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Abstract

Recent comparative genomics studies have suggested that horizontal gene transfer (HGT)

is one of the major processes in bacterial evolution. In this study, HGT events of 64 Chla-

mydia strains were investigated based on the pipeline employed in HGTree database con-

structed in our recent study. Tree reconciliation method was applied in order to calculate

feasible HGT events. Following initial detection and an evaluation procedure, evidence of

the HGT was identified in 548 gene families including 42 gene families transferred from out-

side of Chlamydiae phylum with high reliability. The donor species of inter-phylum HGT con-

sists of 12 different bacterial and archaeal phyla, suggesting that Chlamydia might have

even more various host range than in previous reports. In addition, each species of Chla-

mydia showed varying preference towards HGT, and genes engaged in HGT within Chla-

mydia and between other species showed different functional distribution. Also,

examination of individual gene flows of niche-specific genes suggested that many of such

genes are transferred mainly within Chlamydia genus. Our results uncovered novel features

of HGT acting on Chlamydia genome evolution, and it would be also strong evidence that

HGT is an ongoing process for intracellular pathogens. We expect that the results provide

more insight into lineage- and niche-specific adaptations regarding their infectivity and

pathogenicity.

Introduction

Chlamydiae are a phylum of Gram-negative, obligate intracellular bacteria. They consist of

four validly described groups (Waddila, Parachlamydia, Simkania, and Chlamydiaceae family)

and five additional Candidatus families (Criblamydiaceae, Clavichlamydiaceae, Piscichlamydia-
ceae, Parilichlamydiaceae, and Rhabdochlamydiaceae) [1]. Waddila, Parachlamydia, and Sim-
kania families have been detected as symbionts of protozoa and emerging pathogens causing

infections in humans and animals, and Chlamydiaceae family includes 11 species capable of

infecting mainly humans and a wide range of animal species [2, 3]. Chlamydiaceae family espe-

cially has significant impacts on human and animal health worldwide as it is successfully
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evolved to inhabit a wide spectrum of eukaryotic hosts, comprising from protozoa to placental

mammals. The continuing discovery of new species infecting novel hosts and expanding host

ranges of known species indicate importance of niche-specific gene acquisitions in Chlamydia
[4].

Bacteria exchange their genetic information via horizontal gene transfer (HGT), and it has

been considered to be one of a major driving force in the microbial evolution, with gene muta-

tion [5, 6]. While accumulation of mutations is a slower process, HGT have a more substantial

and immediate impact on the phenotypes of recipients [7]. Recent studies have also shown

that horizontal acquisition of ’pathogenicity islands’ directly change the virulent nature of

many pathogenic bacteria [8]. HGT is known to occur via three modes: conjugation, transfor-

mation, phage-mediated transduction. The exact mechanism of HGT of Chlamydia is largely

unknown, but previous laboratory works have reported that HGT and subsequent recombina-

tion can occur after co-infection within host body [9, 10]. Discovery of a number of phages has

shown that phage-mediated transduction in Chlamydia is possible as well [11]. Traditionally,

due to obligate intracellular nature and low chance of co-infections with more than one strain,

however, HGT in Chlamydia had been considered unlikely. It has only recently become obvi-

ous that Chlamydia genomes contain full gene sets necessary for HGT [12]. Additional evi-

dence for the occurrence of HGT was reported from studies on C. trachomatis strains in which

it was discovered that they actively swap DNA even with strains infecting different parts of the

body, and the recombination was not restricted to few “hotspots” [13]. Recent comparative

studies detected traces of frequent HGT on several C. psittaci genomes as well [14].

Comparative genome analysis in many bacterial and archaeal studies have provided new

insights into evolutionary history by exploring remnants of HGT events [15, 16]. In spite of

their importance as global infectious diseases and increasing evidences of significant role of

HGT, there has been only few exhaustive studies on gene transfer events in different Chla-
mydia species. In this study, we analyzed sets of homologous genes from 64 chlamydial strains

from 8 different species and their homologs in 2,407 other prokaryotes using the pipeline

employed in our previous study, HGTree database [17] to initially identify all putative HGT

events that occurred within Chlamydiae and between Chlamydiae and non-chlamydial pro-

karyotes. HGTree is a comprehensive resource providing all feasible genome-wide HGT infor-

mation for completely sequenced genomes of 2,472 prokaryotes (as of 17 March, 2015) by

means of phylogenetic tree reconciliation method [17]. It is quite advantageous in inferring

tree reconciliation-based HGT information with hundreds of organisms with a reasonable

running time. Following initial identification of HGTs in Chlamydiae, in order to improve the

accuracy of the identification, we additionally evaluated the reliability of each potential candi-

date HGT events and mapping assignments using RAxML [18] and RANGER-DTL 2.0 soft-

ware package [19].

