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Abstract

This work presents a novel method for learning a model that can diagnose Attention Deficit

Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional

connectivity features obtained from 3-dimensional structural magnetic resonance imaging

(MRI) and 4-dimensional resting-state functional magnetic resonance imaging (fMRI) scans

of subjects. We explore a series of three learners: (1) The LEFMS learner first extracts fea-

tures from the structural MRI images using the texture-based filters produced by a sparse

autoencoder. These filters are then convolved with the original MRI image using an unsu-

pervised convolutional network. The resulting features are used as input to a linear support

vector machine (SVM) classifier. (2) The LEFMF learner produces a diagnostic model by first

computing spatial non-stationary independent components of the fMRI scans, which it uses

to decompose each subject’s fMRI scan into the time courses of these common spatial com-

ponents. These features can then be used with a learner by themselves or in combination

with other features to produce the model. Regardless of which approach is used, the final

set of features are input to a linear support vector machine (SVM) classifier. (3) Finally, the

overall LEFMSF learner uses the combined features obtained from the two feature extraction

processes in (1) and (2) above as input to an SVM classifier, achieving an accuracy of 0.673

on the ADHD-200 holdout data and 0.643 on the ABIDE holdout data. Both of these results,

obtained with the same LEFMSF framework, are the best known, over all hold-out accuracies

on these datasets when only using imaging data—exceeding previously-published results

by 0.012 for ADHD and 0.042 for Autism. Our results show that combining multi-modal fea-

tures can yield good classification accuracy for diagnosis of ADHD and Autism, which is an

important step towards computer-aided diagnosis of these psychiatric diseases and per-

haps others as well.

1 Introduction

Statistical machine learning methods have recently permeated disciplines such as Psychiatry,

which specializes in the diagnosis and treatment of neuropsychiatric disorders [1]. The
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availability of large scale neuroimaging datasets has encouraged researchers to develop com-

puter-aided tools and procedures for understanding the human brain and its disorders. Some

studies use structural Magnetic Resonance Imaging (MRI) scans, which provide a non-inva-

sive technique for obtaining a volumetric image of the brain anatomy, while others use func-

tional MRI (fMRI) scans, which measure brain activity by detecting fluctuations in the Blood

Oxygenation Level Dependent (BOLD) signal over time.

Many neuroscientists are seeking ways to use such MRI and/or fMRI data to detect brain

function disorders, such as Autism and Attention Deficit Hyperactivity Disorder (ADHD).

While significant work has been done in association studies for finding discriminative group-

level characteristics for ADHD [2–4] (resp., Autism [5, 6]), we are seeking a general learning

tool that, when given relevant data, can learn an accurate predictive model, which can predict

whether an individual subject has a particular disease. This paper explores biologically naive
ways to learn combinations of state-of-the-art structural texture features (from structural MRI

scans) and functional connectivity (from fMRI scans) to predict whether a subject has ADHD

(resp., Autism). Specifically, our learned models use recently-developed unsupervised feature

learning from images and independent component analysis of fMRI for prediction of the

diseases.

From brain images, the structural textures provide information about the spatial arrange-

ments of voxel intensities in 3 dimensions, which in turn can describe neurological aspects of a

subject’s brain. On the other hand, functional connectivity captures patterns of deviations

from statistical independence between the time signals at distributed, and often spatially

remote, neuronal regions [7–9]. Deviations from statistical independence are generally taken

to indicate dynamic coupling and can be measured, for example, by estimating the correlation,

independent components, etc.

As a first step towards creating a generalized prediction tool for ADHD/Autism, we experi-

ment with 3-D texture based models that describe structural arrangements of the brain by

learning texture features from MRI scans. These features are then used by our LEFMS learner.

To use the fMRI data, we experiment with four different source separation techniques, that

each decompose the scans into spatio-temporal components that are common across the sub-

jects. (Each component specifies a timecourse. For each each, for each component, a spatial

map is created based on how simliar each voxel’s time course is to the component time course.

See Methods for details.) This, in turn, allows each subject’s fMRI scan to be described as a

weighted sum of the common spatio-temporal components, with the subject’s weights then

serving as features for our model. Our LEFMF learner uses these fMRI-derived features to pro-

duce classifiers designed to predict whether a patient has a particular disease. Finally, our

learner LEFMFS uses both sets of features (structural and functional) to produce a classifier

designed to predict if a patient has a particular disease.

Here, we use two publicly available, multi-site datasets, ADHD-200 and ABIDE (http://

fcon_1000.projects.nitrc.org/indi/abide/), for developing and then testing our models. Since

the publication of the ADHD-200 dataset, many researchers [10–13] have explored ways to

improve the prediction accuracy of ADHD using this data; see also [14] for Autism. However,

even the best prediction results are not at the level of being clinically useful.

The main contribution of this work is our approach to feature extraction—i.e., a single

method to obtain features, by applying digital image processing algorithms to structural and

functional MRI scans, that can be used in learned models to accurately distinguish between

ADHD versus Healthy (resp., Autism versus Healthy) subjects. In particular,

1. While standard independent component analysis (ICA)-based source separation is used

primarily in analyzing group-level activation differences in fMRI analysis, we devise a novel
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extension, and algorithm, that is applicable to prediction studies (Section 2.5). We show

that the resulting LEFMF algorithm, with its learned combination of these learned features,

out-performs other fMRI-based algorithms for ADHD/Autism prediction, on these

datasets.

2. In addition to using ICA-based source separation in the context of a predictive study, we

introduce the approach of using multiple decorrelation [15] for the purpose of fMRI source

separation and compare it to three other commonly used source separation algorithms.

Here, fMRI volumes are modeled as non-stationary signals and source separation based on

second-order criteria is used to separate out common spatial activation maps and subject-

specific time courses.

3. Combining texture-based features learned from MRI and features extracted using fMRI

source separation, we improve the prediction model accuracy for ADHD to 0.673 (com-

pared to 0.661) and Autism to 0.643 (compared to 0.619).

4. Our application of image processing algorithms for structural/functional MRI data suggests

that biologically naive features can lead to effective classifiers of mental disorder (ADHD/

Autism), suggesting this approach should be further investigated for these, and other

disorders.

2 Materials and methods

This section presents the overall process of the diagnostic system; see Fig 1 We first describe

the datasets (Section 2.1) and evaluation criteria (Section 2.2). Then we outline the preprocess-

ing pipeline in Section 2.3. The remaining sections summarize diagnostic methodology from

MRI scans (LEFMS; Section 2.4), from fMRI scans (LEFMF; Section 2.5), and from combined

imaging features (LEFMSF; Section 2.6).

2.1 Datasets

We used one multi-site dataset for producing, then evaluating, each model: ADHD-200

(including 8 sites) and ABIDE (including 17 sites). Each of the datasets included a structural

scan (high resolution, for a single time point), and also one or more resting-state functional

scans for each of the subjects. The spatial resolution of the structural MRI scans was 1mm ×
1mm × 1mm. In these resting state functional scans, the subject did not perform any explicit

task. That functional scan included between 76 to 261 time points for each ADHD-200 subject

and between 82 and 320 time points for each ABIDE subject. Different subjects were scanned

with different temporal resolutions: ranging from 1.5 seconds through 3 seconds in the

ADHD-200 dataset, and from 1 seconds through 3 seconds in the ABIDE data. The field

strength of the MRI scanners varied from 1.5T to 3T. Each data collection site used its own

scanner(s) and its own MR scanning parameters. The demographics of subjects in these data-

sets can be found in Tables 1 and 2. More details are available at the ADHD-200 site (http://

fcon_1000.projects.nitrc.org/indi/adhd200/) and ABIDE site (http://fcon_1000.projects.nitrc.

org/indi/abide/).

