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Abstract

Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the
sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores
have been shown to influence below-ground communities through alterations to plant distribu-
tion and composition, however whether similar cascading effects occur in aquatic systems is
unknown. Here, we assess the relationship between benthic invertebrates and above-ground
fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which
occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae
by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch
reefs. We found that benthic algal canopy height significantly increased with distance from
patch reef, and that algal canopy height was positively correlated with the abundances of only
one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean
sediment particle size (um) demonstrated a positive correlation with Nematoda and Arthropoda
(predominantly copepod) abundances, respectively. These positive correlations indicate that
environmental conditions are a major contributor to benthic invertebrate community distribution,
acting on benthic communities in conjunction with the cascading effects of above-ground algal
grazing. These results suggest that benthic communities, and the ecosystem functions they
perform in this system, may be less responsive to changes in above-ground herbivorous pro-
cesses than those previously studied in terrestrial systems. Understanding how above-ground
organisms, and processes, affect their benthic invertebrate counterparts can shed light on how
changes in aquatic communities may affect ecosystem function in previously unknown ways.

PLOS ONE | https://doi.org/10.1371/journal.pone.0193932 March 7,2018

1/13


https://doi.org/10.1371/journal.pone.0193932
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193932&domain=pdf&date_stamp=2018-03-07
https://doi.org/10.1371/journal.pone.0193932
https://doi.org/10.1371/journal.pone.0193932
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Effects of aquatic grazing on benthic invertebrates

Science Foundation International Postdoctoral
Fellowship awarded to E.M.P.M, and The Marine
and Coastal Carbon Biogeochemistry Cluster. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Introduction

Above-ground ecosystem components and their benthic or below-ground counterparts are
often studied in isolation of one another. However, the biota in these components are intri-
cately connected through a series of complex interactions and processes [1-3]. For example, it
is well known that soil and sediment communities are responsive to changes in the quality and
quantity of organic matter entering their food web. These responses can manifest as shifts in
the soil or sediment community composition, as well as alter the rate at which these communi-
ties perform essential ecosystem processes (e.g., decomposition) [4,5]. Conversely, soil and
sediment communities break down dead organic matter, releasing the essential nutrients that
fuel plant growth and influence plant diversity [6-8]. Thus, studies that explore the linkages
between above-ground and benthic or epibenthic processes are essential for understanding the
mechanisms that drive community and ecosystem dynamics.

In terrestrial ecosystems, the cascading effects of herbivore activities on below-ground com-
munity composition, transmitted through alterations to plant abundance and/or distributions,
have been well documented [2,3,9,10]. These studies demonstrate that above-ground herbi-
vores can alter the community composition of infaunal biota by changing the quantity and/or
quality of resource inputs to soil communities, also likely influencing soil abiotic factors such
as temperature and moisture [1]. These studies have also shown that herbivore-mediated
changes to infauna have implications for nutrient cycling and other ecosystem functions that
lead to feedbacks in the above-ground communities, highlighting some of the effects that
anthropogenic changes to plant-herbivore systems (e.g., through invasive species or species
extirpation) may have on the structure and functioning of terrestrial ecosystems. In contrast,
investigations of trophic cascades in aquatic ecosystems have so far focused on infaunal herbiv-
orous consumption of above- and below-ground biomass (e.g. crabs in tidal marshes) [11,12]
or predator-prey interactions, and their indirect effects on primary producers [13-15,11] and
nutrient cycling [16], while little is currently known regarding the potential indirect effects of
herbivory on benthic invertebrate communities [17].