Tree reconciliation method is generally considered to be more powerful and sensitive in

detecting HGT than distance-based methods [20], but it is computationally intensive and

therefore its practical use has remained challenging for analysis of a large number of genomes

[17]. Here, we provide extended insight into HGT in the evolution of Chlamydia by enabling

this massive computation. We identified numerous feasible HGT events that has occurred in

evolutionary lineages of Chlamydia. Donor organisms external to the Chlamydiae phylum

were examined to have insights into the ecology of Chlamydia. We also examined gene flows

of individual genes associated with chlamydia’s survival strategies in the host cell. We expect

that the results presented in this work could explain how HGT have impact on niche- and line-

age-specific evolution of Chlamydia.

HGT of Chlamydia
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Materials and methods

Chlamydial genomes used in this study

We used 64 completely sequenced chlamydial genomes representing 8 different species from

the HGTree database for analysis (all available clinically isolated genomes of Chlamydia abor-
tus, Chlamydia pecorum, Chlamydia psittaci, Chlamydia caviae, Chlamydia pneumoniae, Chla-
mydia felis, Chlamydia trachomatis, Chlamydia muridarum). The list of 64 analyzed strains is

presented in the S1 Table.

Identification of putative HGT events

In construction of HGTree [17], 2,472 completely sequenced prokaryotic genomes (156

Archaea and 2,316 Bacteria) were used. A total of 7,748,306 genes were scanned using

HMMER (ver. 3.0) (E-value < 10–3) [21]. RNammer (ver.1.2) was applied to detect 16S rRNA

sequences in each genome [22]. In order to predict homologous gene sets, Mestortho orthol-

ogy detection algorithm (ver.2.0.) was used [23]. Multiple sequence alignments of homologous

gene sets and 16S rRNA sequences from corresponding species in the homologs sets were per-

formed using CLUSTAL Omega (ver.1.2.1) [24]. Finally, RANGER-DTL-U software (ver.1.0)

was employed to calculate all putative HGT events by reconciliation of the generated gene

trees to 16S rRNA species trees. All of the detected HGT events but HGTs between same spe-

cies were deposited to the database [17]. In this study, an initial screening with HGTree was

performed to identify all of the putative HGT events on 64 chalmydial strains, and the candi-

date HGTs were used for further analysis to evaluate reliability.

Evaluation of putative HGTs

To obtain HGTs with high reliability, additional analysis was applied following preliminary

HGT detection with HGTree. Using RAxML [18], we reconstructed gene trees and species

trees of 701 candidate homologs sets with history of HGTs, obtained from HGTree. For each

RAxML analysis, we executed 100 rapid bootstrap inferences using GTR+CAT model for 16S

rRNA genes and PROTCATJTT model for homologous gene sets. For species trees, 16S rRNA

genes only from corresponding species in each set were used. 18S rRNA sequence from Sac-
charomyces cerevisiae was used in each species tree to root, and the sequence was removed

using the Newick Utility (ver. 1.6) [25] after the species trees were generated. To evaluate can-

didate HGTs RANGER-DTL 2.0 [19] was applied. In contrast to RANGER-DTL 1.0, RAN-

GER-DTL 2.0 is capable of sampling the space of all optimal reconciliations uniformly at

random and computing multiple optimal reconciliations and accounting for the variability in

optimal reconciliation scenarios [19]. Furthermore, to our knowledge, RANGER-DTL 2.0 is

by far the only HGT detection program based on the tree reconciliation method that compute

support values (SV) for individual DTL event inferences and species mapping assignments.

After additional HGT detection with RANGER-DTL 2.0, total 3,004 HGT events in 669 genes

were detected, and the average support value were 0.6463. In this study, we used support value

cutoff of 0.9 to rule out ambiguous HGTs, and 1,030 HGTs in 548 genes were remained.

