

https://doi.org/10.1371/journal.pone.0196649.g001
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and 4B). Additionally, shrunk cell bodies probably undergoing cell death were observed at the

Pt-Diss concentration of 8.2 μg/ml Pt (Fig 4B). Adhesion and growth were inversely correlated

to Pt-Diss concentration (Fig 4). Beyond a concentration of 1.64 μg/ml Pt cell adhesion and

morphology appeared normal (Fig 4D).

Fig 2. Microscopic characterization of the morphology of SH-SY5Y cells following exposure to varying NaCl

concentrations. SH-SY5Y cells were cultivated either in normal cell culture medium containing 6.4 mg/ml NaCl as

reference (A) or in culture medium containing 6.26 mg/ml (1:10) (B), 6.12 mg/ml (1:5) (C) and 5.93 mg/ml (1:3) NaCl

(D). Microscopic images demonstrated reduced cell attachment and growth in a concentration dependent manner

without any signs of cytotoxicity.

https://doi.org/10.1371/journal.pone.0196649.g002

Fig 3. SEM characterization of eroded Pt electrode contacts of a human CI. Representative BSE-image of the CI-

array used for electrical stimulation for 600 h at room temperature in an electrolyte consisting of 0.5% NaCl in

deionized water. (A) represents an intact Pt-electrode contact, whereas corrosion of the Pt-electrode contact following

electrical stimulation could be demonstrated (B).

https://doi.org/10.1371/journal.pone.0196649.g003
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Our observations were confirmed by TEM imaging that revealed induction of cytotoxic sig-

nals, especially in the mitochondria of fibroblasts at Pt-Diss concentrations of 6 μg/ml Pt (Fig

5B). The cells had pronounced phagocytic activity at Pt-Diss of 0.11 μg/ml Pt (Fig 5C). How-

ever, cells exposed to 0.02 μg/ml Pt could not be distinguished from those cultivated in

medium alone (reference) as or in NaCl-diluted culture mixtures (Fig 5A and 5D).

The neuroblastoma cell line SH-SY5Y demonstrated (in comparison with the reference) a

growth reduction over 6 d depending on the concentration of Pt-Diss in the medium (Fig 6).

In a similar manner to observations of the NIH 3T3 cells after Pt-Diss exposure, few SH-SY5Y

cells attached to the tissue culture plate following application of the Pt-Diss concentration of

8.2 μg/ml Pt. The somata partially exhibited spherical morphology indicating induction of

apoptosis (Fig 6B). Neuroblastoma cells cultivated with 0.82 μg/ml Pt indicated normal cell

adhesion and morphology–even spontaneous neurite sprouting could be observed (Fig 6A

and 6E).

The ultrastructure of the neuroblastoma cells confirmed cytotoxic signals, especially in the

mitochondria, but only at Pt-Diss concentrations of 6 μg/ml Pt (Fig 7B). As also described for

the NIH 3T3 cells, the morphology of the SH-SY5Y cells following incubation in culture

medium supplemented with 0.02 μg/ml or 0.11 μg/ml Pt was similar in to the cells of the refer-

ence and of the corresponding NaCl control. As shown in Fig 7A, 7C and 7D, cells exhibited

euchromatic nuclei, abundant endoplasmic reticulum and electron-dense synaptic granules.

Additionally, no phagocytic activity could be observed (Fig 7A, 7C and 7D).

Cell viability following 48 h and 6 d cultivation was determined using the WST-1 assay. The

optical densities of the samples resulting from the indirect reduction of the tetrazolium salt to

the formazan dye were related to the reference. In accordance with the microscopic characteri-

zation, we found that metabolic activity decreased in a concentration-dependent manner (Fig

8). Highly significant downregulation of metabolic activity was found in both cell types (NIH

3T3: 9.44% ± 0.93; SH-SY5Y: 7.10% ± 0.51) following administration of 8.2 μg/ml Pt-Diss (Fig

Fig 4. Microscopic characterization of the morphology of NIH 3T3 cells following exposure to Pt-Diss. NIH 3T3

cells were cultivated either without any additional Pt-Diss as reference (A) or in culture medium containing 8.2 μg/ml