One potential example of cascading effects being transmitted through grazing herbivores in
aquatic ecosystems is that of marine ‘grazing halos’. Grazing halos, which occur around patch
reefs globally, are caused by the removal of seagrass or macroalgae that results in a distinct
band of unvegetated sediment surrounding a patch reef [18-25]. Although the mechanisms
behind the development of grazing halos are not fully understood, there is evidence that they
develop as a result of differences in spatial patterns of herbivore foraging [22,24,25]. It is fur-
ther hypothesized that this behaviour in herbivores reflects constraints imposed by predation
risk, where herbivores reduce the spatial extent of their grazing to avoid unsheltered, high pre-
dation-risk areas further from patch reef refuges [19,26,27]. Regardless of the ultimate mecha-
nism, this pattern of spatially constrained herbivore grazing results in zones of highly grazed
sandy substrate close to patch reefs, and zones of elevated algal or seagrass biomass with
increasing distance from the reef (Fig 1). This foraging behaviour by herbivores, and the result-
ing pattern in plant biomass, has the potential to influence benthic communities through sev-
eral direct and indirect mechanisms similar to those of terrestrial systems, such as a reduction
in primary producer food availability and therefore benthic invertebrate abundances [7,28],
with flow on effects to secondary benthic consumers [29]. It is important to note that unlike
terrestrial plants that maintain complex root and rhizome structures, aquatic macroalgal beds
do not have true roots, thereby limiting their below-ground biomass, and potentially, their
effects on benthic invertebrate populations. However, due to both the well understood reliance
of benthic invertebrates on macroalgae as a food resource [30-32], and the globally ubiquitous
existence of these spatially structured herbivore grazing patterns in habitats with more
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Fig 1. Effects of grazing on benthic algal distribution in a coral reef lagoon ecosystem. A) Satellite image of algal
halos within Heron Island lagoon. White lines indicate coral patch reefs; green lines indicate the approximate outer
extent of bare sandy substrate (i.e., halos). B) Siganus doliatus, a small reef dwelling herbivore taking shelter in a
tropical coral patch reef, at least partly as an anti-predator response. Although this particular species likely contributes
little to halo formation beyond the reef due to its territorial ‘farming’ habits on the reef itself, the anti-predator
sheltering behaviour it displays here is indicative of reef fishes in general. Predation risk is commonly cited as the
ultimate mechanism leading to the spatially-constrained herbivore grazing patterns around coral patch reefs that lead
to halo formation (photo: A. Harborne). C) Conceptual diagram illustrating how herbivore grazing patterns influence
mean algal density and canopy height.

https://doi.org/10.1371/journal.pone.0193932.g001

complex root structures (e.g. seagrasses) [22,25,26,33], cascading effects of herbivores in graz-
ing halo systems still have the potential to reach benthic invertebrates. To date no study has
looked at how the development of these large-scale, commonly-occurring vegetation patterns
affects the distribution and abundance of benthic invertebrate communities.

To assess if and how the spatial distribution of above-ground grazing affects benthic com-
munities in a ‘natural’” aquatic ecosystem unaffected by human activities (e.g. removal of top
predators), we examined the distribution and community variation in sedimentary inverte-
brates in a series of well-studied algal grazing halos within the lagoon of Heron Island on Aus-
tralia’s Great Barrier Reef (GBR). Heron Island’s lagoonal patch reefs represent an ideal
location to study the effects of herbivory on benthic communities because satellite imagery has
documented the occurrence of grazing halos in the algal beds surrounding these patch reefs in
the lagoon dating back to at least 1999. Additionally, Madin et al. [22] found that algal con-
sumption by herbivores significantly decreased with increasing distance from the patch reef
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concomitantly with algal canopy height increases, demonstrating that herbivory is likely a key
mechanism underlying the occurrence of halos in this system.

To better understand the mechanisms behind benthic invertebrate patterns, we analysed
the relationship between benthic invertebrate community composition and distance from
patch reef edge. We then examined the potential drivers behind the observed patterns in
the benthic communities. First, we investigated whether herbivore-mediated changes in
algal canopy height with increasing distance from the reef edge explain benthic community
composition. We then tested the alternative hypothesis that physicochemical processes
(e.g. hydrodynamics, reef erosion, etc.), unrelated to grazing, could be influencing benthic
communities. For this hypothesis we focused on sediment particle size as interstitial meio-
fauna’s diversity and composition is known to depend highly on sedimentary conditions
[34]. We also investigated the effect of carbon to nitrogen ratios (C:N) in the sediment on
benthic communities, because high productivity and high fish abundance on the patch reef
could cause nutrient availability to be highest adjacent to the reef [35]. This pattern, if it
occurred, would not be reflective of grazing patterns, but rather would reflect nutrients
transported from the patch reef. Our study presents preliminary evidence of aquatic above-
ground cascading effects indirectly affecting specific taxa of benthic invertebrate commu-
nities through algal grazing, discusses the mechanisms through which these effects may be
transmitted, and highlights the areas of research required to further tease apart these
dynamics.

