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Abstract

Influenza and respiratory syncytial virus (RSV) cause acute infections of the respiratory

tract. Since the viruses both cause illnesses with similar symptoms, researchers often try

to apply knowledge gleaned from study of one virus to the other virus. This can be an effec-

tive and efficient strategy for understanding viral dynamics or developing treatment strate-

gies, but only if we have a full understanding of the similarities and differences between

the two viruses. This study used mathematical modeling to quantitatively compare the

viral kinetics of in vitro RSV and influenza virus infections. Specifically, we determined

the viral kinetics parameters for RSV A2 and three strains of influenza virus, A/WSN/33

(H1N1), A/Puerto Rico/8/1934 (H1N1), and pandemic H1N1 influenza virus. We found that

RSV viral titer increases at a slower rate and reaches its peak value later than influenza

virus. Our analysis indicated that the slower increase of RSV viral titer is caused by slower

spreading of the virus from one cell to another. These results provide estimates of dynam-

ical differences between influenza virus and RSV and help provide insight into the virus-

host interactions that cause observed differences in the time courses of the two illnesses

in patients.

Introduction

Acute respiratory tract infections with respiratory syncytial virus (RSV) and influenza are lead-

ing causes of respiratory illness [1]. Both infections produce similar symptoms and lead to

serious illness primarily in the young and the elderly [2, 3]. Given these similarities, it can be

useful to compare the viral dynamics of the two viruses in cells because this may help to under-

stand the different viral dynamics in patients, and consequently to translate the knowledge of

treating one illness to help treating the other.

Comparison of the two illnesses began shortly after the discovery of RSV [4]. Until recently,

comparative studies focused on the mortality of the two diseases [5], to understand disease

burden, and on differentiating the symptoms of the two diseases [4, 6–8], in order to assist
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with diagnosis. More recent comparative studies have turned to investigations of differences in

immune response [8–11] in an effort to more fundamentally understand dynamical differ-

ences between the two diseases. Of particular interest is a recent study by Bagga et al. [12] in

which healthy volunteers were inoculated with either influenza virus or RSV and daily viral

loads were measured. A comparison of the viral titer curves noted that RSV showed a longer

incubation period than influenza virus. Influenza virus also appeared to propagate very

quickly, rising from first detection to peak viral titer within 24 h, while RSV grew more slowly,

taking between 24–48 h to reach the peak viral titer. Both of these features lead to a later time

of peak viral titer for RSV than for influenza virus. Since this was a clinical study, with no

observation of the infection at the cellular level, the underlying mechanism for slower RSV

growth was not determined. The authors themselves suggested that a better understanding of

the cellular-level mechanisms causing differences between RSV and influenza virus could help

in the development of antivirals for RSV.

There currently are antivirals for treatment of influenza virus and promising new antivirals

in the pipeline [13, 14]. However, there has historically been less success in development of

antivirals for RSV [15, 16]. A few possible RSV antivirals are being investigated [17–19], but

a better understanding of the similarities and differences between RSV and influenza virus

might allow development of more effective antivirals against both infections.

Mathematical models of viral infections can help us develop a better understanding of dif-

ferences in viral propagation dynamics through a quantitative comparative analysis of viral

kinetics parameters. This type of analysis has previously been done to compare different strains

of influenza virus [20–22]. Influenza viral kinetics models have also helped further our under-

standing of the causes of disease severity [23], the emergence of drug resistance [24, 25], and

intracellular viral replication [26]. While more complex, some attempts have been made to

extend these models to reflect in vivo infections through the inclusion of an immune response

[27–29] or consideration of associated symptoms [25, 30]. In addition, mathematical models

can be used to describe the pharmacodynamic effects of new compounds in a strict quantita-

tive manner [31, 32]. Thus, the combination of viral kinetics and pharmacodynamic models

can help us assess the influence of different mechanisms of actions [26, 33], or the effect of

combination therapies [34].

In this paper, we describe a quantitative comparative analysis of RSV and influenza viral

kinetics. We use data collected from literature of in vitro RSV and influenza virus infections to

extract viral kinetics parameters through fitting with both an empirical and a viral kinetics

model. We then use statistical analysis to determine whether there are significant differences

in viral kinetics between RSV and influenza virus. Our results support the findings of Bagga et.

al. [12] since we find that RSV has a slower growth rate and later time of viral peak than influ-

enza virus in vitro. Our analysis, however, also suggests a possible mechanism for these obser-

vations since we find that the key difference in the dynamics of RSV and influenza virus is that

RSV takes longer to transmit virus from infectious cells to healthy cells.