(B), 4.1 μg/ml (C), 1.64 μg/ml (D) and 0.82 μg/ml (E) of the Pt components. Microscopic images demonstrated

emerging cytotoxic effects of Pt-Diss in a concentration-dependent manner between 1.64 μg/ml and 8.2 μg/ml Pt-Diss

concentration. Beyond Pt-Diss concentration of 1.64 μg/ml cell adhesion and morphology appeared normal, whereas a

Pt-Diss concentration of 8.2 μg/ml strongly reduced NIH 3T3 cell growth and probably induced cell death. Size of bars:

200 μm.

https://doi.org/10.1371/journal.pone.0196649.g004
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8). However, at the Pt-Diss concentration of 4.1 μg/ml metabolism of the neuroblastoma cells

seemed to be more affected (25.70% ± 1.32) in comparison with the fibroblasts (57.86% ±
5.39). The administration of Pt-Diss at a concentration of 1.64 μg/ml Pt resulted in signifi-

cantly improved cell viability to 76.70% ± 1.32 and 73.32% ± 2.89 in in NIH 3T3 and SH-SY5Y

cells, respectively. Finally, the tenfold lower Pt-Diss concentration of 0.82 μg/ml did not impair

the metabolic activity in either of the cell lines (NIH 3T3 101.60% ± 8.55; SH-SY5Y 89.77% ±
4.52).

Pt-NP of up to 50 μg/ml did not cause cell damage in NIH 3T3 and

SH-SY5Y cells

Since it was assumed that the electrolyte may contain not only ionic Pt, but also Pt particles fol-

lowing electrical stimulation, Pt-NP in concentrations from 5 μg/ml up to 100 μg/ml were

added to the cell culture assays 24 h following cell seed. Fig 9 shows a representative micro-

scopic view of the cell morphology of NIH 3T3 cells following Pt-NP exposure. Normal cell

adhesion and growth could be observed up to 50 μg/ml Pt-NP. At 100 μg/ml Pt-NP the cell

number appeared slightly reduced.

After incubation with 5–50 μg/ml Pt-NP NIH 3T3 cells revealed no cytotoxic effect (Fig

10). However, these cells endocytozed the electron-dense nanoparticles in a concentration-

Fig 5. Ultrastructural morphology of NIH 3T3 cells following exposure to Pt-Diss. After cultivation either without

Pt as reference (A) or in culture medium containing 6.0 μg/ml (B), 0.11 μg/ml (C) or 0.02 μg/ml Pt (D) the

ultrastructure of 3T3 fibroblasts was compared. They demonstrated mitochondrial swelling (arrow in B) only at the

highest tested Pt concentration. At 0.11 μg/ml Pt the cells showed greater phagocytic activity (arrowhead in C). Lower

amount of Pt in the culture medium induced no morphological changes in comparison with the control. Size of bars:

2 μm.

https://doi.org/10.1371/journal.pone.0196649.g005
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Fig 6. Microscopic characterization of the morphology of SH-SY5Y cells following exposure to Pt-Diss. SH-SY5Y

cells were cultivated either without any additional Pt-Diss as reference (A) or in culture medium containing 8.2 μg/ml

(B), 4.1 μg/ml (C), 1.64 μg/ml (D) and 0.82 μg/ml (E) of the Pt components. Microscopic images demonstrated

emerging cytotoxic effects of Pt in a concentration dependent-manner between 1.64 μg/ml and 8.2 μg/ml Pt-Diss

concentration. Cell adhesion and growth appeared stable following exposure to Pt-Diss concentration of around

1.64 μg/ml. Even spontanous neurite sprouting could be observed, whereas the 8.2 μg/ml of the Pt-Diss concentration

strongly induced detachment of the SH-SY5Y cells and subsequent cell death. Size of bars: 150 μm.

https://doi.org/10.1371/journal.pone.0196649.g006

Fig 7. Ultrastructure of the SH-SY5Y cell line cultivated in absence and presence of Pt-Diss. After cultivation either

without any Pt as reference (A) or in culture medium containing 6.0 μg/ml (B), 0.11 μg/ml (C) or 0.02 μg/ml Pt (D)

SH-SY5Y were characterized by large euchromatic nucleus, abundant endoplasmic reticulum and a few synaptic

granules (arrowheads). At the highest tested Pt concentration these cells were adversely affected, as proven by

mitochondrial swelling (arrow in B). A smaller amount of Pt in the culture medium induced no morphological

changes in comparison with the control. Size of bars: 2 μm.

https://doi.org/10.1371/journal.pone.0196649.g007
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dependent manner (Fig 10B and 10D). In particular, the Pt-NP accumulated in the multi-

vesicular bodies (Fig 10D). At 100 μg/ml Pt-NP early signs of necrosis, i.e. mitochondrial swell-

ing, were recognized in the cells.