Methods and materials

Study area and survey design

This study was conducted in the shallow waters (< 5 m) of Heron Island lagoon (23°27'S, 151°
55'E) in the southern GBR. All sampling was conducted between November and December,
2014. Heron Island is part of the Capricorn-Bunker Group, a collection of 21 coral reefs within
the Mackay / Capricorn Management Area of the GBR Marine Park. Between November-
December Heron Island has an average maximum temperature of 28.5°C, an average mini-
mum temperature of 22.8°C and an average rainfall of 72.05 mm [36]. Roughly half of Heron
Island’s reefs are within a no-take area of the Marine National Park Zone, while the other half
lie within a limited-use area of the Conservation Park Zone, subject to strict permit issue and
limited forms of recreational fishing [37]. All patch reefs in this study lay within an area of
~0.81 km?, located within the former zone. Benthic invertebrate samples, sediment grain size,
sediment nutrient samples, and algal surveys, were taken three hours prior to, and three hours
after peak high tide. For direct comparison with previous work on Heron Island’s grazing
halos, satellite imagery and GPS coordinates were used to select 14 patch reef sites that were
the same as those of Madin et al. [22].

At each of the 14 patch reefs, a single transect was run from the reef edge to a distance of 30
metres. The longest diameter of each patch reef was of a similar size, averaging 17.8 + 2.3 m.
Transects were placed so as to leave the maximum distance between the end of each transect
and any adjacent patch reefs (72.82 + 18.28 m). A single invertebrate core sample, a single core
sample for grain size and nutrients, and three individual algal surveys were taken at each of the
six distances: 0 m (just off the reef), 3 m, 7.5 m, 15 m, 22 m and 30 m (Fig 1), roughly covering
an equal area along both the inside and outside of the halos. This study was carried out in
accordance with the Great Barrier Reef Marine Park Act (1975) and all protocol was approved
by the Great Barrier Reef Marine Park Authority (Permit numbers: G14/37304.1 & G14/
37182.1). No vertebrate fauna were taken or harmed, and no endangered or protected species
were involved in this study.
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Invertebrate collection and processing

Benthic invertebrates were sampled to 5 cm depth in the sediment using a 4 cm diameter
corer. Surface invertebrates were not separated and as such both epibenthic and infaunal
invertebrates are included in this study. Samples were preserved in sealed plastic bags with 40
ml of 70% ethyl alcohol to reduce organic matter decay. In the laboratory, benthic invertebrate
sediment samples were rinsed through a 250 um mesh sieve to separate finer particles, thereby
decreasing the turbidity of the samples to facilitate increased detection of the organisms. For
community abundance analyses all Polychaeta and Mollusca were classified to family level,
while Nematoda and Arthropoda were identified to phylum. The diversity of each sample was
calculated using the Shannon-Wiener Index [38] in conjunction with the lowest level of each
taxon described above.

Environmental data collection and processing

The canopy height of benthic primary producers, comprising of only Enteromorpha spp. (syno-
nimised now under genus Ulva), Cladophora spp. and Hincksia spp. (a small, fine brown algae),
were recorded at each distance interval by using the average of three measurements taken in
situ with callipers (+ 1 mm error). At each site and distance a second sediment core (5 cm
height, 4 cm diameter) was taken to measure mean particle size and for C:N analysis. Mean
particle size was calculated using a Mastersizer particle size analyser (Malvern Instruments,
Malvern United Kingdom); all samples underwent a two-minute sonication pre-treatment for
increased accuracy of finer particulates [39]. C:N was measured using a Costech Elemental
Analyzer at the University of Hawaii at Hilo’s Marine Analytical Laboratory.