Functional category assignments of transferred genes

Detected genes were assigned to the NCBI clusters of orthologous group (COG) catalogue

[26]. COGnizer software was used to examine in which The Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways the transferred genes are associated [27].

HGT of Chlamydia
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Results & discussion

Analysis of donor lineages in HGT events

To investigate donor organisms of HGTs of 64 chlamydia strains, we inferred transfer events

by reconciling each gene tree of 1,030 homologous gene sets to 2,472 completely sequenced

prokaryotic species phylogenies. Following initial identification and evaluation procedure, we

detected 1,030 highly reliable HGT events occurred between different species including Chla-
mydia for every gene family. It appeared that HGT has favorably occurred between species in

the Chlamydiae phylum, but there was also a number of genes derived from organisms outside

of the phylum. These organisms belong to 59 different genera, covering 12 bacterial and

archaeal phyla which include a wide spectrum of life style (Fig 1). Numerous HGT events were
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Fig 1. Donor organisms of HGT of 8 Chlamydia species. (A) This figure illustrates a global pattern of HGT in 8 Chlamydia species analyzed. The phylogenetic tree of

2,472 prokaryotic species was constructed with FastTree (ver. 2.9) based on multiple sequence alignment of 16S rRNA. Tree was visualized using Interactive Tree of Life

Version 3.4.3 (http://itol.embl.de/) [28]. Each colored strip of the outer circle represents different phylum of bacteria and archaea. The actual donor phylums are

highlighted with asterisk. From inside out, circled bar charts represent C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, C. pneumoniae, C. psittaci, and C.

trachomatis, respectively. Each bar chart shows the gene transfers from corresponding organism in the tree, and the vertical bars represent the number of HGT events

between corresponding donors and recipient organisms. (B) Heatmap showing the number of HGTs between Chlamydia and non-chlamydial donor species. Rows

represent all identified donor species (SV� 0.9); Columns represent recipient Chlamydia species. Only HGT events have SV� 0.9 are shown here.

https://doi.org/10.1371/journal.pone.0195139.g001
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subjected to occur between Chlamydia and Proteobacteria, Spirochaetes, whereas Chlamydia
barely received genes from organisms in Actinobacteria phylum. Various species-specific

trends of HGT were also observed in each chlamydial species. For example, several species in

phylum Firmicutes such as Bacillus anthracis CDC 684, Enterococcus faecium Aus 0085, and

Staphylococcus aureus subsp. aureus TCH60 transferred genes only to C. psittaci, and absence

of HGT to C. muridarum from several donor organisms in Bacteroidetes were observed (Fig 1).

Although many of donor organisms such as Neisseria meningitidis and Treponema pedis are

known to be pathogenic to vertebrates or host associated, there exist other donor species

which are typically considered as free-living bacteria including Isophaera pallida ATCC 43644,

Methylacidiphilum infernorum V4, and Salinispira pacifica L21-RPU1-D2. First, for the donor

species that occupy very similar niches as Chlamydia, many organisms residing and causing

infections in respiratory system or urogenital organs in human or other animals were identi-

fied, in which most of the Chlamydia species are associated. Additionally, our result shows an

occurrence of several HGTs with commensal organisms isolated from gastrointestinal (GI)

tract of mammals. For example, ribose-phosphate pyrophosphokinase gene was transferred

from Ureaplasma parvum which inhabit genital areas (SV: 1.0), and Enterococcus faecium
transferred gene encoding ABC transporter family protein to C. psittaci (SV: 1.0). In previous

study, it was discovered that not only Chlamydia can efficiently infect the GI tract of all hosts,

including humans, but GI tract can also act as reservoir sites for chlamydial persistent infection

[29, 30]. It has been reported that the GI tract is also considered to be a hot spot for HGT

among bacteria [31].

In addition to bacteria residing in human or animal body sites, we observed a big propor-

tion of environmental donor species which inhabit aquatic or terrestrial habitats (Fig 1). For

instance, Lysyl-tRNA synthetase gene was transferred from aquatic bacteria, Caldilinea aero-
phile (SV: 0.97), and gene encoding MiaB-like tRNA modifying enzyme was transferred from

Thermanaerovibrio acidaminovorans DSM 6589 residing terrestrial environments (SV: 1.0).