The viability of the SH-SY5Y cells was not adversely affected following exposure to Pt-NP

at concentrations up to 100 μg/ml (Fig 11). As observed by TEM the neuroblastoma cells

showed normal cellular ultrastructure up to 50 μg/ml Pt-NP in the culture medium (Fig 12B).

Fig 8. Determination of the effects of Pt-Diss with varying Pt-Diss concentrations in cell cultivation. Metabolic

activity of both NIH 3T3 (A) and SH-SY5Y cells (B) grown in culture medium supplied with 0.82 μg/ml– 8.2 μg/ml Pt-

Diss concentration was determined by indirect reduction of WST-1 by mitochondrial dehydrogenases to a formazan

dye. Optical densities (OD) were measured in 48 h and 6 d cultivation assays (NIH 3T3, n = 12–16; SH-SY5Y, n = 10).

The resulting formazan dye intensities were related to those obtained from the reference and calculated as a percentage

[%]. Each data point is presented as mean and SEM. ANOVA with Newman-Keuls multiple comparison test was

performed for statistical assessment (���p� 0.001, ��p� 0.01, �p� 0.05).

https://doi.org/10.1371/journal.pone.0196649.g008

Fig 9. Microscopic characterization of the morphology of NIH 3T3 cells following exposure to Pt-NP. NIH 3T3

cells were cultivated either without any additional Pt particles as reference (A) or in culture medium containing 25 μg/

ml (B), 50 μg/ml (C) and 100 μg/ml (D) of the Pt-NP. The images demonstrated highly uniform cell adhesion without

any morphological impairment throughout the cell cultures assays with varying Pt-NP concentrations. Size of bars:

200 μm.

https://doi.org/10.1371/journal.pone.0196649.g009
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Interestingly, the SH-SY5Y cells exhibited virtually no endocytosis (Fig 12A and 12B). There-

fore, no multi-vesicular bodies could be seen in the control cells (Fig 12A) or in cells exposed

to Pt-NP at all concentrations used in this study. As shown in Fig 12B, the biosynthesis of syn-

aptic granules remained unchanged in cell cultivation assays supplemented with 50 μg/ml Pt-

NP (Fig 12B). However, Pt-NP at a concentration of 100 μg/ml induced mitochondrial disinte-

gration as well as swelling of the endoplasmic reticulum indicating cytotoxic effects of Pt.

As shown in Fig 13, the metabolic assay with WST-1 revealed no significant influence of the

Pt-NP concentrations 5 μg/ml, 10 μg/ml, 25 μg/ml and 50 μg/ml in NIH 3T3 fibroblasts

(96.44% ± 4.69, 92.94% ± 4.26, 85.40% ± 3.89 and 89.54% ± 4.66) as well as in neuroblastoma

cells (107.3% ± 6.12, 92.61% ± 5.19, 93.16% ± 5.80 and 86.77% ± 5.07), even though a slight

downward trend in metabolic activity was observed. By contrast, the administration of 100 μg/

ml Pt-NP to the cultivation assays resulted in a significant decrease in cellular activity of both

NIH 3T3 (65.42% ± 5.91) and SH-SY5Y cells (68.35% ± 5.07). In accordance with ISO 10993–

5 [48], this Pt-NP concentration was deemed cytotoxic (Fig 13).

Discussion

For the first time, this study presents data on potential neuronal cell damage by Pt derived

from electrical stimulation of a human CI electrode in a concentration-dependent manner.

At first, to determine whether the lower NaCl content had any adverse influence of on NIH

3T3 and SH-SY5Y cell metabolism, both cell lines were exposed to 5.93–6.26 mg/ml NaCl.

