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Abstract

In cases of natural disasters, epidemics or even in dangerous situations like an act of terror-

ism, battle fields, a shooting or a mountain accident, finding survivors is a challenge. In

these kind of situations it is sometimes critical to know if a person has vital signs or not, with-

out the need to be in contact with the victim, thus avoiding jeopardizing the lives of the res-

cue workers. In this work, we propose the use of video magnification techniques to detect

small movements in human bodies due to breathing that are invisible to the naked eye. Two

different video magnification techniques, intensity-based and phase-based, were tested.

The utility of these techniques to detect people who are alive but injured in risk situations

was verified by simulating a scene with three people involved in an accident. Several factors

such as camera stability, distance to the object, light conditions, magnification factor or com-

puting time were analyzed. The results obtained were quite positive for both techniques,

intensity-based method proving more adequate if the interest is in almost instant results

whereas the phase-based method is more appropriate if processing time is not so relevant

but the degree of magnification without excessive image noise.

Introduction

In recent years, there have been many advances in computer science that have made possible

the creation of novel systems with application in different fields such as medicine, archeology,

industry or video games, inter alia. For example, in forensic medicine computer vision and

close-range photogrammetry procedures allow to reconstruct the scene of a crime. In this con-

text, some 3D image reconstruction systems have been recently developed for specific use in

forensic medicine. They allow the non-contamination of the crime-secene, the reduction of

data collection time, and the lack of contact with the victims. A system composed of a 3D laser

scanner, a profilometer and a low-cost digital camera for crime scene documentation was pro-

posed in [1]. Its developers concluded that this kind of technologies offer an objective multi-

resolution database, very useful for evidence analysis, performing police investigation or sup-

porting legal medical studies. Another approach [2] consisted of a system using open source
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tools for the automatic computation of a virtual 3D scene, combining photogrammetric and

computer vision algorithms, like ASIFT (Scale Invariant Affine Transform) and SGM (semi-

global matching algorithm).

The introduction of artificial intelligence (AI) also constitutes a major advance in technolo-

gies applied to emergency response and forensic medicine. In [3], an artificial neural network

model was used to construct an environmental emergency decision support system. The sys-

tem was illustrated with a example of an unexpected atmospheric accident in a district of

Shanghai. In [4], the authors reported the construction of a robot for human detection, spe-

cially designed for natural disasters. The robot was mobile, and it was equipped with a sensor

to detect the victims, an arm to remove the obstacles, a camera to capture images that are sent

to a control unit, and a microcontroller (a programmable integrated circuit capable of execut-

ing commands recorded in its memory), which was the core of the system. The different sen-

sors monitored current readings and sent data to the microcontroller in real time. In addition,

the robot used the camera to detect motion using computer vision algorithms. Similar robots

were proposed in [5] and [6], both based on sensors that capture data, microcontrollers, com-

puter vision algorithms and AI.

Another important contribution of the technology in medicine, including AI, is the devel-

opment of solutions to help people with disabilities. There are a large number of works based

on communication technologies, computing, digital electronics and signal processing for

human vital sign monitoring, including their detection or measurement remotely [7]. The

most relevant steps in these methodologies are: the incorporation of some components or sen-

sors for the data acquisition, the transmission of data from patient to hospital, the victim

response, the associated doctor’s decision, and the storage of all the data. Authors in [8] created

a system for people confined to bed at home but who are able to move their head, lips and eye-

brows intentionally. This system incorporated a vision input device which uses slight move-

ments of the mentioned body parts to communicate the patient with other people, such as

relatives or friends. This input device could be adapted according to the user’s symptoms. A

PC controlled robot with a PIR sensor (passive infrared sensor) that measured infrared light

invisible to the human eye was described in [9]. When motion was detected by this sensor, the

robot transmitted the information through a microcontroller that sent a message using a GSM

(Global System for Mobile Communications) based wireless modem that included the geo-

graphic coordinates obtained by a GPS receiver. In [10], a study to analyze the benefits and the

drawbacks of video technology to improve safety management in manufacturing companies

was conducted. The conclusion was that this technology can be very useful for detecting riks

in working environments.