The mechanisms by which gene transfer of Chlamydia occurring is still unclear. A number of

phages required for transduction were discovered and DNA transfers were observed after host

co-infection of multiple strains in many studies [9–11]. Chlamydiae phylum is considered as a

group of successful parasites that have an extremely broad host range and distributed ubiqui-

tous in nature. There have been only four families (Parachlamydiaceae, Simkaniaceae, Wad-
dliaceae, and Criblamydiaceae) discovered within the phylum which can grow in natural hosts

like amoebae [2]. However, it has been reported in many studies that a large number of rRNA

sequence of chlamydia-like organisms are detected in various environmental samples such as

soil, water, hot spring, and activated sludge samples [4, 32, 33]. Our results suggest that Chla-
mydia may have even more various host range than we have thought and potentially exchange

genes in as yet unknown natural host. It also suggests the hypothesis that there may exist a

novel gene transfer mechanism enabling Chlamydia to exchange genes with free-living

organisms.

Variation in the effect of HGT between species

Analysis of 64 chlamydial genomes using the HGTree database identified that 701 gene fami-

lies were inferred to have undergone one or more HGT, with 97 gene families transferred

from outside of Chlamydiae. Further examination of the 701 HGT-acquired genes with

RAxML and RANGER-DTL 2.0 resulted in 548 putative genes including 42 non-Chlamydia

originated genes with high reliability. The percentage of received genes was markedly variable

across the species, being more than threefold greater in C. felis lineage (30.1% of total genes),

C. abortus lineage (27.4% of total genes), and C. caviae lineage (27.1% of total genes) than in C.

HGT of Chlamydia
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trachomatis (8.15~9.66%) (Fig 2). The great amount of variability in the number of transferred

genes between species is derived mainly from intra-phylum transfer events, on the other

hands, the ratio of the inter-phylum transferred genes is shown consistently low across all

strains. We also looked at the distribution of all detected gene families across COG functional

categories [26]. We found that genes from all functional categories (Metabolism, Information
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Fig 2. Distribution of the ratio of transferred genes of 64 chlamydial genomes. Boxplots show the distribution of the ratio of transferred genes for organisms

in each Chlamydia species. Each plot shows the distribution of ratios of transferred genes from organisms outside of Chlamydiae phylum (Top) and ratios of

transferred genes from Chlamydia (Bottom). The x-axis indicates of 8 Chlamydia species used in this study, and the y-axis indicates ratio of the number of

transferred genes in the number of total gene in each strain. The great amount of variability in the number of transferred genes between species is derived

mainly from intra-phylum transfer events, on the other hands, the ratio of the inter-phylum transferred genes is shown consistently low across all strains.

https://doi.org/10.1371/journal.pone.0195139.g002
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storage and processing, and Cellular processes and signaling) are subject to transfer (Fig 3). In

contrast, in inter-phylum transfers, genes related to metabolism, and information storage and

processing are assigned relatively high (31% and 49%, respectively), while only 16% of cellular

processes and signaling genes are assigned (Fig 3). These results indicate that there may exist

genetic barriers of inter-phylum HGT in chlamydial genomes. Gene transfer between distantly

related organisms is known to occur less frequently than between closely related organisms

since genetic mechanisms and different genome organization can act as constraints for inter-

phylum HGT [34, 35].

As mentioned above, the C. felis and C. abortus genome displayed the highest ratio of HGT

genes in all the species, with 30.1% and 27.4% of total genes, respectively. C. abortus is the

most recently diverged species which mainly responsible for enzootic abortion in sheep and

cattle [36]. There is a strong correlation between adaptation and HGT. It is known that bacte-

ria can respond to SOS triggered by environmental stress and promote horizontal distribution

of essential genes for survival [37]. In a recent study, 190 recombination events were observed

in 12 C. trachomatis recombinants under antibiotic pressure [38]. It is also reported that mis-

match repair gene deficient bacteria have significantly increased the rate of HGT and subse-

quent recombination of those genes[39]. In this way, HGT can be used to speed up the rates of

adaptation in new environments [40], on the other hand, it is kept at a minimal level [41].