Fig 10. Ultrastructure of NIH 3T3 cells following exposure to Pt-NP. NIH 3T3 cells were cultivated either without

any additional Pt particles as reference (A, insert in C) or in culture medium containing 50 μg/ml (B, insert in D) of

the Pt-NP. No cytotoxic effect of Pt-NP could be found. Fibroblasts were highly active in endocytosis (rectangles in A

and B). In the multi-vesicular bodies (arrowheads in C and D) accumulation of adsorbed material such as Pt-NP

(arrow in D) was detected. Size of bars: 1 μm.

https://doi.org/10.1371/journal.pone.0196649.g010
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WST assay data and microscopical control of the NIH 3T3 cells allowed to rule out negative

biological effects due to the reduced NaCl concentration and medium osmolarity. Despite a

greater sensitivity of the SH-SY5Y cells to the lower NaCl content in the cell culture medium,

cytotoxic effects could be also excluded as determined by the WST-1 assays.

The Pt-Diss solution used in this study may contain a mixture of both Pt particles of various

sizes and shapes, and Pt ions or complexes as also reported in numerous studies [8, 15, 32–34].

Since ICP-MS only enables analysis of the Pt-mass content in total, it is not possible to estimate

the contribution of individual components to the cytotoxicity. Nevertheless, our findings

Fig 11. Microscopic characterization of the morphology of SH-SY5Y cells following exposure to Pt-NP. SH-SY5Y

cells were cultivated either without any additional Pt particles as reference (A) or in culture medium containing 25 μg/

ml (B), 50 μg/ml (C) and 100 μg/ml (D) of the Pt-NP. Morphology and adhesion behavior of the SH-SY5Y cells did not

change throughout the cultivation assays at varying Pt-NP concentrations. Size of bars: 200 μm.

https://doi.org/10.1371/journal.pone.0196649.g011

Fig 12. Ultrastructural morphology of SH-SY5Y cells following exposure to Pt-NP. SH-SY5Y cells were cultivated

either without any additional Pt particles as reference (A) or in culture medium containing 50 μg/ml (B) of the Pt-NP.

The biosynthesis of synaptic granules as seen in the control cells around the Golgi apparatus (arrowhead in A) is

typical for those cells; no multi-vesicular bodies of the endocytosis were detected. Neuroblastoma cells in contact with

Pt-NP were active only in the secretory pathway. No Pt-NP were evident inside the cell. Size of bars: 200 μm.

https://doi.org/10.1371/journal.pone.0196649.g012
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demonstrated strong reduction of mitochondrial activity and, thus, induction of oxidative

stress following supplementation of the culture medium with Pt-Diss in a concentration-

dependent manner. The small contribution of the lower NaCl content in the SH-SY5Y cell cul-

ture has to be considered as described above. Stress induction resulting in cell death by incuba-

tion of Pt(I-IV) compounds has been described in numerous studies. Only the lethal dosage

may differ depending on tissue type, its resistance in cellular uptake of the Pt ions and effective

nuclear repair mechanisms of the cells [25–29]. Exposure of 0.5 mM PtCl4 to A549 and

HaCaT cells and 10 μM cisplatin to HT29 cells induced severe DNA damage and subsequent

cell death as the consequence of drastic increase of intracellular reactive oxygen species and

lipid peroxidation levels [36, 44]. As previously reviewed, Pt complexes form stable covalent

bonds with nuclear DNA., Guanine, in particular, is a susceptible target at the 7-nitrogen atom

to be able to form inter- and intrastrand crosslinks [30–31].

The present study demonstrated mitochondrial swelling in both NIH 3T3 and SH-SY5Y

cells, which corresponds to the reduction in metabolic activity in the presence of�1.64 μg/ml

Pt-Diss. Indeed, previous studies found that Pt2+ ions accumulate in mitochondria. It follows

that cytotoxicity and genotoxicity may be mediated by Pt2+ ions [37, 49]. This assumption was

supported by Pelka et al. [40] who observed DNA strand breaks in human colon carcinoma

(HT29) cells. Although no significant reactive oxygen formation occurred, the authors con-

cluded that Pt ions could be the cause.