2.1.1 ADHD-200. The ADHD-200 dataset is a multi-site combination of neuroimages

taken from 8 sites (of which we use 7). It is partitioned into two disjoint sets (training and

holdout), where the prediction model is learned from only the training set, and the learned

model’s accuracy is measured on the holdout set. The data from the excluded site (Brown Uni-

versity) are not used because subject labels (ADHD vs. control) are not available for that site
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and we require labels for our machine learning algorithms. Thus, our training set consists of

776 resting state scans: 491 were taken from healthy controls and 279 from patients. To bal-

ance our training set, we used all 279 patients and selected 279 healthy controls evenly taken

from all the sites as our training set [11, 12, 16], which means that the baseline classification

accuracy for the training set is 0.50. The ADHD-200 competition hold-out dataset (excluding

Brown University data) consists of 171 subjects: 94 healthy subjects and 77 ADHD cases (base-

line accuracy 0.5497). We only use this set for evaluating the quality of the final model; n.b., it

is not used in any way during the training process.

The ADHD-200 dataset also includes other non-imaging features for each subject, includ-

ing gender, age, handedness, site of the imaging, IQ measure, etc. [17]. However, we only use

imaging data for our experiments.

Table 1. ADHD-200 data demographics. Site abbreviations: Peking University (Peking), Kennedy Krieger Institute (KKI), NeuroIMAGE (NI), New York University (NYU),
Oregon Health and Science University (Oregon), University of Pittsburgh (Pitt), Washington University in St. Louis (WashU).

PEKING BROWN KKI NI NYU OREGON PITT WASHU

SUBJECTS 245 26 94 73 263 113 98 61

ADHD 130 26 33 50 163 71 9 0

MALE/FEMALE 174/71 9/17 64/30 43/30 171/92 61/52 53/45 33/28

AGE MEAN 11.7 14.54 10.22 17.64 11.45 0.10 15.08 11.47

AGE STD 1.96 2.54 1.34 3.05 2.91 1.20 2.78 3.88

https://doi.org/10.1371/journal.pone.0194856.t001

Fig 1. Overall pipeline, including feature extraction steps, for each of our methods: LEFMSF uses all of these steps (as it uses

both MRI and fMRI data); LEFMS does not use the red “fMRI feature extraction” box; and LEFMF does not use the grey “MRI

feature extraction” box. In each case, in addition to the learner that utilizes the combined features, our system also learns the most

effective features from the MRI data (grey box) and from the fMRI data (red box); those features are used to pre-process the test data

(see boxes of the same color).

https://doi.org/10.1371/journal.pone.0194856.g001
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2.1.2 ABIDE. The ABIDE dataset consists of 1111 scans, taken from 17 sites consisting of

573 healthy controls and 538 patients with autism. To evaluate each learning model, we use

800 subjects (70%) for model training and 311 subjects (30%) for hold-out testing. We use the

same case/control ratio (0.5157) for both training and test set. The ABIDE dataset provides an

array of non-imaging information which includes age, gender, handedness, various IQ scores,

site of the imaging and eyestat (which indicates whether the person kept their eyes open or not

during the scan). Again, we only use imaging data for our experiments.

2.2 Evaluation criteria

For each task, we use 5-fold cross validation (CV) [18] over the training set to set the parame-

ters, based on accuracy. That is, each set of parameter values is tested with 5-fold cross valida-

tion on the training set, and the set of values producing the best average accuracy across all 5

folds of the training dataset is selected for final testing on the held out test dataset. We report

the training set CV accuracy as well as performance measures of the learned model applied

to the holdout set: accuracy, sensitivity, specificity and J-statistics (Jstat = sensitivity + specific-

ity − 1).

We also used statistical tests to evaluate the hold-out results obtained by the various learn-

ers. For each dataset, we used a binomial test to compare our learners (LEFMF and LEFMSF) to

cross-validation baseline accuracies, to determine if each learner is significantly better than

chance. We used two additional binomial tests to compare LEFMSF to the previous state-of-

the-art classifiers for ADHD-200 and ABIDE. Finally, four McNemar tests were performed to

determine if the results of LEFMSF were significantly better than those of LEFMS or LEFMF on

the ADHD-200/ABIDE hold-out datasets.

2.3 Preprocessing pipeline

For preprocessing fMRI and MRI scans, we used SPM8 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm8/) and our own in-house MATLAB code. Preprocessing was identical to that

used in Ghiassian et al. [13]. Preprocessing involved 6 steps:

1. 6-parameter rigid body motion correction of functional scans

Table 2. ABIDE data demographics. Site abbreviations: Carnegie Mellon University (CMU), California Institute of Technology (Caltech), Kennedy Krieger Institute (KKI),
Ludwig Maximilians University Munich (LMU), New York University (NYU), Olin Institute of Living at Hartford Hospital (Olin), Oregon Health and Science University (Ore-
gon), San Diego State University (SDSU), NeuroIMAGE (NI), Stanford University (Stanford), Trinity Centre for Health Sciences (Trinity), University of California, Los Angeles
(UCLA),University of Leuven (Leuven), University of Michigan (UMich), University of Pittsburgh School of Medicine (Pitts), University of Utah School of Medicine (Utah),
Yale University (Yale).

CMU CALTECH KKI LMU NYU OLIN OREGON SDSU

SUBJECTS 27 38 55 57 184 36 28 36

AUTISM 23 19 22 24 79 20 13 14

♂/♀ 23/4 32/6 48/7 48/9 154/30 31/5 24/4 30/6

AGE MEAN 25.4 22.3 10.4 20 13.9 17.2 10 14.4

AGE STD 4.5 4.1 1.4 9.1 5.1 3.2 1.8 1.5

NI STANFORD TRINITY UCLA LEUVEN UMICH PITTS UTAH YALE

SUBJECTS 30 40 49 108 64 145 57 101 56

AUTISM 15 20 24 62 29 68 30 58 28

♂/♀ 24/6 17/3 19/5 52/10 24/5 59/9 25/5 51/7 26/2

AGE MEAN 29.5 9.5 16.6 12.7 21.4 13.8 17.9 24.5 12.4

AGE STD 5.9 1.7 3.0 2.1 2.3 2.7 5.5 3.7 2.9

https://doi.org/10.1371/journal.pone.0194856.t002
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2. Co-registration of functional scans to subject-specific structural scans to guide the spatial

normalization step

3. Non-linear spatial normalization (parameter estimation and spatial transformation) of

structural images to the MNI T1 template (http://imaging.mrc-cbu.cam.ac.uk/imaging/

Templates)

4. Non-linear spatial normalization of previously co-registered functional image volumes (in

step 2) to the MNI T1 template using warping parameters computed in the structural image

normalization

5. Spatial smoothing of functional image volumes with 8mm full-width half-maximum

(FWHM) Gaussian kernel

6. Z-normalization of each 3D volume’s intensities for structural and functional image to

standardize the intensities of images scanned from different sites.