In the signal processing field there are also some valuable studies. For instance, a system

combining radar applications with advanced signal processing algorithms for the detection,

location in search and rescue of trapped victims in dangerous environments [11]. With a simi-

lar purpose, a portable Doppler radar system and self-correlation and adaptive line enhancer

methods to design a procedure with minimal interference of any moving objects around the

victim were developed [12]. A realtime methodology for the continuous monitoring of the

vital signs of the victims and tracking their locations was reported in [13]. It was composed of

location sensors for indoor and outdoor use, a pulse oximeter, a blood pressure sensor an elec-

tronic triage tag. The data collected by the sensors was transmitted through a web portal, so it

can be analysed by a medical staff.

There are other works exclusively based on images remotely measured that look for changes

in pixel values. For instance, a system that analyzes color variations in the skin tone was pro-

posed in [9]. An analogous system using a basic webcam is described in [14]. Recently, an
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algorithm, that was implemented on an Android smartphone, was developed to estimate the

respiration rate from the video of the smartphone’s camera [15].

In this work we propose a new approach to detect alive people in hazardous environments

which has two main characteristics: i) No physical contact with the injured people is necessary,

avoiding unnecessary risk to doctors, police or rescue workers, ii) the only measuring device

required is a low cost video-camera.

Methodology

Our goal is to look for a fast and cheap method based on signal processing to reveal vital signs

or imperceptible movements to the naked eye in injured people, by just processing a video of

the scene. To reveal subtle temporary body movements due to breathing, a non-professional

video camera or even the camera of a mobile phone can be used. Motion analysis is carried out

using two video image processing techniques: one called Eulerian Linear Video Magnification

(ELVM) [16], and other named Phase-Based Video Motion Processing (PBVM) [17]. Both

methods are compared and analyzed their advantages and disadvantages.

The idea behind both methods is the combination of spatial and temporal filtering. First, a

multi-scale signal representation of the images, named pyramid (Laplacian, Gaussian or Steer-

able) is carried out. Pyramids are constructed using spatial filters that decompose the frames

into different spatial frequency bands in order to obtain, from an input image, another image

with more appropriate features for a specific application. Gaussian pyramids are suitable for

color magnification while Laplacian and Steerable pyramids are more appropriate for motion

magnification. Second, a temporal filtering is applied to the elements of the pyramid showing

the motion at specific temporal frequencies selected by the user. This is done in a uniform way

for all spatial levels (or bands) and for all pixels within each level.

One of the main differences between ELVM and PBVM is the type of pyramid used. While

ELVM computes a full Laplacian pyramid, PBVM computes the phase variations of a com-

plex-valued Steerable pyramid over time. In both cases the magnification is applied over each

level in the pyramid, and not over the original images. This is due to the fact that the goal is to

magnify the levels of the pyramid that contain the frequencies of the movement. Finally, the

resulting signal is multiplied by a magnification factor α, specified by the user, which amplifies

the original motion in order to let us appreciate those movements that are imperceptible for

the naked eye. Then, the spatial pyramid with the magnified values is collapsed and added

back to the original to obtain the final video with the motion exaggerated. These two proce-

dures do not explicitly estimate displacements, but rather exaggerate the motion to reveal hid-

den information. Fig 1 shows the basic steps in both video motion magnification techniques.

A more detailed explanation of these techniques is provided below.

Data acquisition

The first step of the proposed method is, of course, to take a video of the scene. The video is

recorded with a video camera from a stable position, in order to avoid undesirable noise due

to the camera movements. Thus, only movements of the object scene are recorded. In addi-

tion, if the area around the victim is considered unsafe for the emergency staff (e.g. rescue

workers in a terrorist attack), the camera can be placed on a vehicle or a robot that should be

stopped at the time of recording the video. In order to achieve the best results, it is advisable to

use an FHD, or even better a 4K, video camera. Furthermore, it is convenient to record images

as clear as possible and the camera frame rate must satisfy the Nyquist-Shannon theorem:

fs > 2� f
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where f is the highest frequency contained in the signal and fs is the sampling rate (how often

samples are taken per unit of time).