To consider the potential biological effects of solid Pt particles contained in the electrolyte,

the biocompatibility of Pt-NP 3 nm in size on both cell lines was determined. Additionally, the

cellular uptake of Pt-NP and their effects on the ultrastructure were investigated by means of

TEM. Furthermore, the particle size chosen allowed their localization inside the cells to be

detected by TEM. We found no significant influence of increasing Pt-NP concentrations

between 5 μg/ml and 50 μg/ml on either ultrastructure or the metabolism of NIH 3T3 and

SH-SY5Y cells. Only at 100 μg/ml Pt-NP concentration cell metabolism and mitochondrial

activity were reduced. Our results were in line with previous in vitro studies exposing murine

L929 fibroblasts, several human cell lines such as RAW264, A549, HaCaT, IMR90 and U251 to

Pt-NP with a primary size less than 10 nm: no or only moderate cell death induction were

observed [35–38]. Significant toxicity was only found in IMR90, U251 L929 and RAW264 cells

following exposure to 80–100 μg/ml Pt-NP [35, 38–39]. In vivo administration of 3–10 nm Pt-

NP to zebrafish embryos showed dosage dependent mortality rate, hatching delay, phenotypic

Fig 13. Determination of the effects of Pt-NP with varying concentrations in cell cultivation. Metabolic activity of

both NIH 3T3 (A) and SH-SY5Y cells (B) grown in culture medium supplied with 5 μg/ml– 100 μg/ml Pt-NP was

determined by indirect reduction of WST-1 by mitochondrial dehydrogenases to a formazan dye. Optical densities

(OD) were measured in 48 h and 6 d cultivation assays (NIH 3T3, n = 12–14; SH-SY5Y, n = 11–15). The resulting

formazan dye intensities were related to those obtained from the reference and calculated as a percentage [%]. Each

data point is presented as mean and SEM. ANOVA with Newman-Keuls multiple comparison test was performed for

statistical assessment (���p� 0.001, ��p� 0.01, �p� 0.05).

https://doi.org/10.1371/journal.pone.0196649.g013
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defects and metal accumulation at concentrations above 50 μg/ml [50]. However, another in
vivo study reported inhibitory effects on cardiac rate of zebrafish embryos induced by Pt-NP at

lower concentrations around 25 μg/ml [42].

Even though particles below 10 nm in size may enable nuclear penetration [36–37, 44],

TEM imaging revealed cellular uptake of most of the Pt-NP into the lysosomes, but not into

the nuclei and mitochondria of the examined cell lines. It is suggested that either endocytosis

or phagocytosis play key roles in cellular uptake of Pt-NP into mammalian cells [36–38, 51–

52]. Another study demonstrated both diffusion and endocytosis of Pt-NP into the cytosol of

IMR90 and U251 cells depending on the size of the nanoparticles. Electron micrographs

revealed agglomerates of Pt-NP in the endosomal-lysosomal compartment, whereas single

nanoparticles with sizes limited to less than 10 nm were able to diffuse into the cytosol [35].

Our TEM imaging also demonstrated dose-dependent internalisation of Pt-NP into the multi-

vesicular bodies of the NIH 3T3 cells, but no diffusion into the cytosol or nucleus. Interest-

ingly, no Pt-NP were internalized into the SH-SY5Y cells. The Pt-NP used in this study were

administered to the cell culture assays as colloidal solution stabilized with polyvinylpyrroli-

done (PVP) for effective dispersion. This is well known not only as a nontoxic and bioinert

compound [53], but also as a means of protecting metallic nanoparticles from growing and

agglomerating [54–55]. Therefore, as expected, Pt-NP dispersion did not form large aggregates

accumulating on the surface of both NIH 3T3 and SH-SY5Y cells, as revealed by TEM analysis.

However, protein adsorption, especially of medium components such as serum proteins and

salts, may significantly enlarge the size of the Pt-NP forming ‘secondary’ nanoparticles, and

influence cellular uptake [36]. Admittedly, it has been suggested that those adsorbed proteins

are digested in phagolysosomes leaving the nanoparticles ‘naked’ [51]. Nevertheless, the size of

the secondary Pt-NP following dispersion in FBS-medium affected neither endocytosis-medi-

ated uptake nor biological activities as compared with the tenfold smaller primary particles

[36]. Hence, we assume that dispersion of the commercial Pt-NP colloids in supplemented cell

culture medium did not falsify our findings.

Cytotoxicity of Pt was not only found after incubation with�1.64 μg/ml Pt-Diss, but also at

100 μg/ml Pt-NP. However, no internalization of the Pt-NP was found in the SH-SY5Y cells

prompting the question of whether Pt2+ ions could trigger the decrease in mitochondrial activ-

ity in SH-SY5Y cells as well. The surface of not only Pt electrodes but also of Pt-NP could cor-

rode, releasing the cytotoxic Pt2+ ions into the medium [37, 40, 49].