Data analyses

Benthic community data matrices (Bray-Curtis) were square root transformed for increased
homoscedasticity [40]. For multivariate analyses, algal canopy height and mean particle size
were normalised using Z-score transformation to account for differences in sampling units
[41]. To analyse benthic invertebrate community variation, a mixed-effects PERMANOVA
was used with distance from reef and particle size included as fixed terms, and patch reef iden-
tity included as a random factor to account for the multiple samples taken along each transect.
Permutations were set at 9999, and significant factors were identified through step-wise
removal of nonsignificant terms. The PERMDISP (Permutational Analysis of Multivariate Dis-
persions) function was used to determine whether significant PERMANOVA p-values were a
result of variance around or between means. Distance Based Linear Models (DISTLM) were
then used to determine the contribution of environmental covariates algal canopy height and
mean sediment particle size to the overall multivariate assemblage variation [42]. Similarity
Percentages Analyses (SIMPER) using overall community abundances were used to highlight
groups driving any dissimilarity between distances.

Following initial analyses of the whole data set, and based on SIMPER percent contribution,
benthic invertebrate assemblages were divided into their corresponding taxa: Polychaeta,
Nematoda, Mollusca and Arthropoda. Individual groups were then analysed against distance
from reef, algal canopy height, mean particle size and C:N ratio using linear mixed-effects
models (LME) from the “Ime()” function within “nlme” package in R [43], with patch reef
again treated as a random factor. Invertebrate abundance homogeneity of variance at each dis-
tance level was confirmed. A polynomial (quadratic) equation was applied to distance from
patch reef to allow for curvilinear relationships. Due to co-linearity between distance from
patch reef and algal canopy height, where a quadtratic distance term was found to be insignifi-
cant it was removed completely and linear models were re-run [44]. Variables that made
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Plymouth, UK), PERMANOVA+ (Permutational Multivariate Analysis of Variance) and R
3.1.0 [45].

Results
Environmental patterns

Algal canopy height had a significant positive relationship with distance from patch reef
(LME, f (1,67) = 76.631, P < 0.001, Fig 2A), and as such, these variables were not used together
as predictors of benthic abundances through LMEs, and instead the best predictor was selected
through the use of AIC. In contrast, mean surface sediment particle size (um) showed a signifi-
cant linear decrease with distance away from patch reef (LME, f 4, ¢7) = 8.055, P = 0.006, Fig
2B). Sediment C:N did not significantly vary with distance from patch reef (LME, Polynomial
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Fig 2. Linear mixed-effects models showing environmental patterns in the grazing halos of Heron Island lagoon. Patch
reef is treated as a random factor within the model to account for between site dissimilarity. Benthic algal canopy is expressed
as height (mm), * indicates significance. Solid line indicates the predicted LME model fit, and dashed lines represent 95%
confidence interval; N patch reefs sampled = 14.

https://doi.org/10.1371/journal.pone.0193932.g002
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fixed effects, P > 0.05, Fig 2C), and likewise were not found to be significantly associated with
algal canopy height (LME, P > 0.05, Fig 2D).

Invertebrate communities

A total of 4832 benthic invertebrates were identified. Overall, benthic invertebrate commu-
nity composition matrices consisted of 14 groups, made up by arthropods (42%), molluscs
(1.6%), nematodes (31.2%), and 11 groups of polychaetes (25.2%), the latter identified down
to the lowest taxonomic level possible (i.e. family or unknown). Arthropoda consisted pre-
dominantly of harpacticoid copepods while Mollusca of bivalves. Each of these taxa were
recorded as the total abundance within the sediment sample, and the multivariate analyses
used taxa abundances, rather than taxa presence/absence to quantify differences among
communities. Benthic communities significantly varied with distance from patch reef edge
(Pseudo-f (5, 5y = 1.489, P = 0.038). Pair-wise analyses (Student-Newman-Keuls) indicated
significant community changes between distances 3-22 m (SNK, df, 13, t, 1.624, P = 0.022)
and 3-30 m (SNK, df, 13, t, 1.664, P = 0.022), while all other comparisons between distances
indicated multivariate community homogeneity (P > 0.05). However, marginal tests result-
ing from DISTLM analyses indicated that particle size (Pseudo-f=1.078, P = 0.352) and
algal canopy height (Pseudo-f = 1.368, P = 0.205) were not significant contributers to this
overall community variation. A linear-mixed effects model was best fit to invertebrate
diversity (Shannon-Weiner Index) with variables algal canopy height (LME, f (1, ¢s) = 0.268,
P =0.606) and C:N ratios (LME, f (1, ¢s) = 0.918, P = 0.342), showing no significant correla-
tion with either variable.