Note that only steps 2, 3 and 6 are applicable to processing the MRI images. For more

details about the preprocessing steps, see Ghiassian et al. [13].

2.4 Building a model from structural MRI features, LEFMs

This section describes LEFMs, which extracts the usable features from structural MRI images,

which are then provided to a learning algorithm; see Fig 2. Section 2.7 below describes the

Learner, and how we set its hyperparameters. Here, we focus on the grey box, which does this

preprocessing: this involves creating 3D patches by extracting all 5 × 5 × 5 cubes from the MRI

image (Section 2.4.2), which are given to a sparse autoencoder that learns to encode a set of

reduced representations (Section 2.4.3) of the patches producing filters (Section 2.4.1), which

are then finally used in a convolutional neural network (Section 2.4.4) with convolution (Sec-

tion 2.4.1) and max pooling to produce a final reduced feature set.

To understand this process better, we first define some common terms—Filters, Convolu-

tions—that will be used later in this section. The rest of the section then describes the steps in

Fig 2, in left-to-right order.

Fig 2. Process of extracting MRI features to be provided to a learning algorithm. This expands the “MRI feature extraction”

box from Fig 1.

https://doi.org/10.1371/journal.pone.0194856.g002
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2.4.1 Background: Filters, convolution. While our application deals with 3D images, this

section explains the basic ideas using simpler 2D examples.

In image processing, filters are transformations that accentuate certain features within an

image. Filters are generally defined on a neighborhood. For example, the 2D image filter

hcontrast ¼

0 1 0

1 � 4 1

0 1 0

2

6
6
6
4

3

7
7
7
5

ð1Þ

is defined on 3 × 3 neighborhood. Below, we view h as a function—here hcontrast: {−1, 0, 1} ×
{−1, 0, 1} 7! <.

We then “convolve” a filter against an image. More precisely, a convolution is a

mathematical operation on two functions—an image and a filter

(where are the integers from −d
through + d, inclusive)—to produce a third function that is typically viewed as a modified ver-

sion of I(x, y), giving the overlap between the two functions. In case of 2-dimensional convolu-

tion, I is a 2D image (where I(x, y) is the intensity at position (x, y)), and h(u, v) is the filter that

is convolved with the image—such as the hcontrast from Eq 1. The result of the convolution can

be interpreted as the similarity measures between each pixel of the image and the filter. For 2D

images, this result, at location (x, y), is defined as

gð x; y Þ ¼ s
X

ðu;vÞ2U

Iðx � u; y � vÞ hðu; vÞ

 !

where is the neighborhood over which the filter h is defined, and

sðtÞ ¼ 1=ð1þ e� tÞ ð2Þ

is the sigmoid function.

2.4.2 3D patch sampling. The 3D patch sampling process converts our MRI image into a

set of smaller 3D images. This is done by defining a patch size (in our case 5 × 5 × 5) and mov-

ing this cube across the image in all dimensions (step size is 1 voxel), extracting the contents of

the cube at each point to create a 3D patch. This produces one such patch for every possible

5 × 5 × 5 cube that can fit within the original image—yielding approximately as many patches

as there are voxels. Note that “adjacent” patches will overlap.

2.4.3 Using a sparse autoencoder to generate filters. We then run a sparse autoencoder

over the patches, to produce the filters required for convolution. To generate the filters for the

convolutional neural network (CNN), we use a single layer unsupervised sparse autoencoder,

that seeks to compress the 125-dimensional patches down to just 3-dimensions; see Fig 3. This

produces 3 filters (based on the Encoding Weights); see left portion of Eq 1.

The sparsity aspect of the autoencoder encourages the network to learn different transfor-

mations in each of the nodes [19], which is meant to improve the robustness of the classifiers

using the filters’ outputs as features. Formally, we seek the parameters [θ1, θ2, b1, b2] of the
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network (Fig 3) that minimizes:

JDðy; bÞ ¼
1

2jDj

X

x2D

Lðx; x̂Þ þ b
Xk

j¼1

KLðr k r̂ jÞ þ lkyk2

x̂ ¼ sðy2hþ b2Þ

h ¼ sðy1x þ b1Þ

ð3Þ

where D 2 <m×n is the data matrix, where each row is a data point x 2 <n, also h 2 Rk is the

hidden representation of the data (i.e., there are k nodes in the hidden layer), x̂ 2 Rn is recon-

structed data, L(a,b) = ∑i(ai − bi)2 is the squared loss, σ(s) is sigmoid function (Eq 2), ρ is spar-

sity parameter (e.g., ρ = 0.05), r̂ j ¼ E½hj� is average activation of the jth hidden neuron, and

KLðr k r̂ jÞ ¼ r log
r

r̂ j

 !

þ ð1 � rÞ log
1 � r

1 � r̂ j

 !

is the Kullback-Leibler divergence. We used (internal) 5-fold cross-validation to select the

hyperparameters β, λ and ρ, and solve Eq 3 using the L-BFGS package (http://users.iems.

northwestern.edu/~nocedal/lbfgsb.html).

2.4.4 Single layer unsupervised convolutional neural net. After learning the k = 3 filters

from the sparse autoencoder, the filters are then convolved throughout each entire MRI 3D

image (size 79 x 95 x 68), producing a new 3D image (size 74 x 91 x 64) for each filter. (Fig 4

shows a 2D analogue of this.) As we use sigmoid activation functions σ(�), these features are a

non-linear combination of voxels within the input image [20].

We then usemax-pooling after the convolution step. Here, for each volume (produced by

each filter), we divide the entire volume into disjoint and exhaustive 5 × 5 × 5 sub-regions, and

then compute the maximum value of each sub-region. This step reduces the sensitivity of the

feature map to various distortions, for example, by introducing translational invariance for the

features within the max-pooling region. We then collect these values into a single vector—here

of size 3 × (15 × 18 × 13) = 10 530. We then describe each subject with a single vector that is

Fig 3. Autoencoder that tries to reconstruct the 5 × 5 × 5 patches (represented as a 125-D vector). For each of the k = 3 filters,

there is a link (“Encoding Weights” θ1) from each input node to each hidden node, and then from each hidden node to each Output

node (“Decoding Weights”, θ2); we show only a subset for clarity.

https://doi.org/10.1371/journal.pone.0194856.g003
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the concatenation of all k of these size-10,530 vectors. This is the input to the base learning

algorithm; see Fig 1.

2.4.5 Evaluating the model produced by LEFMs. To evaluate the LEFMs algorithm, we

used 5-fold CV on the training set with internal 5-fold CV to obtain hyperparameters that

maximize CV accuracy, and then (after finding the apparent best parameters and model),

applying that learned model to the holdout set. The base learner is an SVM.

We applied the resulting learned model to the holdout set, but found that it did not perform

as well as state-of-the-art methods that also only use structural MRI features. This process was

still relevant, as it identifies relevant features, which will be used within LEFMSF; see Section

2.6 below.