Based on our results, we assumed that the contribution of the metallic Pt particles in the

electrolyte to cell damage may be negligible. Instead, the content of Pt ions and complexes

seems to be the main factor inducing oxidative stress and subsequent cell death. By our data

disturbations of the cell metabolism in both NIH 3T3 and SH-SY5Y cells appeared in vitro at

Pt-Diss concentrations between 1.64 μg/ml and 4.1 μg/ml. Previous in vivo studies demon-

strated low levels of dissolved Pt ranging from 5 ng/ml to 1 μg/ml depending on the electrical-

stimulation parameters [17, 24]. In comparison with our data, those findings indicate that cor-

rosion of the electrode contacts may not result in tissue damage. Additionally, diffusion of the

corrosion products within the inner ear via the lymphatic fluids may dilute the concentration

of toxic Pt compounds, so that the potential of Pt ions or particles to harm living cells would

be negligible. Furthermore, new formation of metallic Pt particles may hypothetically function

as scavenger of reactive oxygen species to a certain extent [56–59], protecting the tissue from

toxic effects of ionic Pt. However–as shown in the present study and reported by several

authors, and depending on the cell type and organism–Pt-NP induced oxidative stress, inflam-

mation or other negative biological effects in a concentration-depending manner [39–43]. It is

assumed that endocytosis-mediated internalization of the Pt particles results in etching of the

surface of the metal particles and their oxidation to ionic Pt due to exposure to low pH and
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hydrolytic enzymes in the endosomes. Subsequent reduction of the Pt2+ ions by H2O2 gener-

ated in the mitochondria may allow the new formed Pt particles to start a new cycle [40, 50].

Consequently, Pt particles may indirectly contribute to cytotoxicity and genotoxicity [37, 49].

In particular, long-term electrical stimulation over several years may cause Pt particles to accu-

mulate in the cell, thus enhancing their cytotoxicity. Furthermore, the complex interactions

between the corrosion products and the tissues of the auditory nerve at the Pt/lymphatic fluid

interface require more attention. It also has to be considered that, in particular, children need

to benefit from the CI throughout their lifetime, so that limitation of Pt corrosion should be of

great clinical interest.

Recently, Piret et al., 2015 [60] reported that 3D-nanostructured boron doped diamond

(BDD) may be the electrode material of choice for long-term neural implants. The electrode

contacts consisted of vertically aligned carbon nanotubes inter-layer template encapsulated

within two BDD nanolayers [60, 61]. It was shown that this novel electrode material not only

enabled neural cell attachment, survival and neurite outgrowth, but also demonstrated low

impedances and high safe charge injection capacity [60].

Conclusion

This study is an in vitro evaluation of the murine fibroblast NIH 3T3 and human neuroblas-

toma SH-SY5Y cell culture model exposed to commercially manufactured Pt-NP and corro-

sion products following electrical stimulation of a human CI electrode (Pt-Diss). We found

negligible oxidative stress in both NIH 3T3 and SH-SY5Y cells up to 50 μg/ml Pt-NP, which

was in line with several other studies. Interestingly, no diffusion of the very small Pt-NP into

the cells was found. In contrast to Pt-NP, corrosion products (Pt-Diss) with platinum mass

fractions between 1.64 μg/ml and 8.2 μg/ml induced cell death in both murine and human cell

lines. Taken together, our data indicate that corrosion of Pt electrode contacts may not lead to

toxic concentrations in the surrounding inner ear tissues, since low levels of dissolved Pt rang-

ing from 5 ng/ml to 1 μg/ml have been previously demonstrated. However, long-term cytotox-

icity over a period of several years during Pt electrode corrosion requires investigation, as do

the interactions of the corrosion products with the tissues of the auditory nerve at the Pt/lym-

phatic fluid interface.
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We are grateful to Anja Krabbenhöft and Elke Mallon for technical assistance with SEM and

TEM preparation, respectively.

Author Contributions

Conceptualization: Kirsten Wissel, Gudrun Brandes, Thomas Lenarz, Martin Durisin.

Data curation: Kirsten Wissel, Gudrun Brandes, Nils Pütz, Jan Thieleke.
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