Materials and methods

Models

We use two models to characterize both RSV and influenza virus in vitro infections. The first

model is an empirical description of the viral time course, first presented by Holder and Beau-

chemin in 2011 [35]. While this model does not give insight into the underlying dynamics of

the infection, it allows for a quantitative comparison of viral titer characteristics between

RSV influenza comparison
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influenza virus and RSV. The model is given by the equation

VðtÞ ¼
2Vp

exp ½� lgðt � tpÞ� þ exp ½ldðt � tpÞ�
; ð1Þ

where λg and λd are the exponential growth and decay rates, respectively, Vp is the peak viral

titer, and tp is the time of viral titer peak. Note that the growth and decay rates here refer to

growth and decay in the number of viral particles. This simple functional form has only four

independent parameters, making parameter identifiability simpler than for a kinetic model

of viral infection. For this model, four data points are required, with at least two data points

required during the growth phase and at least two required during the decay phase to identify

the parameters.

The second model we will use is a viral kinetics model. The model is an extension of the

basic viral infection model for influenza virus described in [36],
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In the model, pictured in Fig 1, target cells, T, become infected at rate β when they encounter

virus, V. Upon infection, the cells enter an eclipse state, E, where they are infected, but not yet

producing virus. After an average time τE, the cells transition to a productively infectious state,

I, where they are producing virus at rate p. After an average time τI, the infected cells die. Virus

loses infectivity at a rate c. Since our model does not explicitly include an adaptive immune

response, the value of c will also reflect the contribution of the in vitro innate response in

Fig 1. Viral kinetics model. The virus, V, attacks target cells, T, at rate β. Once infected, target cells enter the eclipse

phase, E. The eclipse phase lasts an average time of τE, after which the cells become infectious cells, I. The infectious

cells produce new virions at rate p, and the virus decays at rate c. The cells remain infectious for an average time of τI,

after which they die.

https://doi.org/10.1371/journal.pone.0192645.g001
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clearing the virus. Studies indicate, however, that in vitro loss of viral infectivity for influenza

virus is primarily due to degradation of the virus rather than the effect of an immune response

[20, 37]. This model assumes a gamma distribution, represented by the multiple compartments

for E and I, for the transition times between the eclipse state and the infectious state, as well as

for the transition times between the infectious and dead cells. The number of compartments

in the eclipse state is given by nE while the number of compartments in the infectious state is

given by nI. Gamma-distributed models of viral kinetics have previously been used to study

influenza virus infections [20, 21], as well as SHIV infections [38]. This model has more

parameters than the empirical model, some of which cannot be identified with viral titer data

alone [20, 39].

Data selection criteria

The literature was searched for data of in vitro RSV and influenza virus infections. Only data

from studies with a reported multiplicity of infection (MOI) of less than one, were used. We

further required that the studies measure released virus or virus in the supernatent rather than

cell-associated virus. A third requirement was that the experimental data contained at least

two data points during the growth phase of the infection and two data points during the decay

phase of the infection, so that parameters from both phases of the infection could be estimated.

For RSV data, all data sets use the A2 strain of RSV, but since there is wide variation in the

cell lines used for infections, only studies that used cells of human origin were included. For

influenza virus, data was limited to the following common experimental strains: A/WSN/33

(H1N1), which was denoted WSN33; the H1N1 pandemic strain, which was denoted pH1N1;

and A/Puerto Rico/8/1934 (H1N1), which was denoted PR8. For influenza virus, experiments

performed in Madin-Darby canine kidney (MDCK) cells were selected, since this is the most

common experimental substrate for influenza virus experiments. In addition, a number of in

vitro experiments of WSN33 infections in Madin-Darby bovine kidney (MDBK) cells were

included in our study, which were used to examine the effect of cell type on viral kinetics

parameters.

Fitting algorithms

The model was fitted to in vitro viral RSV and influenza virus experimental data in order to

obtain the parameter value estimates for each virus. We determined the best fit by minimizing

the sum of squared residuals (SSR),

SSR ¼
Xn

i¼1

ðyi � f ðtiÞÞ
2
; ð3Þ

where n is the number of experimental data points, yi are the values of the experimental data

points, and f(ti) are the model predictions at the times when experimental data were measured.