2.5 Building a model from fMRI features: LEFMF

This section describes our approach to producing a model that can use blind source separation

to create features from a subject’s fMRI scan, where those features are then used as input to an

SVM to predict the subject’s diagnosis; see Fig 5 (which expands a portion of Fig 1). Sections

2.5.2, 2.5.3 and 2.5.4 describe how we process the initial fMRI data to where source separation

Fig 4. (a) Median axial slice from MRI scan and (b) the result after convolution with a filter.

https://doi.org/10.1371/journal.pone.0194856.g004

Fig 5. Detailed process of how a classifier is produced and used with fMRI scans. This corresponds to the “Red Box” (i.e., the

fMRI processing component) of Fig 1.

https://doi.org/10.1371/journal.pone.0194856.g005
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can be applied, then Section 2.5.5 describes the different source separation techniques that we

considered, to generate spatial maps. As seen in Fig 5, we use these spatial maps to produce the

fMRI-based features that we ultimately use to train an SVM classifier. Fig 6 summarizes the

complete LEFMF algorithm; the following subsections discuss each step in more detail.

As a high-level summary of the first 3 steps: an fMRI scan for a single subject has a large

number of voxels, which are captured for each of a number of time points. Because combining

all the fMRI scans from all subjects for source separation would be intractable, it is important

to reduce the number of features while preserving the important subject-level variations in the

data. To reduce the computational load on group level analysis, previous researchers have pro-

posed various approaches for reducing the dimensionality before group level source separation

analysis. We follow Calhoun et al. [21, 22] by using a standard 2-Step principal component

analysis, applied to all fMRI images used in our study. The steps in Sections 2.5.2, 2.5.3, and

2.5.4 are implemented in the GIFT software package (http://mialab.mrn.org/software/gift/)

from Calhouns’s group. This model is based on the (reasonable) assumption that there are

common spatial sources for a set of fMRI scans in a particular study, where subjects differ

based on temporal weights of each source. This 2-Step data reduction procedure captures the

subject level variations and group level commonalities.

2.5.1 Dimensionality reduction using 2-step PCA. An fMRI scan for a single subject has

a large number of voxels, which are captured for each of a number of time points. Because

combining all the fMRI scans from all subjects for source separation would be intractable, it is

important to reduce the number of features [21, 22] while preserving the important subject-

level variations in the data. In order to reduce the computational load on group level analysis,

we follow Calhoun et al. [21]’s 2-step principal component analysis (PCA) [21, 22], which

applies PCA first to each subject separately and then to the all subjects together. We use the

Fig 6. Detailed version of the fMRI data to the spatial maps process that elaborates the boxes “Dimensionality Reduction with

2-step PCA” and “Obtain Spatial maps Using PCA/k-PCA/ICA/NSD” in Fig 5. The first three of four steps show how 2-step PCA

is applied to the data, where the concatenation step is temporal concatenation (Fig 7). The first column shows that the scan from

subject i is a T × Vmatrix Ii
½T�V�. The next column, after “Subject Level PCA”, shows the ith subject is described as Yi

½Tred�V�
, with

dimension Tred ×V. The subsequent “Concatentation” step produces a group matrix with dimension nTred × V. The “Group Level

PCA” step reduces this to a K × Vmatrix, which the “Source Separation” step factorizes to produce the mixing matrix size K × C.

This final step could be the identify transformation, kernel-PCA, standard ICA or non-linear ICA; each of these might lead to

different values of C.

https://doi.org/10.1371/journal.pone.0194856.g006
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implementation of this procedure in the GIFT software package. This 2-step PCA procedure

produces a set of components meant to capture the subject level variations and group level

commonalities. Each component yields a “spatial map” [23]. This approach is based on the

(reasonable) assumption that there are common spatial sources for a set of fMRI scans in a par-

ticular study, where subjects differ based on temporal weights of each source.

2.5.2 Subject level PCA. As shown in Fig 6, we start with a T × Vmatrix, Ii
½T�V� matrix

describing each of the n subjects. T is the number of time points. V is the number of voxels.

PCA [21] is used (within GIFT) to reduce this to a Tred × Vmatrix by selecting Tred largest

eigenvalues, to capture 99% of the variance. (For details, see the GIFT documentation http://

mialab.mrn.org/software/gift/documentation.html).

2.5.3 Subject concatenation. To estimate a set of common components across all subjects,

we vertically concatenate the PCA-rotated matrices produced for each subject by the above

subject-specific PCA step (as shown in Fig 7). Note that vertical concatenation means we con-

catenate along the temporal direction (as opposed to spatial concatenation, which is not dis-

cussed here). Therefore, we are using source separation to decompose each fMRI scan into a

set of spatial maps, where each map is derived from a time course defined by a PCA compo-

nent. As seen in Fig 7, in this context, the inner product of voxel components and time series

components reconstructs an approximation of the original fMRI images, so we can view this

as a way of representing each voxel’s time series as a linear combination of more general,

shared time series.

2.5.4 Group level PCA. The previous steps produced the Concatenated Matrix Y[(nxTred)xV]

(3rd column in Fig 6). We next run PCA on this matrix, and again included enough rows K to

capture 99% of the variance.

Fig 7. Temporal vs. spatial concatenation. Each ‘fMRI data i” box (for i = 1..n) corresponds to one of the n subjects. This shows two

ways we can concatenate these boxes from subjects in Fig 6 to produce X, Here, we use temporal concatenation.

https://doi.org/10.1371/journal.pone.0194856.g007
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2.5.5 Source separation. Previous studies [21, 24] have explored brain regions that are

strongly temporally coherent (co-activated during rest) using source separation techniques

like PCA or independent component analysis (ICA). Here, PCA separates the fMRI brain scan

into uncorrelated spatial maps or sources based on variations in the time, whereas ICA decom-

poses the brain fMRI scans into a common set of spatially independent components (a.k.a.

sources or spatial maps) and their corresponding user-specific time courses. In this case, ICA

assumes that the spatial maps have constant higher order statistics [21, 22, 25].

This paper compares four source separation methods, which are applied after 2-step PCA—

including this simple version of ICA, as well as a more complex Non-stationary Spatial Sources

Decomposition (NSD) technique—in terms of the accuracy of the models produced by the fea-

tures obtained from each algorithm. To the best of our knowledge, this is the first study to fully

investigate using NSD to produce predictive models from fMRI data.

Principal Component Analysis (PCA) for fMRI The simplest of our 4 approaches just

uses the “Representative Matrix” X[K×V] as our spatial maps, without any further modification

(that is, the 4th step of Fig 6 is just the identity transformation). In this case, we use internal

cross-validation to determine the appropriate number of components that optimizes the accu-

racy of the final model, instead of preserving 99% of the variance.

Kernel Principal Component Analysis (k-PCA) for fMRI Here, we use the Radial Basis
Function kernel (RBF), with the associated matrix,

SRBFði; jÞ ¼ exp �
ðxi � xjÞ

T
ðxi � xjÞ

2s2

 !

ð4Þ

where xi and xj are ith and jth column of X respectively. After computing the kernel similarity

matrix, we can obtain the eigenvalue/eigenvector pair of the kernel matrix; the projection

onto these eigenvectors produces spatial maps (rows of S). Finally, the inner product of each

patient’s fMRI scan on these maps results in the time components (columns of Ai). The num-

ber of eigenvectors retained for this final inner product is again selected through internal

cross-validation.