Eulerian linear motion magnification

Before the development of the Eulerian methods, the most common technique for motion

exaggeration was the Lagrangian approach. This method focuses on individual points and ana-

lyzes their change in location over time. Therefore, it performs a tracking of points over time,

so it requires a unique matching method between points or patches. For this reason, Lagragian

methods are expensive in terms of computation. In contrast, the goal of the Eulerian approach

is to study a certain characteristic at pixel level, such as the intensity, over time. Thus, Lagra-

gian methods estimate where a given point moves to, while Eulerian methods measure flux

properties of the scene.

One of the most notable characteristics of the Eulerian approach is that it is based on local

pixel-level operations in an efficient computation way, avoiding the need for solving optimiza-

tion problems, in contrast to the Lagragian methods based on dense optical flow estimation or

matching sparse feature points. As a drawback, both are limited to small motions between

frames.

According to [16, 17], in the Eulerian motion magnification a multi-scale decomposition is

performed on each frame of the input video using Laplacian pyramids (in fact, a pyramid is

constructed for each RGB channel). Afterwards, the same temporal filtering is carried out for

all pixels in the pyramid for each pair of consecutive frames. The resulting signal is amplified

in each spatial frequency band applying a magnifcation factor. Finally, disintegrating the spa-

tial pyramid with the magnified values (following the reverse procedure used to create it) and

adding back the magnified signal to the original, it is possible to reconstruct the final output

video which contains the amplified movements.

From a mathematical point of view, let us assume that I(x, t) represents a one dimensional

image intensity profile that is translated over time. If I(x, 0) = f(x), then the intensity at instant

t can be expressed as I(x, t) = f(x + δ(t)), where δ(t) represents the translation of the signal over

Fig 1. Diagram of the video motion magnification procedure.

https://doi.org/10.1371/journal.pone.0195290.g001
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time. As the goal is to magnify the movement in an amount α, named “magnification factor”,

which is selected by the user, obtaining a synthesized signal Îðx; tÞ ¼ f ðx þ ð1þ aÞdðtÞÞ.
Applying a first-order Taylor expansion to the previous signal, a relatively simple way of

estimating the magnified signal is obtained

Î ðx; tÞ ¼¼ Iðx; 0Þ þ ð1þ aÞdðtÞ
@Iðx; tÞ
@x

ð1Þ

It consists in adding to the original signal I(x, 0), (1 + α) times the result of applying a tem-

poral bandpass filter to the signal at each instant of time, represented by dðtÞ @Iðx;tÞ
@x . This expres-

sion is only valid for smooth images and small motions. According to [16], there is an upper

limit for the parameter α given by:

ð1þ aÞdðtÞ �
λ
8

ð2Þ

Initially, a representative wavelength (spatial frequency cutoff), λ, of the lowest band in the

Laplacian pyramid, which reveals small motions, can be tried. This wavelength λ must provide

information about the dimensions of the image at that level. Then, an estimation of this

parameter can be obtained by calculating the diagonal length of the image [18].

Laplacian pyramids: Spatial filtering over the frames. A Laplacian pyramid is a multi-

scale signal representation of an image which is based on recursively applying a lowpass filter

and a reduction in size to obtain a series of images with less detail and smaller dimensions. To

build it, the difference between the downsampled and the original images at each dimension

must be computed. If this pyramid decomposition is applied over an image and then rebuild

it, the original image without loss (except for possible rounding errors) is obtained. Fig 2

shows a representation of the pyramid construction.

Fig 2. Pyramid representation of an image showing the different levels of resolution.

https://doi.org/10.1371/journal.pone.0195290.g002
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When the original image is successively smoothed using a Gaussian filter (blur), and scaled

down, a Gaussian pyramid is constructed. Accordingly, a Gaussian pyramid is a sequence of

low-pass, down-sampled images. A Laplacian pyramid is similar to a Gaussian pyramid; in

fact, each image at certain level of the Laplacian pyramid is the difference between two corre-

sponding adjacent levels of the Gaussian pyramid. Only the smallest level is not a difference of

two images, allowing in this way to reconstruct the original image from the difference images.

Then, a Laplacian pyramid can be considered a sequence of band-pass, down-sampled images.

Fig 3 represents schematically the process of construction of a Laplacian pyramid with three

levels.

