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Abstract

A set of 908 clinically derived colistin-resistant Enterobacteriaeae isolates collected world-

wide in 2014–2016 were screened for the presence of the plasmid-borne mcr-1, mcr-2, mcr-

3, mcr-4 and mcr-5 genes. In total 3.2% (29/908) of the collection were positive for mcr,

including 27 Escherichia coli, 1 Klebsiella pneumoniae and 1 Enterobacter cloacae. Twenty-

four isolates possessed genes from the mcr-1 family, including the original mcr-1 (n = 22),

as well as mcr-1.2 (n = 1) and mcr-1.5 (n = 1), which each differ from mcr-1 by encoding sin-

gle amino acid variations. Genes from the mcr-3 family were found in isolates from Thailand,

including mcr-3.1 (n = 3) and mcr-3.2 (n = 1). An E. coli isolated from a patient with a urinary

tract infection in Colombia contained the recently discovered mcr-5. The full colistin-resis-

tant collection was tested against a panel of antimicrobial agents with ceftazidime-avibac-

tam and tigecycline exhibiting the highest activity.

Introduction

Use of colistin, which became clinically available in 1959, has historically played a minor role

as an anti-infective therapy due to its nephrotoxicity, as well as the availability of alternative

antimicrobial agents [1]. However, the recent proliferation of multi-drug resistant (MDR)

Gram-negative pathogens in the clinical setting threatens the efficacy of antibiotics across all

classes. To bolster the number of so called “last resort” antimicrobial agents, polymyxins such

as colistin are once again being administered clinically due to their potential effectiveness

against MDR infections [2]. Until 2015, all characterized colistin resistance mechanisms were

chromosomally encoded and thus only limited vertical transmission of resistance was envi-

sioned [3]. However, the discovery by Liu, et al. [4] of the plasmid-borne phosphoethanola-

mine transferase resistance determinant mcr-1 revealed a mechanism for horizontal spread.

MCR-1 and MCR-2, a protein with 80.7% identity to MCR-1 [5], have now been reported in

Enterobacteriaceae worldwide [6–8]. In 2017, three additional MCR protein variants have been
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described, MCR-3 [9], MCR-4 [10] and MCR-5 [11], all isolated from hosts with agricultural

origins. To gain further insight into the global prevalence ofmcr in enteric bacteria isolated

from human clinical samples, colistin-resistant isolates from a large international surveillance

study were examined for the presence of these genes.

Material and methods

The INFORM (International Network for Optimal Resistance Monitoring) global surveillance

program monitors antimicrobial resistance to a variety of pathogens isolated from intra-

abdominal, urinary tract, skin/soft tissue, lower respiratory tract and, as of 2014, blood infec-

tions [12]. During 2014–2016, the program received a total of 44,407 isolates of Enterobacteria-
ceae including those collected by 87 medical center laboratories located in 18 countries in

Europe (n = 21,461), 36 medical center laboratories in 9 countries in the Asia/Pacific region

(n = 7,215), 24 medical center laboratories in 6 countries in Latin America (n = 7,180), 17

medical center laboratories in 5 countries in the Middle East/Africa region (n = 3,707) and 26

medical center laboratories in the United States (n = 4,844). All isolate species identifications

were confirmed in the central laboratory by MALDI-TOF MS (Bruker Daltonics, Waltham,

Massachusetts). Not including Serratia spp. and members of the tribe Proteeae (genera Proteus,
Providencia andMorganella), which are intrinsically colistin non-susceptible, 934 isolates were

found to be resistant to colistin by broth microdilution [13] at an MIC� 4 μg/mL, which is

the EUCAST resistance breakpoint for the Enterobacteriaceae [14]. Of these, 908 isolates were

available to screen, as no isolates could be obtained from China in 2014–2016 or Hong Kong

in 2015–2016 due to export restrictions. The species composition of the complete set included

Citrobacter freundii (n = 6), Citrobacter koseri (n = 3), Enterobacter aerogenes (n = 18), Entero-
bacter asburiae (n = 143), Enterobacter cancerogenus (n = 1), Enterobacter cloacae (n = 165),

Enterobacter kobei (n = 11), Escherichia coli (n = 64),Hafnia alvei (n = 1), Klebsiella oxytoca
(n = 13), Klebsiella pneumoniae (n = 481) and Klebsiella variicola (n = 2).