A small SSR indicates a tight fit of the model to the experimental data. In order to better compare

fits of the models between different data sets, we also calculated the root mean squared error,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SSR

n � N

r

; ð4Þ

where n is again the number of data points and N is the number of free parameters in the model.
ffiffiffiffiffiffiffiffiffiffi
MSE
p

corrects for differences in number of data points between different data sets, providing a

more standardized measure of goodness of fit. Note that
ffiffiffiffiffiffiffiffiffiffi
MSE
p

does not exist if the number of

data points is less than the number of parameters n< N.
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We used the fmincon algorithm in Matlab to find the minimum SSR for both the empiri-

cal and viral kinetics models. For the empirical model, no constraints were used in the fitting

process. For the viral kinetics model, we fixed the initial number of target cells to T0 = 1 and

assumed that the infection was started with an unknown (to be fitted) initial viral inoculum,

assuming that there are initially no cells in any of the eclipse or infectious compartments. We

know that some parameters are not identifiable for this model [20, 39], so we fixed the number

of compartments in both the eclipse and infectious phases, nI = nE = 60, and set bounds on the

searched parameter space as follows: 10–1010 /h for p; 10−10–10 /h for β; 10−4–10 /h for c; 2–72

h for τI; 1–48 h for τE; 10−7–1016 for V0. Note that the bounds are quite large and are meant to

eliminate the possibility of finding biologically unrealistic parameter values.

Viral kinetics parameters

It is difficult to compare parameter estimates from different experiments since the units of

viral titer depend on the assay used to determine the viral titer, as well as viral extraction and

amplification methods [21]. There is no universal standard viral titer unit, making comparison

of parameters such as p and β irrelevant. Therefore, we focused on parameters which have a

universal standardized unit. In addition to the mean duration of the eclipse phase τE and the

mean duration of the infectious phase τI, the infecting time, tinf ¼
ffiffiffiffiffiffiffiffiffiffi
2=pb

p
, [35], which is the

average time between release of a virion from an infectious cell and infection of another cell,

was calculated. The infecting time can be derived directly from the viral kinetics model equa-

tions as follows. We assume that we have a single infected cell and that viral degradation is neg-

ligible during this short time frame, so the viral equation becomes

dV
dt
¼ p:

This is easily integrated to give

VðtÞ ¼ pt:

Since we are interested in counting cells entering the eclipse phase, and not those leaving, the

equation for eclipse cells becomes

dE
dt
¼

b

N
VT:

Substituting our result for V into this equation and assuming that T� N, the differential equa-

tion for E becomes

dE
dt
¼ bpt:

The infecting time is the time at which a single new cell is infected, so we integrate E from 0 to

1 and t from 0 to tinf,

1 ¼ bp
t2

inf

2
;

or solving for infecting time,

tinf ¼

ffiffiffiffiffi
2

pb

r

:
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Statistical analysis

In order to identify statistically significant differences in parameters between relevant groups,

we performed a Mann-Whitney (Wilcoxon rank-sum) test. We use the Mann-Whitney test

since we cannot assume normal distributions for the parameters as is required for other statis-

tical tests. When distributions are continuous, as they are in our case, the Mann-Whitney test

can be interpreted as determining whether there is a significant difference in the medians of

the two distributions. In our analysis, the Mann-Whitney test was used to determine whether

the median of a given parameter obtained by fitting one set of data (RSV, for example) was

equal to that obtained by fitting another set of data (one of the flu data sets).

Results

Comparison of RSV and influenza virus

We searched the literature and collected 36 data sets of experimental infections that satisfied

the requirements outlined in the Methods section. A summary of the data sets used in this

study is given in Table 1. The data sets are shown, in groups, in Fig 2. The RSV data sets were

fairly consistent, showing similar growth rates and time of peak viral titer (Fig 2a). The pH1N1

data sets also showed similar growth rates, but seemed to vary in their time and extent of

peak viral titer (Fig 2b). Moreover, most data sets showed a plateau of the viral titer probably

because all cells in the cultures were infected at the moment peak viral titer was reached. The

PR8 data sets seem to have the fastest growth, with the exception of one of the Schulze-Horsel

data sets (Fig 2c). The WSN in MDCK data sets also show similar growth rates, although the

peak viral titer varies. (Fig 2d). The variation in peak viral titer is somewhat less when WSN

infects MDBK cells, although there seems to be more variation in the growth rate of WSN in

MDBK cells (Fig 2e).

Since the empirical model helps to quantitatively describe the temporal course of viral titer,

we first fitted all the selected RSV and influenza virus data sets to this model (Fig 3). The analy-

sis demonstrated that the median growth rate for RSV is 0.18 IU/h, while for different influ-

enza virus strains this is significantly faster, ranging from 0.51 to 0.62 IU/h (Table 2, Fig 4),

meaning that influenza viral titer grows about three times more rapidly than RSV viral titer.

The median decay rate for RSV was calculated to be 0.023 IU/h and was found to be similar

for the different influenza virus strains (0.029 IU/h − 0.057 IU/h) (Table 2, Fig 4). Our data

analysis demonstrates that infections with different influenza virus strains reach time of peak

viral titer about one day earlier than RSV.