Community composition data were found to have heterogeneous variances around group
mean values (PERMDISP, f (s, 7s) = 3.48, P = 0.023). This variation in dispersions may have
inflated the risk of type I error in community analyses, however this study retained a well-bal-
anced experimental design, enhancing the robustness of PERMANOVA towards heterogene-
ity [46]. Due to 51% of benthic invertebrate sampling cores containing no molluscs and the
remaining samples averaging an abundance of 1.02 + 0.1, the observed variations in Mollusca
abundances were considered too weak to interpret further through linear mixed-effects
models.

Taxa-specific patterns were analysed to investigate the differences in community composi-
tion with distance from the patch reef and the mechanisms behind these differences. SIMPER
analysis showed the highest contributors to community dissimilarity were the abundances of
Arthropoda (19.81 + 0.48%) followed by Nematoda (14.23 + 0.57%), and Family; Dorvilleidae
(Polychaeta, 12.75 + 0.39%), with the residual dissimilarity attributed to the remaining 12
groups of Polychaeta, and grouped Mollusca (< 10% contribution per group). Linear mixed-
effects models, using grouped invertebrate abundances and AIC model selection, were used to
highlight distribution patterns across grazing halos. Total invertebrate abundances were best
modelled linearly with only distance from reef included, showing a nonsignificant relationship
(LME, f (1, 67y = 1.794, P = 0.185). Polychaeta-specific abundance were non-significantly related
to both algal canopy height (LME, f (;, ¢s) = 0.643, P = 0.4254) and mean sediment particle size
(LME, f (1, ¢6) = 2.137, P = 0.149). Arthropoda abundances exhibited a significant positive rela-
tionship with mean sediment particle size (LME, f (;, ¢5) = 6.070, P = 0.0163, Fig 3A), but a non-
significant relationship with algal canopy height (LME, f 1, ¢) = 3.496, P = 0.066). In contrast,
Nematoda abundances were found to be positively related to algal canopy height (LME, f (1, ¢6) =
5.149, P = 0.027, Fig 3C), though there was increased uncertainty in the model around higher
canopy heights. In addition, Nematoda abundances were significantly greater where higher sedi-
ment C:N was present (LME, f 1, ¢6) = 10.330, P = 0.002, Fig 3B).
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Fig 3. Linear mixed-effects models showing the relationships between grouped taxon abundances and environmental
conditions in the grazing halos of Haron Island Lagoon. Patch reef is treated as a random factor within the model to account
for between site dissimilarity. * indicates significance in the model. Solid line indicates the predicted LME model fit, and
dashed lines represent 95% confidence interval; N patch reefs sampled = 14.

https://doi.org/10.1371/journal.pone.0193932.g003

Discussion

In aquatic ecosystems, benthic community structure is fundamental to both carbon and nutri-
ent cycling at the sediment-water interface [6,8,30,31,47]. Abiotic drivers of benthic communi-
ties have been extensively studied [48-51], however little is known regarding the effects of
above-ground biotic processes, and their possible cascading influence on benthic biota. This
study of grazing halos in Heron Island lagoon demonstrates that the major factors influencing
spatial differences in benthic invertebrates are taxon-dependent. While Nematoda responded
significantly to both spatial differences in algal canopy height and sediment nutrient concen-
trations, Athropoda responded only to sediment particle size and Polychaeta was unaffected
by any of our measured variables.