The collection was investigated for the presence of the colistin-resistance conferringmcr
genes by several PCRs. The initial reaction utilized a custom primer set designed to amplify a

143 bp region common to bothmcr-1 andmcr-2 (MCR-Univ-F: 5’-CTGTGCCGTGTATGTT

CAGC-3’ and MCR-Univ-R: 5’-CACGCCTTTTGAGTCYGAAT-3’). Primers that anneal to

16S rRNA gene (U341F, 5’-CCTACGGGRSGCAGCAG-3’; U519R 5’-GWATTACCGCGGC

KGCTG-3’) were included in the reaction as an internal positive control for amplification.

Subsequently, a multiplex PCR was employed with primers MCR3-F and MCR3-R [9], and

MCR-4 FW and MCR-4 RV [10] to detect themcr-3 andmcr-4 genes, respectively. This reac-

tion also included the 16S rDNA internal positive control. Finally, the screening formcr-5 uti-

lized MCR5-intern_fw and MCR5-intern_rev primers [11], along with the internal 16SrDNA

control. As external positive controls, synthetic DNA constructs were employed for each of the

mcr genes (IDT Inc., Coralville, Iowa). All screen-positive results were confirmed by PCR

amplification using custom-designed primers flanking the coding region and sequencing the

gene in full (mcr-1, exgenMCR1-F, 5’-CCGYAATTATCCCACCGTTT- 3’ and exgenMCR1-F,

5’-CGCCATGACAAGAGCGATAC-3’;mcr-3, exgenMCR3-F, 5’-TCGTTAGAAAGTGATTG

TTGGAC-3’ and exgenMCR3-R, 5’-CCTCTTTCTGATTTGCCCGT-3’; mcr-5, exgenMCR5-

F, 5’-AACCGTTGAAAGAAGAGGACA-3’ and exgenMCR5-R, 5’-CCAATGAGCTCGTG

ATCCCC-3’). Sequence variants were assigned based upon comparison to sequences depos-

ited in the NCBI databases.mcr-positive E. coli underwent multilocus sequence typing based

on the partial sequences of adk, fumC, gyrB, icd,mdh, purA, and recA (https://enterobase.

warwick.ac.uk/species/index/ecoli).
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Results and discussion

In total, mcr was detected in 29 isolates (3.2%), and included 27 E. coli, 1 K. pneumoniae and 1

E. cloacae collected in 15 countries (Malaysia, 5; Thailand, 5; Spain, 3; Argentina, 2; Italy, 2;

Colombia, 2; Germany, 2; Brazil, Hong Kong, Poland, Portugal, Russia, South Africa, Taiwan,

and Venezuela, 1 each) as part of INFORM in 2014 (n = 14), 2015 (n = 11) and 2016 (n = 4)

(Table 1). Twenty-two isolates harbored the original mcr-1 gene, one isolate carried the gene

for the single amino acid variant (Q3L) MCR-1.2 [15], and one isolate carriedmcr-1.5, that

codes for another single amino acid variant, (H452Y). Four E. coli isolates, all originating from

Thailand, were found to possess mcr-3, with three harboring the original mcr-3.1 [9] and one

possessing the gene coding for the single amino acid variant, MCR-3.2 (T488I). An E. coli
strain from Colombia was shown to carry the recently discoveredmcr-5 gene [11]. Nomcr-2
ormcr-4 genes were identified.

As part of the INFORM surveillance program, organisms non-susceptible to meropenem,

resistant to ceftazidime, and/or positive for ESBL activity qualify for β-lactamase gene screening.