Next, data from the same set of studies were analysed by the viral kinetics model to obtain

some insight into the processes governing the viral life cycle (Table 3 & Fig 3). With this analy-

sis, we estimated tinf, the time between release of a virus from one cell and infection of the next

cell; c, the degradation rate; τI, the duration of the infectious phase; and τE, the duration of the

eclipse phase. We determined that the median tinf for RSV of 3.00 h is considerably longer

than for influenza virus (Tables 3 & 4, Fig 5). Degradation rates appear to be similar for RSV

and different influenza virus strains with median values ranging from 0.030 IU/h to 0.045 IU/

h. These values are similar to the values found for the decay rate using the empirical model.

The median duration of the infectious phase for RSV is 11.8 h, which is longer than the 3 to 4

h median values found for the influenza virus data sets. Finally, the median duration of the

eclipse phase for RSV (6.38 h) is also longer than the median duration found for the influenza

virus data sets (between 1.1 and 2.7 h). Combined, these data can be used to model the time

course of RSV and different influenza virus strains (Fig 6a), and they explain why RSV reaches

peak viral titer later than influenza virus (Fig 6b).

RSV influenza comparison
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Comparison of different influenza virus strains

Since we determined viral kinetics parameters for several different strains of influenza virus,

influenza virus strains can be compared. Our analysis demonstrates that the estimated

Table 1. Data sets used in this study.

Paper Figure� Cell type Number of data points MOI

RSV

Bermingham (1999) [40] 4B HEp-2 9 0.01

Brock (2003) [41] 1B HEp-2 6 0.25

Liesman (2014) [42] 1C HAE 9 1

Marquez (1967) [43] 2 HEp-2 8 0.01

Shahrabadi (1988) [44] 2A HEp-2 6 0.1

Straub (2011) [45] 2A A549 6 0.1

Villenave (2011) [46] 4A (A2 strain) PBEC 5 0.1

Villenave (2012) [47] 1A (A2 strain) WD-PBEC 7 0.1

pH1N1

Duan (2010) [48] 1C MDCK 6 0.001

Kaminski (2013) [49] 2A MDCK 5 0.001

Le Goff (2012) [50] 4 MDCK 6 0.001

Pinilla (2012) [20] 2A MDCK 12 5 × 10−5

Paradis (2015) [21] 1A MDCK 12 5 × 10−5

PR8

Cubitt (1997) [51] 3B MDCK 4 0.5

De Baets (2013) [52] 1E MDCK 7 0.001

Li (2010) [53] 2B MDCK 6 0.001

Schulze-Horsel (2009) [54] 3A MDCK 13 0.025

Schulze-Horsel (2009) [54] 3B MDCK 14 0.025

Yamada (2012) [55] 2 MDCK 5 0.001

Yen (2007) [56] 1D MDCK 5 1 × 10−4

WSN33 MDCK

Baz (2010) [57] 1B MDCK 5 0.001

Cheung (2005) [58] 3B MDCK 5 0.01

Chiang (2008) [59] 7A MDCK 6 0.001

Das (2012) [60] 1D MDCK 6 0.001

Grantham (2009) [61] 1B MDCK 5 0.001

Muramoto (2013) [62] 3 MDCK 7 5 × 10−4

Ran (2013) [63] 2 MDCK 6 0.001

Tauber (2012) [64] 3 MDCK 5 0.001

Watanabe (2003) [65] 6 MDCK 8 0.001

Wu (2008) [66] 1B MDCK 8 0.001

Yamada (2012) [55] 2 MDCK 4 0.001

WSN33 MDBK

Fodor (1998) [67] 2 MDBK 6 0.01

Goto (2001) [68] 1 MDBK 5 1 × 10−4

Sun (2010) [69] 2B MDBK 7 0.01

Wang (2002) [70] 1B MDBK 7 0.001

Zheng (1996) [71] 6 MDBK 6 0.001

� Refers to the figure numbers in the original paper.

https://doi.org/10.1371/journal.pone.0192645.t001
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parameters for different strains of influenza virus are quite consistent. We found no statisti-

cally significant differences between the parameters of the different influenza virus strains

except that the median duration of the pH1N1 eclipse phase is lower than the median eclipse

phase of PR8 (Fig 5). Given the recent finding that viral kinetics parameter estimates can vary

substantially between experiments using the same strain in the same cell line [21], we see a

remarkably good consistency in parameter estimates from different strains of influenza virus

extracted from different experiments.

The effect of cell type

Because it is well-known that the host cell line may have a major influence on the propagation

of a virus infection [72–74], we investigated this effect by analysing the data of influenza virus

studies in MDCK and MDBK cells. Our analysis demonstrated that the parameter values for

WSN33 in either cell type are likely from the same distributions, suggesting that there is little

difference between influenza virus infections in either MDCK or MDBK cells.