Temporal filtering and motion amplification. Once the pyramid for each frame has

been constructed, a temporal filter is applied to the temporal series of pixels in each spatial

band of the pyramid, in order to extract the frequency bands of interest. The temporal filtering

approximates spatial translation of the signal according to Eq (1). The choice of temporal filter

is application dependent. In our specific application the best results were obtained through the

implementation of a band pass Butterworth filter with cutoff frequencies fh and fl, where (fh, fl)
is the interval that contains the frequencies of motion to magnify. Butterworth filters are char-

acterized by having a magnitude response that is maximally flat in the passband and mono-

tonic overall.

Once each level of the pyramids has been temporary filtered, the amplification factor α is

applied to each of them. Several values of α can be tested but, in order to improve the results, it

is advisable to use a constant value for the spatial bands that are within the limits given by

Eq (2). For higher frequencies, the magnification factor is attenuated linearly [7]. The result is

a set of pyramids with magnified values that will be finally reconstructed using the inverse

technique in order to get the final magnified video.

Phase-based motion magnification

The intensity-based video magnification approach has a notable drawback: the noise increases

linearly with the amplification factor, so it supports small amplification factor values. In order

to avoid this inconvenience, the phase-based video motion magnification, that is based on the

Fourier transform, was developed [18]. It is theoretically somewhat more complex than the

Eulerian approach, although it also consists in the application of spatial filters over each frame,

Fig 3. Construction of a Laplacian pyramid with three levels. The first row shows the procedure to build a Gaussian

pyramid by successively smoothing (blurring) and downsampling the images. I2, I1 and I0 are elements of the

Gaussian pyramid, while H2, H1 and I0 are the elements of the Laplacian pyramid. H2 and H1 are high-pass subbands

obtained by subtracting two adjacent images of the Gaussian pyramid.

https://doi.org/10.1371/journal.pone.0195290.g003
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but constructing a different type of pyramid: a Steerable pyramid [19]. This decomposition

can be considered a version of the Laplacian pyramid for different directions (orientations).

The main difference between both methods is the type of filters applied for their creation. The

phase-based approach uses a combination of band pass and lowpass filters instead of just low-

pass filters.

Phase-based video motion magnification allows separating the amplitude and phase on

each spatial scale and orientation of the pyramid, once the intensity of the frames has been

decomposed into Fourier series, assuming that the video is mostly static. According to the

Fourier shift theorem it is possible to relate a phase shift in the frequency domain with a trans-

lation into the spatial domain, so it is possible to associate phase differences with motion.

The local phases over time at every spatial scale and orientation of the Steerable pyramid

are computed for all the frames, and their differences with the corresponding values for the

first frame calculated. Then, a temporal bandpass filter is applied to those differences in order

to select the frequency range of interest and remove any temporal DC component (the average

luminance of the frame). Then, as in EVLM, a magnification parameter is applied to the phase

shifts, which allows to make small movements of the objects visible. Finally, the pyramids con-

taining the amplified signals are reconstructed and added back to the original input to con-

struct the magnified video.

For the specific application proposed in this work, the detection of breathing movements,

most of the videos have oscillatory movements without a long duration and small amplitudes.

However, this method can be used to amplify non-periodic motions as well, as long as they are

within the passband of the temporal filter.

Steerable pyramids creation: Spatial filtering over the frames. As mentioned before, the

first step in PBVM is the computation of a 2D Discrete Fourier Transform (DFT) over all

frames in the video, and the subsequent application of the spatial filters, with different size and

orientation. This produces a linear multi-scale and multi-orientation image decomposition

named Steerable pyramid [19–22]. Each level of the pyramid is an array of complex numbers,

and their phase and amplitude are computed, element by element.

Following the notation in Eq (1), the signal I(x + δ(t)) is decomposed into a Fourier series

Iðx þ dðtÞÞ ¼
X1

o¼� 1

AoeioðxþdðtÞÞ
ð3Þ

in which each single frequency ω corresponds to each band of the pyramid

Soðx; tÞ ¼ AoeioðxþdðtÞÞ ð4Þ

where the phase ω(x + δ(t)) contains motion information.