Independent Component Analysis (ICA) The goal of the standard ICA algorithm is to

find independent sources that maximize the log likelihood of the observed data, in the context

of temporally concatenated fMRI data—i.e., given the X appearing in 4th column of Fig 6. We

also suggest how one might interpret this process.

The standard max likelihood estimate (MLE) interpretation of ICA starts with an observed

data matrix X where each row of X (xi) is a single observation. In particular, this model

assumes that each xi is a realization of the random variable xi where xi is a linear combination

of independent source random variables, {sj}j = 1..K. We also need a mixing matrix A that

defines the contributions of each sj in producing each xi. Concretely, if we take any column of

X (denoted xj) we find the relationship

xj ¼ A sj; sj � W xj ð5Þ

whereW = A† is pseudo-inverse of A and sj is a column of S, the matrix whose rows si are each

a realization of si. Note that A and S are never observed.

In our fMRI setting, shown in Fig 8, X and S each have V columns and each time point in

the concatenated data xi is a linear combination of our unknown independent spatial maps

S = [s1, . . ., sK]. To help understand ICA applied to temporally concatenated fMRI data, think

of the data as snapshots of a someone performing different gestures. For each snapshot, we

observe the brain activation associated with a particular gesture (our xi), which can be viewed

as a combination of what would be the brain activations associated with more primitive
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movements S such as rotating a wrist or lifting an arm. In light of this example, ICA is being

used to decompose neurological activity into more fundamental components to identify a dis-

ease state such as ADHD or Autism.

Now that we have defined our setting and provided some intuition, we now describe how

we use MLE to obtain the (unobserved) independent components of S. Our ultimate goal is to

find an optimal inverse mixing matrixW� that maximizes the likelihood of the observed data.

Here, we assume that the distribution of the hth source sh is given by a density ph(sh), and that

the joint distribution of the sources are independent of one another; i.e.,

pð s1; s2; . . . ; sKÞ ¼
YK

h¼1

phð s
h Þ ð6Þ

The probability of the observed signals for jth observation (xj) is given by

Pð½x1; x2; :::; xK�T ¼ xj Þ /
YK

h¼1

phðw
T
h xjÞ � detðWÞ ð7Þ

where wT
h is the transpose of the hth column ofW [26]. TheW that maximizes the log-likeli-

hood given the data X[K×V], is

W� ¼ argmax
W

XK

h¼1

XV

j¼1

log phðw
T
h xjÞ þ log detðWÞ

 !

ð8Þ

Note that this ph(�) can be any non-Gaussian distribution [27]. Here, we use GIFT’s default

implementation and parameters, which is

phð seeing a voxel with intensity x Þ ¼
l
ðhÞ

2
exp ð� l

ðhÞ
jxjÞ ð9Þ

where each different source h = 1..K will have a different λ(h). Note this does not depend on the

Fig 8. Temporal concatenation with ICA elaborated from Fig 7. This corresponds to the ICA decomposition X� AS, except here,

for illustrative purposes, we have replaced X with Y (the concatenated fMRI data from Fig 6 before the Group-level PCA).

https://doi.org/10.1371/journal.pone.0194856.g008
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location of the voxel. Given thisW�, and the observed xj for patient j, we then use Eq 5 to solve

for the time course Aj.
Non-Stationary Spatial Sources Decomposition (NSD) As mentioned earlier, the proba-

bility density of each source is parameterized by a constant value that does not change with

location of voxels. NSD generalizes this, by allowing the probability density function for each

component to be parameterized by the location of the voxels [28, 29]. Here, we define the dis-

tribution for the hth component Sh as

phð seeing a voxel at ði; j; kÞ with intensity x Þ ¼
l
ðhÞ
ijk

2
exp ð� l

ðhÞ
ijk jxjÞ ð10Þ

(Compare to Eq 9)

We think that each of these spatial sources should be non-stationary (i.e., have different λijk
values at different (i, j, k) locations) as:

1. One source (which corresponds to one row in S [see Fig 6]) may not have the same magni-

tude and variation throughout the whole brain due to in-homogeneous magnetic suscepti-

bility that depends on the location of voxels in the scan. This differs from commonly used

source separation models, which require that the sources have same variation for the whole

brain scan.

2. The strength and variability within a particular source depends on the brain tissue type in a

particular brain region. For example, the activation values in grey matter and white matter

(which depends on the amount of oxygenated blood flow in that tissue) would be different.

In order to develop the theory for nonstationary source decomposition, consider a repre-

sentative fMRI scan X[K×V]� A[K×K] S[K×V], where S is an K × Vmatrix of source components,

where each row Sr,: (size 1 × V) specifies the contribution of voxel co-ordinates to rth source.

Each spatial activation refers to one row in S. Column h in matrix A will have the time courses

for the corresponding hth spatial component.

In mathematical terms, suppose we have K independent spatial maps (each corresponding

to a row in S) and V observations (each corresponding to a 3D brain scan at a time point).

Then, we can formulate the covariance matrix at location r = (i, j, k) as Rx(r) = hx(r) x(r)Ti =

ADs(r) AT where Rx amd Ds(r) are of size K × K. Further we let x(r) = X(:,N(r)) whereN(r) rep-

resents any suitably chosen region around position r for which the signals are assumed to have

same higher order statistics. For our experiments, we have chosen N(r) to be a 4 × 4 × 4 bound-

ing box (e.g., if the point r = [200, 100, 50], then this box is defined by corners [199, 99, 49] and

[202, 102, 52]). We found, empirically, that increasing the bounding box severely degraded the

performance of the model.

Assuming the sources are spatially non-stationary, and following [15, 30],

xðrÞ � A sðrÞ

RxðrÞ ¼ hxðrÞ xðrÞ
T
i ¼ A hsðrÞ sðrÞTi AT ¼ A DsðrÞ AT

However, as we do not have a perfect estimate for Rx(r), we estimate the covariance matrix

Rx(r) for some spatial interval. We denote the sample estimates as R̂xðrÞ, and define the mea-

surement error as

EðrÞ ¼ R̂xðrÞ � ADsðr ÞA
T

Suppose we have N samples of R̂xðrÞ for r 2 {r1, r2, .., rN}, then we can estimate the
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parameters by

Â; D̂sðr1Þ; D̂sðr2Þ; . . . ; D̂sðrNÞ ¼ argmin
A;Dsðr1Þ;:::;DsðrN Þ

XN

k¼1

kEðrkÞk
2

and estimate the source components as

ŝ ¼ argmin
s
kx � Âsk2

Then for each patient, we can calculate the time courses Ai from Eq 11. This method decorr-

elates the spatial sources at different regions of the brain, which is desirable for the reasons

described above.

2.5.6 Complete LEFMF process. Fig 6 shows the steps. First, the SubjectLevelPCA reduces

each subject’s [T × V] matrix Ii to Yi = UiIi where Ui is the Tred × T reduction matrix. Note that

Tred is determined by retaining the independent components that preserve 99% of the variance

(see the GIFT software package documentation for complete details on individual and group

level PCA reductions). The second step, Concatenation, concatenates {Yi}i = 1..n over all of the

n subjects, to obtain the matrix Y of size nTred × V The third step, GroupLevelPCA, runs PCA

on this Y to produce a new matrix X� FY, where F is a K × nTred reduction matrix. If we divide

the F into n sub-blocks Fi, each of size K × Tred, then Fi corresponds to reduction matrix for

subject i. We then consider various final steps: (1) Directly using the final Fmatrix as features.