Thirteen of the 29mcr positive isolates qualified and were screened for genes encoding acquired

ESBLs, AmpC β-lactamases, serine carbapenemases (blaKPC, blaOXA-48, blaGES), and metallo-β-

lactamases by PCR and DNA sequencing, as previously described [16]. Ninemcr-positive iso-

lates were found to carry CTX-M-type ESBLs either alone or in combination with AmpC-type

β-lactamases and/or original-spectrum β-lactamases (OSBL) of the TEM or SHV type. Four

possessed a CMY-2 AmpC-type enzyme either alone or with a TEM-OSBL, and in one case

with a CTX-M-161 enzyme. None of themcr-positive isolates carried carbapenemases. Of note,

each of the fourmcr-3 gene family-harboring isolates also carried the CTX-M-55 ESBL variant,

known to be common in Asia especially in E. coli isolated from veterinary sources [17].

Allmcr containing isolates were susceptible to meropenem (MIC< 2 μg/mL) and doripenem

(MIC< 2 μg/mL), and 62.1% (18/29) were susceptible to both ceftazidime (MIC< 8 μg/mL) and

aztreonam (MIC< 8 μg/mL) by CLSI breakpoints [18]. However, the addition of 4 μg/mL avibac-

tam rendered 100% of the isolates susceptible (MIC< 8 μg/mL) to ceftazidime (using FDA rec-

ommended breakpoints [19]). All isolates harboringmcrwere also susceptible (MIC� 2 μg/mL)

to tigecycline (using FDA recommended breakpoints [20]). The in vitro activity of several antimi-

crobials against the full set of 908 colistin-resistant isolates is given in Table 2. Ceftazidime-avibac-

tam, along with tigecycline, were the most active agents against these isolates. The addition of

avibactam to ceftazidime rendered 97.5% of the population susceptible (FDA breakpoints [19]), as

compared to just 43.8% susceptibility with ceftazidime alone (CLSI breakpoints [18]).

Themcr-positive E. coli were distributed among several lineages, with the ST10 clonal com-

plex (including ST167, ST744 and ST48) the most abundant (n = 6).mcr-harboring E. coli
from this group has been reported on numerous occasions, for example ST10 from human

clinical samples in China [21], ST744 from human and cattle-associated samples in Europe

[22, 23], ST167 from human infections in Spain and China [24, 25], as well as ST48 from hos-

pital sewage and human clinical samples, in China and Switzerland, respectively [26, 27].

Additional worldwide clones previously shown to harbormcr were also confirmed here, and

include ST641 [28], ST410 [29,30], and ST156 [31, 32]. Our screening identified twomcr-har-

boring ST117 E. coli (and a ST117 single-locus variant with a novel fumC), one of which car-

ried the MCR-3.2 gene. ST117 is a clonal group associated with poultry disease [33] andmcr-
type genes have only rarely been observed in this clone [27, 34]. Of particular interest, one iso-

late from Brazil typed as a single locus variant (novel purA) of the pathogenic E. coli ST131

[35]. ST131 often exhibits an extended spectrum β-lactamase (ESBL) phenotype and frequently

possess CTX-M-15; however, this Brazilian isolate was susceptible to third-generation cephalo-

sporins. In general, the fact thatmcr-type genes have been found in E. coli of such diverse STs
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from food, human and animal specimens suggests the spread of these genes is linked more to

successful plasmids and mobile elements rather than single specific E. coli clones [27].

Overall, the prevalence ofmcr observed here is in accordance with previous reports from

large global surveillance studies. For example, Castanheira, et al. noted that 4.9% (19/390) of a

Table 1. mcr positive Enterobacteriaceae collected as part of the INFORM global surveillance program during 2014–2016.