Fig 2. Study data. In vitro RSV and influenza virus infection data used in this study.

https://doi.org/10.1371/journal.pone.0192645.g002
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Fig 3. Empirical and viral kinetics model fits. We fit both the empirical model (Eq (1)) and the viral kinetics model

(Eq (2)) to each of the RSV and influenza virus viral time courses. The best fit curves are shown in Fig 3 where the red

dashed line represents the best fit empirical model and the blue solid line represents the best fit viral kinetics model.

The extracted parameter values are presented in Table 2 for the empirical model and in Table 3 for the viral kinetics

model.

https://doi.org/10.1371/journal.pone.0192645.g003

RSV influenza comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0192645 February 8, 2018 9 / 24

https://doi.org/10.1371/journal.pone.0192645.g003
https://doi.org/10.1371/journal.pone.0192645


Table 2. Estimated parameter values for the empirical model (Eq (1)).

Data Vp λg (IU/h) λd (IU/h) tp (h) SSR
ffiffiffiffiffiffiffiffiffiffi
MSE
p

Bermingham 4.91 × 106 0.21 0.0081 59.4 0.194 0.20

Brock 4.71 × 105 0.17 0.027 76.2 0.433 0.47

Liesman 2.72 × 106 0.15 0.036 57.9 0.398 0.28

Marquez 2.67 × 105 0.20 0.048 54.8 0.156 0.20

Shahrabadi 5.19 × 105 0.17 0.030 74.9 0.716 0.60

Straub 1.84 × 104 0.14 0.0027 54.9 0.057 0.17

Villenave 2011 1.45 × 106 0.19 0.019 53.1 0.003 0.055

Villenave 2012 8.15 × 104 0.14 0.016 72.8 0.182 0.25

RSV median 3.93 × 105 0.18 0.023 56.4 0.169 0.23

Duan 3.59 × 107 0.49 0.036 25.9 0.36 0.42

Kaminski 3.30 × 106 0.51 0.017 36.2 1.05 × 10−04 0.010

LeGoff 9.38 × 105 0.61 0.020 21.3 0.015 0.087

Paradis 1.06 × 108 0.52 0.08 39.2 2.34 0.54

Pinilla 3.19 × 1010 0.63 0.11 41.8 2.79 0.59

pH1N1 median 3.59 × 107 0.52 0.036 36.2 0.36 0.42

Cubitt� 3.26 × 107 0.67 0.016 16.0 1.04 × 10−12 –

de Baets 1.80 × 106 0.59 0.071 28.0 0.97 0.57

Li 4.53 × 108 0.88 0.06 18.0 0.015 0.087

Schulze 3a 7.68 × 104 0.093 0.084 28.0 1.18 0.36

Schulze 3b 2.91 × 108 0.62 0.057 18.9 1.58 0.40

Yamada 6.69 × 107 0.36 0.028 38.7 2.1 × 10−4 0.014

Yen 3.44 × 107 0.70 0.0054 30.2 0.031 0.18

PR8 median 3.44 × 107 0.62 0.057 28.0 0.031 0.27

Baz 1.98 × 107 0.80 0.04 20.5 0.15 0.39

Cheung 3.50 × 108 0.35 0.052 34.2 2.7 × 10−4 0.016

Chiang 3.02 × 106 0.59 0.034 30.1 0.13 0.25

Das 1.28 × 108 0.61 0.067 28.5 0.092 0.21

Grantham 3.66 × 108 0.35 0.25 43.1 1.9 1.4

Muramoto 2.19 × 108 1.61 0.013 21.4 0.074 0.16

Ran 5.87 × 107 0.55 0.06 29.7 0.13 0.25

Tauber 4.11 × 108 1.37 8.9 × 10−3 19.7 0.045 0.21

Watanabe 2.20 × 108 0.68 0.094 32.4 0.026 0.080

Wu 5.85 × 107 0.42 0.062 33.0 1.5 0.62

Yamada� 3.24 × 108 0.72 0.016 31.6 1.0 × 10−12 –

WSN33 MDCK median 2.19 × 108 0.61 0.052 30.1 0.092 0.23

Fodor 7.86 × 107 0.60 -0.01 33.4 0.026 0.11

Goto 7.14 × 107 0.51 0.029 37.6 0.11 0.33

Sun 4.00 × 106 0.92 0.016 17.4 0.16 0.23

Wang 1.94 × 107 0.50 0.044 44.4 0.20 0.62

Zheng 3.28 × 108 0.29 0.011 49.2 0.16 0.28

WSN33 MDBK median 7.14 × 107 0.51 0.029 37.6 0.16 0.28

� indicates data sets with only 4 data points where
ffiffiffiffiffiffiffiffiffiffi
MSE
p

is undefined.

https://doi.org/10.1371/journal.pone.0192645.t002
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Fig 4. Comparison of empirical model parameters. Graphs show the distributions of (a) growth rate, (b) decay rate,

(c) time to peak viral titer estimated from fits of the empirical model for RSV and the different strains of influenza

virus. Statistically significant differences (p< 0.05) between RSV and a particular influenza virus strain are indicated

with an asterisk. The p-values for the Mann-Whitney test are given in Table 4. Median values are indicated with a solid

black line.

https://doi.org/10.1371/journal.pone.0192645.g004
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Table 3. Estimated parameter values for the viral kinetics model (Eq (2)).