Therefore, high ratio of HGT genes of C. abortus can be explained as the result of ongoing

adaptation to a new pathogenic lifestyle in placenta. In contrast, all of the C. trachomatis line-

ages show relatively low ratios, with an average of 9.08% of genes transferred. Possible explana-

tion for this phenomenon is that C. trachomatis has very long evolutionary history since its

divergence from the other Chlamydia approximately 6 million years ago [42], and unlike other

Chlamydia that infect across multiple host species with histories of frequent host species jumps

[14, 43], C. trachomatis has human beings as its exclusive natural host. Nevertheless, they are

successfully adapted intracellular pathogens, which infections are among the most common of

all human bacterial infections as it is a leading cause of sexually transmitted infection and

blindness worldwide [44, 45]. In this point of view, it may be hypothesized that their stability
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https://doi.org/10.1371/journal.pone.0195139.g003
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as well-adapted pathogens in static environments for a long period have made them to keep

gene transfers at a minimal level. In addition, the absence of C. trachomatis infecting phages

detected may have impacts on the low ratio of HGT [11].

KEGG analysis of transferred gene families was performed to investigate pathways that

might play important roles in Chlamydia and test whether transferred gene sets of each lineage

are varied across functional pathways. In our analysis, variation in the number of transferred

gene sets between lineages was quite similar across pathways, in most lineages, carbohydrate,

nucleotide, and cofactor metabolism exchanged most abundantly (Fig 4). In previous study,

frequent exchange of genes in carbohydrate transport and metabolism among animal associ-

ated organisms was observed [46]. However, we found that the effect of intra-phylum transfer

and inter-phylum transfer on each pathway were different (Fig 5). For instance, genes associ-

ated in aminoacyl-tRNA biosynthesis pathway were horizontally acquired mainly from non-

chlamydial species, and interestingly, HGT of the genes related to type III secretion system

(T3SS) almost exclusively occurred at intra-phylum level (Fig 5). The varying effect on the

functional categories and species suggest some pathways may accept the introducing of new

genes from different phylum better than other pathways. Not all genes are permissive to inter-

specific gene transfer. Genes which encode proteins making up large complexes or genes

whose products interact with other particles a lot display less preference towards HGT [47]. In

addition, deleterious interaction between native and acquired proteins may be also important

barriers [47, 48]. Barriers between certain species have been recognized as well for many bacte-

rial and archaeal species [49].

HGT of virulence-related genes of Chlamydia
Bacterial evolution is largely dependent on the ability to adapt and colonize specific niches.

Gene transfers of virulence-related genes may affect the pathogenesis of specific Chlamydia
strains. Therefore, it is important to identify these events to expand our understanding of spe-

ciation event and strain emergence. Although Chlamydia have very conserved genomes as a

result of genome reduction imposed by their intracellular lifestyle [42], there is a region of hot-

spot for genome variation which is termed as “Plasticity zone,” and the region encodes viru-

lence factors including membrane attack complex/perforin protein (MACPF), cytotoxin, and

genes related to important biosynthesis and salvage pathways [50]. Presence or absence of

these genes in the region are known to confer different niche-specificity to the organisms.

Based on our work, there appeared to be several events of HGT in the plasticity zone occurring

within Chlamydia genus. Since Chlamydia interact frequently with membranes during their

infection, the role of MACPF is important [51]. We found the gene transfer of MACPF from

C. abortus S26/3 to C. felis Fe/C-56 (SV: 1.0) and to C.psittaci M56 (SV: 1.0) separately. The

tryptophan biosynthesis pathway is necessary for survival of Chlamydia since host restricts

chlamydial growth by degrading tryptophan as a defense mechanism [52]. Each Chlamydia
species possesses different level of functional gene sets of tryptophan biosynthesis pathway

[53]. Among the genes associated in this pathway, only TyrP gene encoding tyrosine/trypto-

phan transport protein was transferred within Chlamydia genus (from C. felis Fe/C-56 to C.

caviae GPIC; SV: 1.0). However, phylogenetic incongruence suggested that TrpC of C. pecorum
E58, C. felis Fe/C-56, and C. caviae GPIC were might have been transferred from Coxiella bur-
netti dugway 5J108-111 strain, another obligate intracellular pathogen of humans and animals

(SV: 1.0). TrpC encodes indole-3-glycerol phosphate synthase which is necessary in the fourth

step of tryptophan biosynthesis pathway. It was previously proposed that Coxiella burnetti

acquired trp operon from simkania negevensis, a bacterium belonging to the Chlamydiae phy-

lum [54]. Putative multiple intra-genus gene transfers were also observed in adenosine
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Fig 4. KEGG pathways of transferred genes of each Chlamydia species. The figure displays variation in the number of transferred gene sets across KEGG Pathways.