Year Country Organism Clinical Sample MIC (μg/mL)a MLST mcr gene

product

β-Lactamase contentb

CST CAZ-AVI CAZ MEM TGC

2014 Colombia Escherichia coli Urine 4 0.25 32 0.06 0.25 ST641 MCR-5 CMY-2

2014 Germany Escherichia coli GI tract: appendix >4 0.06 0.25 0.03 0.12 ST46 MCR-1 NCc

2014 Hong Kong Escherichia coli Blood 4 0.06 0.12 0.03 0.25 ST10 MCR-1 NC

2014 Italy Escherichia coli Wound 4 0.12 0.25 0.015 0.25 ST744 MCR-1 NC

2014 Italy Escherichia coli Blood 4 0.12 0.25 0.015 0.25 ST453 MCR-1.2 NC

2014 Malaysia Escherichia coli Abscess 4 0.12 16 0.03 1 ST10 MCR-1 TEM-OSBLd; CTX-M-15

2014 Malaysia Escherichia coli Gangrene 4 0.03 16 0.03 0.5 ST162 MCR-1 TEM-OSBL; CMY-2

2014 Portugal Enterobacter cloacae Wound >4 0.25 1 0.06 1 NAe MCR-1 NC

2014 Russia Escherichia coli Peritoneal fluid >4 0.12 2 0.03 0.25 ST156 MCR-1 TEM-OSBL; CTX-M-1

2014 South

Africa

Escherichia coli Wound 4 0.03 0.5 0.03 0.25 ST602 MCR-1 NC

2014 Spain Escherichia coli Peritoneal fluid >4 0.12 0.25 0.015 0.5 ST117 MCR-1 NC

2014 Spain Escherichia coli Blood 4 1 64 0.12 2 ST167 MCR-1 TEM-OSBL

2014 Taiwan Escherichia coli Wound 4 0.25 32 0.06 0.25 ST117 MCR-1 TEM-OSBL; CTX-M-161;

CMY-2

2014 Thailand Klebsiella
pneumoniae

Wound 4 0.5 64 0.06 0.5 NA MCR-3.1 SHV-OSBL; CTX-M-55

2015 Argentina Escherichia coli Urine 4 0.12 0.5 0.03 0.25 ST48 MCR-1.5 NC

2015 Argentina Escherichia coli Peritoneal fluid 8 0.25 8 0.06 0.5 Novelf MCR-1 CTX-M-2

2015 Colombia Escherichia coli Wound 4 0.12 0.25 0.03 0.5 ST744 MCR-1 NC

2015 Malaysia Escherichia coli Blood 4 0.03 0.25 0.03 0.5 ST2705 MCR-1 NC

2015 Malaysia Escherichia coli Wound 4 0.12 4 0.03 0.25 ST5907 MCR-1 TEM-OSBL; CTX-M-65

2015 Malaysia Escherichia coli Peritoneal fluid 4 0.06 0.12 0.03 0.12 ST7187 MCR-1 NC

2015 Spain Escherichia coli Endotracheal

aspirate

4 0.12 0.25 0.03 1 ST88 MCR-1 NC

2015 Thailand Escherichia coli Wound 4 0.5 >128 0.12 2 ST1193 MCR-1 CMY-2

2015 Thailand Escherichia coli Blood 4 0.12 8 0.03 0.25 ST117 MCR-3.2 TEM-OSBL; CTX-M-55

2015 Thailand Escherichia coli Abscess 4 0.12 16 0.06 0.25 ST410 MCR-3.1 CTX-M-55

2015 Venezuela Escherichia coli Abscess 4 0.12 0.25 0.03 0.5 ST7973 MCR-1 NC

2016 Brazil Escherichia coli Peritoneal fluid 4 0.12 0.25 0.03 0.25 Novelg MCR-1 NC

2016 Germany Escherichia coli Wound 4 0.12 0.25 0.03 0.25 ST1775 MCR-1 NC

2016 Poland Escherichia coli Wound 4 0.12 0.25 0.06 0.25 ST12 MCR-1 NC

2016 Thailand Escherichia coli Blood 4 0.12 16 0.12 0.12 ST4546 MCR-3.1 TEM-OSBL; CTX-M-55

aMICs performed via broth microdilution (13); CST, colistin; CAZ, ceftazidime; CAZ-AVI, ceftazidime with 4 μg/mL avibactam; MEM, meropenem; TGC, tigecycline.
bAs part of INFORM, meropenem non-susceptible, ceftazidime-resistant, and phenotypically positive ESBL isolates were screened for genes encoding acquired

extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, serine carbapenemases (KPC, OXA-48, GES), and metallo-β-lactamases (MBL) by PCR and DNA

sequencing as previously described (16).
cNC = not characterized
dOSBL = original spectrum β-lactamase (eg. TEM-1, SHV-1, SHV-11)
eNA = not applicable
fSingle-locus variant (novel fumC) of E. coli ST117
gSingle-locus variant (novel purA) of pathogenic E. coli ST131