The procedure to create a Steerable pyramid is shown in Fig 4, where H, L and B, represent

high, low and bandpass filters, respectively. The recursive construction/reconstruction of the

pyramid is carried out by repeating the highlighted rectangle in blue. Boxes containing “2 #”

and “2 "” correspond to downsampling and upsampling by a factor of 2, respectively. The

asterisks indicate a 180˚ rotation of the filters. At the bottom of Fig 4 an example of a Steerable

pyramid with 6 orientation bands (bandpassed images) and 2 scales, using the image of a

white circle on a black background, is shown. The steerable filters produce rotations that can

be appreciated by looking at the white part of the circle contour.

Temporal filtering and magnification. Once the pyramid has been built, the phase on

each spatial scale and orientation separated, and their differences computed, a temporal band-

pass filtering is applied, looking for the isolation of the motion in the specific temporal fre-

quencies to be magnified. So, if the phase in (3) is ω(x + δ(t)), after applying the mentioned
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bandpass filter

Boðx; tÞ ¼ odðtÞ

is obtained.

Once the temporary filter has been applied, the result is multiplied by an amplification fac-

tor α, obtaining the motion magnified band:

Ŝ oðx; tÞ ¼ Soðx; tÞe
iaBo ¼ Aoeioðxþð1þaÞdðtÞÞ ð5Þ

The result Ŝoðx; tÞ is a complex sinusoid whose movement is (1 + α) times higher than the

original.

Changing the α value, it is possible to make perceptible different movements in the input

video, although there are some limitations in the degree of magnification. As α increases, the

output video has more noise and artifacts. In fact, as with the ELVM, there is an upper limit

for α when an octave-bandwidth (4 orientations) Steerable pyramid is used (see [17]):

adðtÞ <
1

4o
ð6Þ

When a half-octave (8 orientations) Steerable pyramid instead of a octave-bandwidth one is

used, the threshold for α is given by:

adðtÞ <
1

2o
ð7Þ

Fig 4. At the top of the image a scheme of the Steerable pyramid construction is shown. A particular application is

shown at the bottom, where each row represents a scale and each column a band. The original image (top), the

oriented bands at each scale (middle) and the lowpass residual (down), are shown.

https://doi.org/10.1371/journal.pone.0195290.g004
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According to Eqs (6) and (7), it seems clear that motions with low spatial frequencies can be

magnified more than those with high spatial frequencies.

Video reconstruction. The final step of the video magnification procedure consists of

reconstructing the video from the α times magnified pyramid levels. This is performed by the

inverse process of the steerable pyramid creation. In practice all the operations are performed

as component-wise multiplications in the Fourier domain.

Once all levels of each frame have been reconstructed, they are summed. Subsequently, the

lowpass residuals of each frame that has the lowest resolution (obtained applying the spatial fil-

ter with the smallest dimensions to the original frame)are added. Finally, adding this result to

the original signal, the output video is obtained. It should bee taking into account that

throughout the process several bandpass filters have been applied, consequently, it is necessary

to add a high-pass residue image to reconstruct the final image.

Simulating a scenario with injured people

In order to verify that the proposed methodology works properly, an accident such as a gas

leak or a terrorist attack, with three injured people involved, was simulated. Victims are

unconscious at first glance, and the video magnification procedure explained before was

applied to make small movements produced by breathing perceptible. The three people who

appear in the video are co-authors of the article, and all of them have given their verbal consent

to carry out the simulation. They are all professors at the University of Oviedo, from where

they were recruited at a meeting held on May 2, 2017. The simulation was submitted to the

Ethical Committee of the Principality of Asturias (CEICR), which evaluated it and provided

the appropriate authorization to carry it out.

A video camera (Panasonic Lumix DMC-TZ80) which has a 30x optical zoom and HD res-

olution, mounted on a tripod located several meters away from the people, was used. After set-

ting the camera on movie mode, volunteers were asked to lie down in the three different

positions in which a victim can be normally found: lying on their back, face-down and

sideways.

Movies were recorded filming the whole scene without additional optical lenses. The length

of the video was long enough to capture the movement to be magnified. Normally a video of a

couple of minutes or even less was sufficient. Daylight was used as the illumination source in

combination with normal artificial fluorescent light to improve the image sharpness. The

movie was recorded in color with 50 frames per second (fps) and 1920 × 1080 pixel resolution.