The Boxplots represent the number of genes associated in corresponding KEGG Pathway transferred to each Chlamydia species. Each row denote 8 different Chlamydia
species used in this study. The y-axis indicates the number of genes transferred counted.

https://doi.org/10.1371/journal.pone.0195139.g004
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deaminase (Add) associated in purine ribonucleotide biosynthesis pathway (S1 Fig), although

no signs of HGT were detected in GuaAB. Presence of tox/adhesion may affect Chlamydia
pathogenesis and host-range. These loci present only in C. trachomatis, C. muridarum, C.

pecorum, C. psittaci, C. caviae, and C. felis species. To determine whether strains possessing the

locus have gained the gene recently or whether these genes are lost by strains that do not is

important [14]. According to our analysis, HGT of tox/adhesion had occurred from Escheri-
chia coli and Citrobacter rodentinum to C. caviae GPIC (SV: 1.0).

Chlamydia displays a unique biphasic developmental cycle. At all stages of infection, inter-

actions between the Chlamydia and its host are essential, and they translocate different types of

virulence effector proteins into host cytoplasm which are used for manipulation of host cellular

functions [55]. Like virulence genes in the plasticity zone, T3SS genes seemed to be mostly

transferred within Chlamydia. Among the genes encoding structural components of the T3SS

apparatus, there were evidences for intra-genus HGT in 5 genes (SctW, SctS, SctR, SctF, and
SctP). Among the effector proteins that are used for manipulation of host cell immune

response, EEA1, Cap1, CPAF, Tsp, and pGP6-D appear to have histories of HGT only with

other Chlamydia.

HGT among Chlamydiaceae has been featured in many comparative genomics studies in

recent few years [13, 14, 56]. We have discovered, using a tree reconciliation method,

exchanges of virulence related genes are mainly occurred within Chlamydia genus. It suggests

that intra-genus HGT may have been a major mechanism for the acquisition of determining

factors of infection in Chlamydia. This discovery reflect that virulence related genes circulate

among Chlamydia which may facilitate speciation event and new strain emergence. In micro-

bial pathogens, virulence genes are particularly important determinants of host and tissue

range [57], and transfer of those genes may provide a fitness benefit to the recipient. Gene

acquisition from closely related species which have already adapted to meet the particular

requirements of similar niche would confer even more advantages for adaptation. It will be

informative to see if intra-genus HGT is a general mechanism for the acquisition of such fac-

tors also in other obligate intracellular pathogenesis. In this study, we uncovered several fea-

tures of HGT acting on Chlamydia genome evolution and proposed an expansion of current

understanding of Chlamydia ecology. More insights into HGT mechanism of Chlamydia will

come from future laboratory experiments.

Supporting information

S1 Fig. Example of phylogenetic incongruence of adenosine deaminase (Add) gene. (A) is

the species tree of Add gene. (B) is the gene tree of Add gene. Phylogenetic difference between

the gene tree and the species tree indicate that Add gene inferred to have undergone one or

more HGT events. The tree reconciliation method detected 3 putative HGT events in Chla-
mydia. The species highlighted with color red indicate the organisms participated in the

events. Arrows depict the HGTs between the organisms. Support values are shown near to the

corresponding HGTs which indicated by arrows.

(EPS)

S1 Table. The information of Chlamydia strains used in this study.

(XLSX)

Fig 5. Distribution of number of the inter- and intra-phylum transferred genes across pathway. The figure displays variation in the number of transferred gene

sets between inter-phylum HGT and intra-phylum HGT. The Boxplots show the number of genes transferred to each Chlamydia species distributed across KEGG

Pathways. Each row denotes inter- and intra-phylum HGT genes. The y-axis indicates the number of received genes to Chlamydia species counted.

https://doi.org/10.1371/journal.pone.0195139.g005
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