(2) Running kernel PCA on X to obtain a reduction matrix A. (3) Running (stationary) ICA

on X to obtain the mixing matrix A. (4) Running NSD on X to obtain the mixing matrix A.

In these last three variants we are using different blind source separation algorithms to

express X� A × S, where S is a [C × V] matrix with C spatial maps covering V voxels. Hence,

for subject i,

Xi ¼ Uyi F
y
i X � Uyi F

y
i A S ¼ Ai S ð11Þ

where Ai ¼ Uyi F
y
i A, which is different for each patient (while all use the same Smatrix). Here

Uyi and Fyi are pseudo-inverses of Ui and Fi respectively. Thus, Xi is approximated as Ai S.

2.6 Building a model from multimodal features: LEFMSF

For the set of all n subjects, let Xmri
n�f 1 be the feature matrix from the one-layer convolutional

network on the MRI data, and Xfmri
n�f 2 be feature matrix from applying nonstationary ICA to the

fMRI data. The combined feature matrix is Xcombined
n�f , with f = f1 + f2 columns. This matrix was

then divided into training set and holdout set by instances as in Section 2.1. The training set

was then used to train a linear support vector machine.

2.7 Support vector machine classifier

Each of the approaches—LEFMS, LEFMF, LEFMSF—uses the Support Vector Machine (SVM)

learning algorithm to generate their models, based on the respective features. LEFMS and

LEFMSF use linear kernels and LEFMF uses an RBF kernel. This is based on the argument that

when we use linear features (i.e., features are extracted using a linear transform) we use a non-

linear classifier, and when we use non-linear features (i.e., features are extracted using a non-

linear transform) we use a linear classifier. For the RBF kernel, we follow a standard practice of

using internal cross-validation to set the parameter γ 2 {0.1 × 2i|i = 0..10}. The parameter C for

all SVMs is left at the default of C = 1. Of course, once the model is produced by the learner, it

can then be used to predict the class of a novel instance.
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3 Results

This section provides the results of cross validation and holdout set evaluation for the three

models considered: Section 3.1 discusses the results of the LEFMS model; Section 3.2 discusses

the results of the LEFMS model; and Section 3.3 discusses the results of the LEFMSF model. We

see that our LEFMS model is not better than state-of-the-art MRI based models, in general, but

our LEFMF model outperforms other models that only use fMRI features, and our LEFMSF

model outperforms all other image-based models, on this dataset.

3.1 Results using MRI texture-based features (LEFMS)

The best 5-fold cross-validation accuracy achievable for ADHD-200 data is 0.635. When run

on the hold-out data, this classifier yielded accuracy of 0.626, with sensitivity, specificity and

Jstat of 0.420, 0.842 and 0.262 respectively. The best 5-fold cross-validation accuracy achievable

for ABIDE data is 0.614. When run on the hold-out data, this classifier yielded accuracy of

0.617, with sensitivity, specificity and Jstat of 0.490, 0.730 and 0.220 respectively. Here, cross

validation found that the optimal number of spatial maps for ADHD was 100, and for ABIDE,

it was 175.

3.2 Results using fMRI source separation models (LEFMF)

3.2.1 5-fold cross validation accuracy. To assess the predictive ability of a model trained

only on fMRI features, we ran 5-fold cross validation (CV) over a varying number independent

components. We then ran the version with the optimal number on the holdout set. Table 3

shows the results of this CV selection process for both the ADHD and Autism datasets. As

shown, for the ADHD data, the model performed best with 45 independent components,

achieving an accuracy of 0.6450 compared to the baseline of 0.50 with significance p = 1.83e-

12 (via binomial test). For the Autism data, the model performed best with 45 components

with a CV accuracy of 0.6225 relative to the baseline 0.5157 (p = 4.95e-10, via binomial test).

Note that the 45 components for the ADHD data are unrelated to the 45 components for the

Autism data. Fig 9 plots these values, and shows that NSD is better than the other feature

extraction methods (PCA, kPCA and ICA).

Table 3. 5-fold CV results for classification accuracy (and standard deviation) using various numbers of indepen-

dent components.

# ICs (SVM GAMMA) 5-FOLD CV ACCURACY 5-FOLD CV STD

ADHD 30 (6.4) 0.6216 0.0399

35 (3.2) 0.6378 0.0374

40 (1.6) 0.6432 0.0390

45 (3.2) 0.6450 0.0291

50 (3.2) 0.6360 0.0261

55 (3.2) 0.6378 0.0075

AUTISM 30(51.2) 0.5925 0.0158

35 (51.2) 0.5825 0.0049

40 (51.2) 0.6159 0.0078

45 (51.2) 0.6225 0.0210

50 (51.2) 0.6000 0.0130

55 (51.2) 0.5987 0.0059

Note: SVM GAMMA refers to the RBF kernel variance parameter g ¼ 1

2s2.

https://doi.org/10.1371/journal.pone.0194856.t003
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3.2.2 Model hold-out test accuracy. Using the optimal parameters selected from cross

validation, the resulting hold-out accuracy for ADHD was 0.6491 (baseline 0.5497) and was

0.6233 for ABIDE (baseline 0.5157). The specificity, sensitivity and Jstat for ADHD (resp.,

ABIDE) are 0.8191, 0.4416 and 0.2607 (respectively, 0.6768, 0.5533 and 0.2301). To our knowl-

edge, our holdout accuracies achieved on ADHD-200 test data and the ABIDE test data are the

best known when only using fMRI scans.

3.2.3 Leave-one-out accuracy comparison. To compare our results with yet other sys-

tems, we also computed the leave-one-out accuracy of our ABIDE model; Table 4 shows that

our LEFMF was superior.

Note that Abraham et al. [31] report an “inter-site” cross-validation accuracy of 66.8±5.4%

on a version of the dataset containing 871 subjects (patients are ommited because they did not

pass a visual quality inspection). Here, Abraham et al. [31] use a 16-fold cross validation, done

by training on 15 of 16 sites and testing on the remaining site in each fold. By contrast, our

model was trained on a smaller set of only 800 instances—recall we trained on only 70% of the

original 1111 instances, and left the remaining 30% (311) for testing. It is likely that their

reportedly high accuracy is due in part to having a larger CV dataset where samples were

heavily scrutinized so as to exclude those that did not meet their criteria.

3.2.4 Spatial maps.

Spatial maps from ADHD-200 data:. Figs 10 and 11 show the spatial maps found using

multiple de-correlation—showing 9 axial slices for each. The component IC1 appears to be an

artifact as it assigns very high values to all the voxels—i.e., as all the voxels in the brain are

approximately of equal importance in this component, it is shared by all the voxels. We assume

this is probably due to noise like motion, breathing and attention signals, which can modulate

voxels throughout the brain [32]. We believe that IC3 also appears to be an artifact as it

consists of regions from cerebrospinal fluids which means it might be a result of cardiac pulsa-

tility artifacts [33]. Moreover, we found that removing these two artifacts did not change the

Fig 9. 5-fold cross validation results of classification.

https://doi.org/10.1371/journal.pone.0194856.g009

Table 4. Leave-one-out results for autism classification (ABIDE) using only imaging data.