Data tinf (h) c (IU/h) τI (h) τE (h) SSR
ffiffiffiffiffiffiffiffiffiffi
MSE
p

Bermingham 2.90 0.018 6.03 6.84 0.734 0.49

Brock� 0.753 0.033 20.0 24.1 0.268 –

Liesman 8.49 0.037 14.3 1.12 0.645 0.47

Marquez 1.28 0.045 9.27 13.3 0.508 0.50

Shahrabadi� 3.57 0.024 4.57 6.01 0.710 –

Straub� 3.58 0.026 66.8 6.74 0.037 –

Villenave 2011� 3.09 0.027 17.0 4.75 0.310 –

Villenave 2012 4.70 0.037 2.00 1.03 0.984 0.99

RSV median 3.33 0.030 11.8 6.38 0.576 0.50

Duan� 1.64 0.031 4.04 1.07 0.437 –

Kaminski� 0.589 0.019 6.74 5.06 0.164 –

LeGoff� 1.22 0.020 4.07 1.12 0.018 –

Paradis 1.70 0.045 4.65 1.36 3.14 0.72

Pinilla 1.36 0.045 2.15 1.05 6.07 1.0

pH1N1 median 1.36 0.031 4.07 1.12 0.437 0.86

Cubitt� 0.818 0.017 4.47 2.26 0.057 –

de Baets 0.374 0.045 2.03 5.75 0.760 0.87

Li� 0.397 0.045 2.36 2.74 0.074 –

Schulze 3a 4.49 0.045 12.2 6.88 0.740 0.33

Schulze 3b 0.867 0.045 2.73 2.04 1.84 0.48

Yamada� 0.636 0.030 4.89 13.7 1.06 –

Yen� 1.11 0.015 4.48 1.64 0.038 –

PR8 median 0.818 0.045 4.47 2.74 0.740 0.48

Baz� 0.996 0.037 2.18 1.04 0.154 –

Cheung� 1.47 0.045 2.88 4.52 0.125 –

Chiang� 0.538 0.045 9.15 5.78 0.245 –

Das� 0.718 0.045 5.17 3.31 0.040 –

Grantham� 1.64 0.030 19.4 4.08 3.78 –

Muramoto 0.482 0.020 2.78 1.01 0.854 0.92

Ran� 0.474 0.045 4.69 5.68 0.204 –

Tauber� 0.449 0.017 2.79 1.28 0.054 –

Watanabe 1.53 0.045 2.35 1.04 1.38 0.83

Wu 1.59 0.045 3.04 2.39 0.885 0.66

Yamada� 1.72 0.016 3.54 1.22 0.001 –

WSN33 MDCK median 0.996 0.045 3.04 2.39 0.204 0.83

Fodor� 1.53 0.015 13.8 1.81 0.088 –

Goto� 0.326 0.034 6.01 6.71 0.603 –

Sun 0.663 0.022 2.72 1.60 0.272 0.52

Wang 0.777 0.045 3.02 4.53 0.199 0.47

Zheng� 2.15 0.045 2.16 2.29 0.246 –

WSN33 MDBK median 0.777 0.034 3.02 2.29 0.246 0.50

� indicates data sets with 6 or less data points where
ffiffiffiffiffiffiffiffiffiffi
MSE
p

is undefined.

https://doi.org/10.1371/journal.pone.0192645.t003
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Discussion

Causes of the slower growth of RSV

This paper quantitatively examines the differences between in vitro RSV and influenza virus

infection experiments. We found that RSV has a statistically significantly slower growth rate

and later time to reach viral titer peak than influenza virus. While this was previously observed

clinically [12], our study indicates that there are similar differences in vitro. Our use of a viral

Table 4. Results of the Mann-Whitney tests (p-values).