As an adult takes 12-18 breaths per minute or 0.2-0.3 breaths per second, the sampling rate

requirements are fulfilled. It was saved in MP4 format and transferred to a PC to be processed

using Matlab R2015b software.

After performing many tests with values of the magnification factor between 5 and 60 in

increments of 5, it was found that ELVM with small values of the magnification factor pro-

duces an almost imperceptible magnification, and that the quality of the image obtained by

this algorithm gets worse as α increased. In order to increase the magnification without

increasing the noise, the PBVM algorithm was tested. Visually, the best result was obtained for

a magnification factor of around α = 50. For those values satisfying α� 10, the motion magni-

fication was almost imperceptible, and for α� 50 motion magnification was too big, originat-

ing a blurry video. The difference between the results using both procedures, with the same

amplification factor α = 50, is shown in Fig 5, where some segments of the silhouette of the

people, both in a frame of the original video and in the magnified frame, were highlighted.

This procedure allows to have a quick overview of the utility of video magnification to detect

movements due to breathing.
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Although in the ELVM approach the magnification was not large enough to be appreciated

in Fig 5, the fact is that it is quite evident in the magnified video. However, a great magnifica-

tion is obtained for the same value of α using PBVM method, although the edges of the moving

bodies appear somewhat distorted. Nevertheless, color changes of the entire image and noise

are almost imperceptible, and no significant noise is added to the scene. The original video,

and the two magnified videos corresponding to Fig 5, are available in the supplementary mate-

rial (available at https://figshare.com/articles/Video_magnification_to_detect_human_vital_

signs/5769840).

In order to quantify the capacity of both approaches, ELVM and PBVM, to increase the

intensity signal, a set of pixels of a region where the movement is more evident (for instance, a

pixel of the shirt of the person on the left) were selected, and the intensity in the original video,

as well as in the output magnified videos, were obtained. Results are shown in Fig 6 for a pixel,

where it is noticeable that the increase of the pixel intensity is significantly greater using

PBVM magnification. The same pattern was found for other pixels in the video.

The increasing of the pixel intensity due to magnification is normally associated with a

decrease of the quality of the video. To check this, the quality of both output videos by means

of the Peak Signal to Noise Ratio (PSNR) was estimated:

PSNR ¼ 10 � log
2552

MSEðIO; IMÞ

� �

ð8Þ

Fig 5. From top to bottom: Original video, a frame of the magnified video using the ELVM, another frame of

magnified video using PBVM algorithm. Original and magnified silhouettes using PBVM algorithm are highlighted

in white and red, respectively (α = 50 on both cases).

https://doi.org/10.1371/journal.pone.0195290.g005
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where IO and IM are the intensities in the original and in the final video, respectively; MSE

being the mean square error, given by:

MSEðIO; IMÞ ¼
1

MN

XM

y¼1

XN

x¼1

ðIO � IMÞ
2

ð9Þ

For an image in RGB format, the MSE is calculated as the arithmetic mean of the MSEs for

each red, blue and green color component.

The PSNR is dimensionless, as both numerator and denominator represent pixel values.

However, it is usually expressed in decibels (dB), although it is less sensitive to changes in the

MSE. As it has no absolute meaning, it is meaningless to say that a determined value of PSNR

Fig 6. Comparison of the intensity of a pixel (in the red channel) in the original and in the output video obtained

by ELVM (up) and by PBVM algorithm (down), respectively.

https://doi.org/10.1371/journal.pone.0195290.g006
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is good or not. It is only a way of comparing the effects of the α value on the performance of an

algorithm. Fig 7 shows the PSNR obtained for both magnification methods. It is clear from

this figure that, effectively, the EVLM algorithm produces an image of higher quality. How-

ever, as was previously mentioned, the magnification is better appreciated in the phase-based

magnified video.

Discussion

The simulation explained in the previous section was repeated in different situations concern-

ing light conditions in the room, distance to the objects, camera movement and camera frame

rate, in order to determine the best for video magnification. Below, is discussed how each of

these aspects affects the results of video magnification.