ALGORITHM ACCURACY SPECIFICITY SENSITIVITY J-STATISTICS

LEFMF 0.614 ±0.017 0.648 0.578 0.226

NIELSEN ET AL [14] 0.600 ±0.016 0.58 0.62 0.20

https://doi.org/10.1371/journal.pone.0194856.t004
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Fig 10. Spatial maps (aka components) 1–25 for ADHD-200 using NSD. Each 3×3 box shows 9 axial slices of one

component. The colorbar is same as Fig 4.

https://doi.org/10.1371/journal.pone.0194856.g010
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Fig 11. Spatial maps or components 26–45 for ADHD-200 using NSD. Each component is shown in a box and 9

axial slices are shown. The colorbar is same as Fig 4.

https://doi.org/10.1371/journal.pone.0194856.g011
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performance of the model. The other components consist of some common default mode net-

works (regions that are shown to be active during rest [34]) and apparently some new resting

state networks not previously identified in the literature. Some of the resting state networks

found are consistent with [35]. For example, IC5 appears similar to the resting state network

for peristriate area, and lateral and superior occipital gyrus, which are areas related to visual

cortex and might represent spontaneous brain activities like day-dreaming [36, 37]. It is easy

to connect this component to ADHD as ADHD patients are more likely to experience mind-

wandering [38]. IC6 captured shared functional properties in the frontal and occipital lobe

(responsible for planning and many areas of vision respectively). This area is very important

for ADHD as well, as ADHD patients may suffer from lack of effective planning [39]. IC24

consists of pons (responsible for eye movement, sleep, and many other vegetal and automatic

functions) regions and temporal lobe (for sensory processing, memory formation and higher

order association processing). Their usefulness in prediction suggests that some of the physical

signals captured by fMRI may also be indicative of a disease state.

Spatial maps from ABIDE data:. Figs 12 and 13 present the spatial maps found using mul-

tiple de-correlation. This IC1, too, appears to be an artifact as it is shared by almost all the vox-

els [32]. IC3 also appears to be an artifact as it consists of regions from cerebrospinal fluids and

is a result cardiac pulsatility artifacts [33]. A deeper investigation into the components shows

multiple overlapping components. The components include visual areas (visual cortex, V1 and

V2), partial overlapping with some default mode networks (PCC/precuneus, anterior cingulate

cortex and frontal lobe) and motor networks. These components are informative: see the

cross-validation, test accuracy on the ABIDE data for autism classification.

3.3 Results using multi-modal features (LEFMSF)

Table 5 shows the accuracy of the LEFMSF learner for both ADHD-200 and ABIDE; these val-

ues shown the best known using only imaging data. (That table also shows the hold-out speci-

ficity, sensitivity and Jstat values for the datasets.) Table 6 summarizes the results of this

model, as well as our other models, in comparison to previous methods.

3.4 Quantifying significance

To further establish that our results are better than chance, we performed permutation tests.
This involves computing a trivial baseline—the accuracy produced if there was “no signal”

between the features and label—then determining if our learned model performed signifi-

cantly better than that. Here, for each dataset (ADHD-200 and ABIDE), we performed 1000

iterations: each time, we randomly permuted the subject labels to effectively remove any rela-

tionship between the input features and the label, then we trained a model on the training sub-

set of this set and tested it on the remaining subset. Fig 14 shows the distributions of accuracy

scores for the two datasets. In each case, we see that there is a significant difference (ADHD-

200 p-value = 6.45e-5 and ABIDE p-value = 6.52e-7) between the centers of the distributions

and the accuracy obtained by the LEFMSF model.

In addition to the permutation tests, we also performed four McNemar tests to determine if

LEFMSF significantly out-performed our other models, LEFMS and LEFMFẆe found that

LEFMSF had significant improvements over LEFMS for the ABIDE data (p-value = 0.038) but

not for the ADHD (p-value = 0.806) data. However, there were no significant improvements

for LEFMSF over LEFMF for ADHD-200 (p-value = 0.808) or ABIDE (p-value = 0.602). While

the other tests were not p< 0.05 significant, note that LEFMSF always performed better than

either LEFMF or LEFMS on those hold-out sets (for both ADHD-200 and ABIDE). Moreover,

LEFMSF had better performance in terms of cross-validation training accuracies. Note also that
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Fig 12. Spatial maps or components 1-25 for ABIDE using NSD. Each component is shown in a box and 9 axial

slices are shown. The colorbar is same as Fig 4.

https://doi.org/10.1371/journal.pone.0194856.g012
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Fig 13. Spatial maps or components 26-45 for ABIDE using NSD. Each component is shown in a box and 9 axial

slices are shown. The colorbar is same as Fig 4.

https://doi.org/10.1371/journal.pone.0194856.g013
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this particular difference is not a major part of our claims—i.e., our major contribution is dem-

onstrating that applying NSD to fMRI images can facilitate psychiatric diagnosis, for two dif-

ferent disorders.

3.5 Site specific effects

We observed that the proportion of cases versus controls varies across the sites—with some

sites being predominantly cases while others were mostly controls. We therefore considered

the possibility that our learned classifier may have picked up some site-specific difference

Table 5. LEFMSF results for ADHD/ABIDE classification—using structural and functional scan features.

5-CV Hold-Out

Accuracy Accuracy Specificity Sensitivity Jstat

ADHD 0.6892 0.6725 0.8510 0.4545 0.3055

ABIDE 0.6312 0.6431 0.6832 0.6000 0.2832

https://doi.org/10.1371/journal.pone.0194856.t005

Table 6. Hold-out test results for ADHD classification using only fMRI and/or MRI features.

Data Type Algorithm Accuracy Specificity Sensitivity J-Statistics

ADHD fMRI/MRI LEFMSF 0.673 0.851 0.455 0.306

ADHD MRI Ghiassian et al [40] 0.661 0.545 0.755 0.300

ADHD fMRI LEFMF 0.649 0.819 0.442 0.261

ADHD MRI LEFMS 0.626 0.842 0.420 0.262

ADHD fMRI Ghiassian et al [13] 0.626 _ _ _

ADHD fMRI/MRI Dai et al [11] 0.615 0.7766 0.4133 0.1833

ADHD fMRI Sidhu et al [12] 0.614 _ _ _

ADHD fMRI Eloyan et al [10] 0.610 0.94 0.21 0.15

ADHD fMRI Ghiassian et al [40] 0.597 0.299 0.840 0.139

ABIDE fMRI/MRI LEFMSF 0.643 0.683 0.600 0.283

ABIDE fMRI LEFMF 0.623 0.677 0.553 0.230

ABIDE fMRI Ghiassian et al [13] 0.619 _ _ _

ABIDE MRI LEFMS 0.617 0.730 0.490 0.220

ABIDE MRI Ghiassian et al [40] 0.601 0.491 0.704 0.195

ABIDE fMRI Ghiassian et al [40] 0.592 0.454 0.722 0.176

https://doi.org/10.1371/journal.pone.0194856.t006

Fig 14. Permutation tests.

https://doi.org/10.1371/journal.pone.0194856.g014
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(unrelated to disease) and used that as a proxy for the label—in effect, perhaps, simply setting

everyone in the Oregon subset to be “Control” (the case:control ratio was 6:28 for Oregon). As

this site-identifying-proxy is clearly not biologically relevant, the classifier is unlikely to be

accurate for other subjects, especially ones from yet other sites.