λg λd tp tinf τI τE c

Comparing RSV and influenza virus strains

pH1N1 0.0034 0.19 0.013 0.047 0.079 0.079 0.83

PR8 0.021 0.16 0.0018 0.028 0.049 0.64 0.52

WSN33 MDCK 2.8 × 10−4 0.058 3.8 × 10−4 0.0064 0.048 0.058 0.32

WSN33 MDBK 0.0034 0.56 0.013 0.0228 0.11 0.24 0.94

Comparing different influenza virus strains

pH1N1/ PR8 0.46 0.68 0.17 0.17 0.94 0.028 0.87

pH1N1/ WSN33 0.40 0.87 0.40 0.40 0.77 0.61 0.69

PR8 / WSN33 0.75 0.89 0.13 0.50 0.82 0.19 0.89

Comparing the effect of cell type

MDCK / MDBK 0.40 0.46 0.13 0.95 0.87 0.40 0.46

https://doi.org/10.1371/journal.pone.0192645.t004

Fig 5. Comparison of viral kinetics parameters. Graphs show the distributions of (a) infecting time (tinf), (b) duration

of the infectious phase (τI), (c) duration of the eclipse phase (τE), and (d) degradation rate (c) estimated from fits of the

gamma model for RSV and the different strains of influenza virus. Statistically significant differences (p< 0.05)

between RSV and a particular influenza virus strain are indicated with an asterisk. The p-values for the Mann-Whitney

test are given in Table 4. Median values are indicated with a solid black line.

https://doi.org/10.1371/journal.pone.0192645.g005
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kinetics model also allowed examination of possible mechanisms for this observed difference.

This analysis determined that RSV has a significantly longer infecting time (tinf) than influenza

virus, providing a possible dynamical explanation for the observed slower growth rate. Since

RSV takes longer to spread from an infectious cell to a new target cell, this will lead to an over-

all slower growth rate. While not statistically significant, the duration of the eclipse phase

was also longer in RSV than in flu, which could also contribute to the slower growth of RSV.

Finally, we found that RSV has a longer infectious lifespan than PR8 or WSN33 in MDCK

cells, which could contribute to the longer propagation of RSV infection.

Our findings help explain some observations made during the in vivo comparison of influ-

enza virus and RSV infections [12]. The slower growth rate and delayed time of peak titer in

vivo are mirrored by a slower growth rate and delayed time to reach peak viral titer in vitro,

suggesting that these features are not due to adaptive immune interactions of either virus, but

are most likely a consequence of virus-cell interactions. Note that time of peak is known to

depend on the initial viral inoculum [75], with lower MOI leading to a later time of peak. The

influenza virus data used in this study uses a lower MOI than RSV, suggesting that the differ-

ence in time of peak viral titer would be greater if both infections were initiated with the same

inoculum.

There are two fundamental processes included in the infecting time, movement of the virus

from its originating cell to a new target cell and entry of the virus into the new target cell.

While new imaging modalities allow tracking of virus particles during an infection [76–78],

they have largely been used to track virions after they enter a target cell. One study, however,

examined motion of swine influenza virus in porcine respiratory mucus finding that most of

the virions (*70%) were immobilized in mucus, but the remaining 30% that traveled, moved

through diffusion [79]. Thus comparison of diffusion coefficients might give an estimate of

which virus is likely to travel between cells faster. RSV is twice as big as influenza virus (120–

220 nm [80] versus 80–120 nm [81]), so we expect influenza virus to have a larger diffusion

coefficient simply due to its smaller size. Note that other factors in the microenvironment of

the virus, such as temperature and viscosity of the surrounding fluid, will also affect the diffu-

sion coefficient as described by the Stokes-Einstein equation [82]. However, differences in

temperature and viscosity in the in vitro environments of RSV and influenza virus are smaller

than the difference in their size, so size is the most likely contributor to differences in the diffu-

sion coefficient.

While differences in diffusion coefficient might play a role in increasing infecting time in

vitro, influenza virus is known to be pleomorphic, with spherical forms dominating lab strains

of the virus and filamentous forms more ubiquitous in vivo [83, 84]. The diffusion coefficient

Fig 6. Differences in infection time course. (a) Predicted time courses of RSV, pH1N1, PR8, WSN33 MDCK, and

WSN33 MDBK using the median values (Table 3) for each of the parameters in the viral kinetics model (Eq (2)). (b) A

schematic diagram of the duration of different phases (using median values) of the viral replication cycle for RSV, pH1N1,

PR8, WSN33 MDCK, and WSN33 MDBK.

https://doi.org/10.1371/journal.pone.0192645.g006
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of rods is less than that of spheres [85], possibly equalizing the diffusion rates of RSV and influ-

enza virus in vivo. Additionally, motion of influenza virus is known to be affected by neur-

aminidase activity [79, 86, 87] which is altered as influenza virus changes from spherical to

filamentous morphology [88]. Influenza virus binds to sialic acids found on mucins, prevent-

ing it from moving. These bonds are broken by neuraminidase, allowing influenza virus to

return to its normal motion. Thus the more neuraminidase activity, the faster influenza virus

will move through its surroundings.