Since the main idea of this article is to magnify small movements that are not visible to the

naked eye, it is crucial to ensure that the camera is not subject to any vibration or sudden

movement, such as those produced by pressing the record button. If these movements have a

frequency within the range that the user has chosen, they will also be magnified. Moreover,

camera displacements modifying the framing result in unacceptable magnified videos. There-

fore, it is very important to place the camera on a stable element, preventing inappropriate

movements at the time of video recording. In this sense, it is advisable to operate the camera

remotely. In fact, an experiment was conducted filming with a camera mounted on a UAV

(unmmanned aerial vehicle), and even though the video was fairly stable it was not possible to

magnify the motion due to breathing without magnifying the small movements of the camera.

The results did not improve even using a video stabilization algorithm. As a result, the magni-

fied videos showed distorted frames that do not allow to perceive breathing movements.

Similarly, lighting conditions is another factor to be considered. Suitable conditions allows

to obtain images with greater sharpness. For this reason, it is advisable to record the video in

good environmental conditions, minimizing the existence of shadows. However, movements

Fig 7. PSNR of the magnified video obtained after applying both algorithms to the same input video and

magnification parameter (α = 50).

https://doi.org/10.1371/journal.pone.0195290.g007
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due to breathing were also detected in scenarios with poor lighting conditions. This suggest

that the propposed method is valid in many real situations.

Regarding the distance of the camera to the objects, it is advisable to locate the camera close

enough to allow detecting the victims. For a camera with HD image resolution, the camera can

be placed up to several tens of meters away. Obviously, this distance increases with the video

resolution. In our experiment, distances from 3 to 10 meters were tested, and it was possible to

detect breathing movements even at the largest distance.

Regarding the speed of video recording, it should be enough to record the frequencies of

vibration according to the Nyquist criterion. Then, low-cost video cameras of 20 fps are suit-

able for our particular problem.

Concerning the magnification factor, although it is a critical aspect to take into consider-

ation, it is also true that it may vary over a fairly wide range of values without producing

noticeable effects. Our recommendation is to try several values in steps of 5 to 10 units.

According to the tests performed, it can be said that the average value of the PSNR is higher

using the intensity linearization procedure than the phase-based procedure. This means that

the first method produces an output magnified video with less noise. However, this is only

valid for small magnification factors, since the quality of the output magnified video decreases

with the value of the magnification.

In contrast, attending to the processing time, the phase-based method is considerably

slower than that based on intensity linearization. Therefore, if obtainig results in almost real

time is not priority, the phase-based method should be employed. Otherwise, it is better to

employ the linearization method, although videos of worse quality will be obtained using the

same magnification, making more difficult to identify signs of life. In this context, ELVM pro-

vided adequate results in just a couple of minutes when the original video was resampled to

half the original cell size. This time could be reduced if the frames are cropped to select just the

area containing the people under study, since this reduces the image extension. On the other

hand, the PBVM algorithm took about 15 minutes in the same conditions, although, as men-

tioned, the magnified video showed the movement due to breathing much more clearly.

Conclusion

In a standard video, hidden signals with small amplitude may exist. Often, these signals cannot

be detected with the naked eye because of its limited sensitivity. We propose to use video mag-

nification techniques to detect slow body movements due to breathing, as a method to identify

injured people in accident or violent scenarios. Two different video magnification procedures

were tested in a simulated scenario with injured people. Both methods, one based on a linear

decomposition of the pixel intensity, and the other based on amplifying phased variations of

the coefficients of a Steerable pyramid, proved to be useful. However, although the first

method is simple and fast, the noise increases linearly with the amplification factor, so it only

supports small values of this factor. The second methods provided the best results in terms of

magnification because it supports a larger amplification factor, although it requires a consider-

ably longer runtime.

Obviously, the processing time depends on the length of the video, which must be long

enough to capture a representative sample of the movement to be magnified, showing phe-

nomena occurring at the temporal frequencies selected by the user. In addition, the global pro-

cessing time of a video increases with the number of levels that form the pyramid, but more

decomposition means less noise in the output video.

Among the different factors concerning the utility of the video magnification, a fundamen-

tal aspect to be considered at the time of recording the video is that the camera has to remain
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stable during data collection. In addition, light conditions are also a factor to be considered

when striving for good results.
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