We tested this in two ways: First, to see how influential site information could be, we

described each patient based only on his/her site IDs (one hot encoded). We then trained a lin-

ear model to predict the subject’s disease status given only that site information. Note that our

earlier learners did not use the site information—i.e., our description of each subject did not

include the “site” feature. We found that models trained using only site information achieved

an accuracy of 66.0% on the ADHD data and 55.0% on the ABIDE data, while our models

trained on MRI data achieved much higher accuracies: 67.4% and 64.3%, respectively.

Second, we realized that that a “site-biased” classifier would perform badly if run on a new

test sample that was balanced on each site (i.e., which included 50% cases and 50% controls).

For example, if a classifier simply identified which subjects were from the Oregon subset, and

set them all to “Control”, this classifier would only be 50% accurate for this 50:50 testing sub-

sample. To test this possibility, we created new “site-balanced test sets” (for both the ADHD-

200 and ABIDE datasets) by subsampling from the original test sets such that the case:control

ratio was essentially 50:50 for each site. We then tested those previously-trained classifiers on

these new “site-balanced test sets” and found that the accuracies did not differ significantly

from the original test set results: here, it was 69.88% for ADHD-200 and 63.46% for ABIDE.

Moreover, its accuracy for Oregon was 68%.

4 Discussion

4.1 Spatial sources decomposition

In general, an ICA model uses the individual time courses for each component as features for

the learner. Here, the separation model for the ith subject is Xi
½T�V� � Ai

½T�I� � S½I�V� where

rows of S are estimated spatial map and columns of A are corresponding estimated time

courses. The time course components A:,h correspond to weighting of the component Sh,:,

where a smaller component weight A:,h corresponds to lower contribution of the component

to the whole scan and indicate hypo-connectivity. Likewise higher weights for a component

will represent hyper-connectivity.

For ADHD, different studies have reported different pathological changes in brain [2]. Tian

et al. [3] showed a higher level activity in sensory cortex. Using a similar method, Castellanos

et al. [4] conceptualized a lower connectivity between anterior cingular cortex, precuneus and

posterior cingulate cortex. In our studies, we found differences in group level mean connectivi-

ties for ADHD cases for visual and default mode components corresponding to regions identi-

fied as relevant by [2, 4]: S = { IC4, IC7, IC9, IC28, IC36, IC38, IC42, IC43 }. We compared

corresponding group level mean weights for Healthy and ADHD patients. For ICh 2 S, the

weights A:, h are reduced for ADHD patients in a total of 42, 42, 42, 42, 40, 41, 43, 36 time

points out of total number of time points 91. The reduced differences were statistically signifi-

cant (p� 0.05) for many of these time points: 21, 20, 20, 21, 19, 19, 22, 18 (resp.). This suggests

that the patients suffering from ADHD might have a combination of hyper-connective or

hypo-connective brain, depending on time points.

For Autism, the main connectivity loss is noted in frontal lobe and other cortical areas [5,

6]. In our analysis, this corresponds to IC4, IC6, IC7, IC8, IC15, IC16, IC29, IC42, IC41. In all

these cases, similar to ADHD, we compared corresponding group level mean weights for

Healthy versus Autism patients. The weights are reduced for autism patients in a total of 51,

57, 50, 57, 53, 53, 52, 53, 52 time points whereas total number of time points is 91. Also these
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differences were significant with (p� 0.05) for 21, 20, 20, 23, 19, 23, 20, 18, 19 of these time

points. IC3 predominantly represents CSF (in ventricles in the brain). Our study shows that

this component does not have much effect between healthy and autistic brains as there is

group level differences (p� 0.05) in only 18 time points—i.e., only 0.2 of the whole time points

of IC3 are significantly different.

As shown in [13], texture based features from fMRI and MRI scans can be predictive of psy-

chiatric diseases. Our model derives the texture based features from MRI and combines them

with resting state information from fMRI to produce a strong predictor.

4.2 Comparison with previous results

Our LEFMSF model performs better than any other known model on both fMRI and MRI/

fMRI features, for two different datasets. However, these models only increase the prediction

accuracy by 1.2% for ADHD (p = 0.909) and 4.2% (p = 0.321) for Autism, compared to the

previous works on ADHD/Autism prediction. There are several possible reasons why its

performance is not yet better: (1) Perhaps the resting state network structures are not signifi-

cantly different between ADHD/Autism patients versus healthy controls. The previous section

showed that almost half of the total number of time points for each spatial component had no

statistical differences between healthy and ADHD/Autism positives.

(2) Although we applied several pre-processing steps to the data before running the

machine learning process, the datasets suffer significantly from variations that depend on the

site. Through our experimentation we observed that the first few principal components among

the fMRI scans account for most site-dependent variations—batch effects. However a model

learned without these first few components loses its predictive quality, indicating that the first

few important principal components are also important in disease classification. We can use

the fMRI ICA features to learn a classifier that is able to predict the site of each subject, with

92% accuracy. This suggest that ADHD/Autism predictability is also interlinked with site-

dependent fMRI scan features—i.e., there are some common features that can predict both the

site and the disease. While these two factors should be decoupled before we can do a true anal-

ysis of ADHD/Autism predictability using fMRI features, our analysis is an important step

towards an automated generalized prediction model for psychiatric disease detection.

5 Conclusion

The development of automatic ADHD/Autism diagnostic algorithms from MRI/fMRI data is

a challenging task. While the current results are not yet clinically relevant, these learning algo-

rithms have found a “signal” in this data, to show that there are differences that can distinguish

between case versus control. These positive results nicely motivate further research directions,

to further improve these results and search for discriminative features for classifying ADHD/

Autism amongst the plethora of voxel values present in structural (MRI) and functional neu-

roimages (fMRI): (1) exploring ways to separate sources based on deep belief networks [41];

(2) exploring yet other modalities (Diffusion Tensor Imaging, Electroencephalogram, etc.); (3)

developing other methods to further reduce “batch effects”—i.e., minimize site-pecific influ-

ences in the data.

In this work, we derived a novel algorithm for combining structural and functional features

using 3-D texture based and independent component analysis of the whole 4-D fMRI scan,

which can then be used to differentiating Healthy vs Psychiatric patients, for two different dis-

eases. We also explored different representation of brain functional connectivity useful for this

classification task. Our results indicate that combining multimodal features (both MRI and

fMRI) yields the best known classification accuracy for distinguish case (ADHD or Autism)

A general prediction model for the detection of ADHD and Autism using structural and functional MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0194856 April 17, 2018 25 / 28

https://doi.org/10.1371/journal.pone.0194856


from healthy controls, which is an important step towards automated computer-aided diagno-

sis of these (and perhaps other) psychiatric diseases.
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