The only benthic taxon that showed a significant relationship with benthic algae was Nema-
toda, whose abundances were positively related to algal canopy height. This relationship
between algae and Nematoda abundance is likely related to the fact that omnivorous nema-
todes, which have the ability to manipulate and digest large algal particles, have been shown to
make up a large portion of the total Nematoda populations on the reef shelves and lagoons of
the GBR [52]. In addition, marine nematodes are known to display spatial aggregations in
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their abundances [53], which have been suggested to be a result of selective consumption and
settlement in optimal areas [54-56]. For example, experiments by Ullberg and Olafsson [56]
demonstrated that Nematoda suspended in the water column are able to choose settling areas,
displaying a clear preference for sediments with benthic algae, where their abundances were
up to seven times higher than those of bare substrates.

In addition, several physicochemical properties of the sediments can also influence benthic
communities. For example, variation in sediment particle size, largely attributed to physical
weathering of coral structures and hydrological regimes [57,58], is widely accepted as a major
driver of benthic invertebrate abundances in aquatic ecosystems [59-62]. Sediment particle
size shapes benthic biota by creating conditions in which optimal body sizes are required for
both interstitial living and sediment reworking [59], while also affecting sediment water and
nutrient concentration [63], pore water oxygen exchange, and redox environment [64]. All are
fundamental to benthic community structure [65]. In accordance with our hypothesis and pre-
vious literature, mean sediment particle size exerted a positive influence on Arthropoda abun-
dances (predominantly copepods).

Sediment nutrient content (C:N) displayed a taxon-specific positive relationship with ben-
thic communities, specifically Nematoda abundances. One mechanism that can alter nutrient
levels in surface sediments is fish faecal deposition and the transportation of nutrients from
the reef [35,62,66]. As fish reduce their foraging distance, they simultaneously spend an
increased amount of time closer to their patch reef refugia [67], potentially resulting in higher
nutrient concentrations in these areas. Sediment carbon content not only affects the amount
of easily broken down organic matter directly available for benthic invertebrate consumption,
but also promotes differering communities of bacteria (C:N >30:1) and fungi (C:N <30:1),
with flow on effects to bactivorous and fungivorous invertebrates [68]. However, C:N ratios in
the sediments were not significantly related to distance from patch reef or algal canopy height.
These results suggest that the drivers of sediment nutrient content, independent from fish fae-
cal deposition and algal growth, also play a key role in shaping benthic invertebrate abun-
dances in these systems.

Separate from the cascading effects of herbivores through primary producer distribution,
and outside the scope of this study, are the consumptive effects of fish predation on benthic
invertebrate abundances [13]. Invertivorous coral reef fish species are theoretically subject to
the same behavioural pressures as those of their herbivorous neighbours, and as such would
potentially exert direct effects on benthic invertebrate abundances along a distance from patch
reef gradient. These direct effects would likely have a strong influence on the benthic inverte-
brate distributions analysed here. Under this scenario, distance from patch reef could be used
as a proxy for invertivorous fish foraging. However, within this study linear mixed effects
models on grouped invertebrate abundances, with AIC model selection including all covari-
ates, indicated that distance from patch reef should be excluded for greater model fit (apart
from total abundances that showed a nonsignificant relationship with distance). As such, we
can assume that the relationships between algal canopy height and benthic invertebrates
observed here are robust to predatory effects.

The primary goal of this study was to investigate potential cascading influences of above-
ground aquatic grazing, through changes to benthic primary production, on benthic inverte-
brate communities. Our findings suggest that only Nematoda populations responded to differ-
ences in benthic algal canopy height indicating that although present, cascading effects of this
type are a weak driver of benthic communities in this benthic algal dominated system. We also
found that the observed cascading effects exert influence on benthic communities in conjunc-
tion with other well known environmental factors (i.e. sediment particle size and sediment C:
N). These results suggest that in this system, benthic invertebrate communities and the
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ecosystem functions they perform, may be less responsive to changes in above-ground pro-
cesses than those that have been studied in terrestrial systems. Further studies are needed to
understand whether the observed benthic invertebrate community response to above-ground
herbivory found in this study is ubiquitous across both temporal scales (i.e. fluctuations in
algal biomass) and other marine vegetated ecosystems.

Supporting information

S1 File. Invertebrate abundances with distance away from patch coral reef. Excel file that
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