https://doi.org/10.1371/journal.pone.0195281.t001
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worldwide colistin-resistant collection of E. coli and K. pneumoniae from the SENTRY pro-

gram contained mcr-1, and 32.3% (19/59) of the resistant E. coli contained this gene [36].mcr
was also enriched in the colistin-resistant E. coli population examined here, as 42.2% (27/64) of

the resistant isolates from this species harboredmcr with the remainder presumably possessing

a chromosomally-encoded resistance determinant. It should be noted thatmcr has been dis-

covered in isolates susceptible to colistin [37], so the actual frequency of occurrence could be

higher. In this study,mcr-1 was observed exclusively in E. coli except for an E. cloacae isolate

originating from Portugal. Until recently,mcr-1 positive E. cloacae were only reported from

Asia [38, 39]; however, the geographic range was expanded with the discovery of a clinical E.

cloacae isolate withmcr-1 in France [40]. Themcr-3 harboring E. coli and K. pneumoniae from

Thailand confirm the previous report of the presence of this gene in clinical isolates from this

country [9]. Finally, finding mcr-5 in a Colombian E. coli clinical isolate expands both its geo-

graphic and host range, as at the time of this writing mcr-5 has only been confirmed in Salmo-
nella enterica Paratyphi B isolated from food animals and food products in Germany, and in E.

coli from porcine clinical specimens in Japan [41]. This gene was found in silico to be present

the genome of a Cupriavidus gilardii from the U.S., andmcr-5 has been reported to be located

on a unique Tn3-type transposon in both S. enterica Paratyphi B and C. gilardii [11]. Although

we did not sequence this complete region, the forwardmcr-5 flanking primer utilized to

amplify the full coding region overlaps the 3’ end of the chromate reductase gene, chrB, directly

upstream ofmcr-5 in the Tn3-type transposon, and the reverse flanking primer anneals to the

5’ portion of the MFS-type transporter gene, immediately downstream ofmcr-5 in the transpo-

son arrangement [11], suggesting a similar genetic orientation in this Colombian strain.

In summary, this report confirms the global spread ofmcr. Notably we did not find the co-

existence ofmcr with any carbapenemase genes, although co-carriage is being increasingly

reported, includingmcr-1 with blaNDM in Enterobacteriaceae from the U.S. and China [32, 42–

46], as well asmcr-1 and blaKPC in isolates from Singapore [47]. Continual surveillance of this

recently recognized threat to public health is warranted as MDR bacteria that acquiremcr will

leave few treatment options.
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Table 2. In vitro activity of selected antimicrobials against 908 colistin-resistant Enterobacteriaceae collected worldwide during 2014–2016.

Druga MIC Interpretive criteria (S/I/R) a % Susceptible % Intermediate % Resistant MIC 50

μg/mL

MIC 90

μg/mL

MIC Range

μg/mL

Amikacin �16/32/�64 78.6 11.3 10.1 2 > 32 0.5 - >32

Ceftazidime �4 /8/�16 43.9 2.0 54.1 32 > 128 �0.015 - >128

Ceftazidime-avibactamb �8 /na/�16 97.7 na 2.3 0.25 2 �0.015 - >128

Colistin �2 /na/�4 0 na 100.0 8 > 8 4 - >8

Levofloxacin �2 /4 /�8 52.6 2.9 44.5 2 > 8 0.015 - >8

Meropenem �2 /4/�8 70.4 3.2 26.5 0.12 > 8 0.008 - >8

Tigecycline �2 /4/�8 95.6 4.0 0.4 0.5 2 0.03–8

aMICs were interpreted according to CLSI breakpoints [18], with the exception of ceftazidime-avibactam, for which MICs were interpreted using criteria according to

the FDA [19], colistin for which EUCAST breakpoints were utilized [14] and tigecycline, for which MICs were interpreted using FDA criteria [20]; S, susceptible; I,

intermediate; R, resistant; na, not applicable (no intermediate breakpoint).
bAvibactam concentration fixed at 4 μg/mL

https://doi.org/10.1371/journal.pone.0195281.t002
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