The infecting time also includes entry of the virus into a new target cell. For influenza virus,

the time for initial fusion of the hemagglutinin protein to the viral membrane is approximately

20–30 s with full pore formation occurring 10–30 s later [89–91], but similar measurements

have not yet been made for RSV. While we are lacking some measurements of the duration of

processes that contribute to the infecting time, the difference in diffusion coefficients between

RSV and influenza virus could partially explain the differences in infecting times measured in

this study. More detailed measurements of the time needed for RSV to enter a host cell,

together with studies of intercellular virion motion are needed to form a complete picture of

the mechanisms leading to the observed differences in infecting time.

Other differences between RSV and influenza virus

There are a number of key differences in the life cycles of RSV and influenza virus that could

also contribute to the differences we have found. An important biological difference between

influenza virus and RSV is RSV’s ability to form syncytia [92–94], although syncytia are much

less observed in vivo than in vitro [93]. This feature is not explicitly included in our model, so

its effect will be implicitly contained in the estimated values of the parameters. The effect of the

syncytia is, in part, to alter the mode of transmission of virus, allowing them to move directly

from cell to cell [95]. Differences in mode of transmission of the virus could also affect the

observed infecting time.

Influenza virus and RSV also target different cells in the respiratory tract. RSV primarily

targets ciliated cells in the bronchiolar and alveolar epithelium [47, 96–98], while human

strains of influenza virus target primarily the non-ciliated cells [99]. These differences in cell

tropism are caused by underlying differences in the distributions of receptors responsible for

attachment for each of these viruses [100]. While cell type will not directly affect the time it

takes for virions to move from one cell to another, it could alter the time it takes for a virion to

attach to and fuse with the cell membrane, which would alter the infecting time. Additionally,

the density of different cell types varies in the respiratory tract with studies indicating that the

epithelium of the upper airway comprises 50–85% nonciliated cells [101, 102]. This means that

the primary target cells for influenza virus are likely closer together than the primary target

cells for RSV which would also lead to a lower infecting time for influenza virus. Interestingly,

phases of the RSV and influenza virus life cycle that seem to be more dependent on cell type,

such as the duration of the eclipse or infectious phases, are not consistently different between

RSV and influenza virus. More complex models that include intracellular processes would aid

to differentiate between RSV and influenza virus, but more detailed data is needed to accu-

rately describe these processes [26, 103, 104].

Not only do influenza virus and RSV differ in the cells they target, but their cytopathic

effects differ. A number of studies have noted that RSV has little cytopathic effect [97, 98, 105]

in vitro, although in vivo columnar cell cytopathology and shedding of cellular debris seems to

be a cause of bronchiolitis in young children [106]. Influenza virus, on the other hand, seems

to be highly pathogenic in cells of the respiratory tract [107, 108]. Differences in cytopathology

would likely manifest themselves in model parameters characterizing later stages of the
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infection cycle such as the duration of the infectious phase. We do see some statistically signifi-

cant differences in duration of the infectious phase between RSV and influenza virus, although

it is not consistent across all strains of influenza virus.

In humans, unlike in vitro systems where there are static and limited innate immune

responses (IR) present, the complex cellular, adapted and innate IRs in vivo could also lead

to differences in infection dynamics between RSV and influenza virus. Several differences in

the immune responses to influenza virus and RSV have already been observed. In vitro,

experimental infection of A549 cells with either virus showed similar type I IFN responses

[9]. However, experimental infection of lymphocytes and macrophages with either virus has

resulted in different IFN responses [109, 110], and different interleukin responses [111, 112].

Differences between the immune response to RSV and influenza in vivo have also been

observed such as differences in which cytokines are secreted [10], in the interferon response

[9, 113], in the activation and proliferation of lymphocytes [114], and in the movement

of dendritic cells and monocytes to the respiratory tract [11]. These different immune

responses, particularly differences in the early innate immune response, could contribute to

the observed differences in growth rate and time of peak. The extent to which immunological

differences alter dynamics between the two diseases is something that needs further investi-

gation, using experiments in the same cell line in vitro and animal models for direct compar-

ison of the two infections.

Limitations of the data

The data used in this analysis was collected from a variety of previously published experiments

and so lacks consistency. It is known that viral kinetics parameters can vary substantially

between experiments, even when the same virus and cell line is used and the experiment is

done in the same lab [21], so our use of data from experiments done in different labs is not

ideal. For example, the RSV experiments collected here are performed in different cell types.

While our comparison of WSN33 viral kinetics parameters in MDCK and MDBK cells sug-

gests that there is little change in our parameter estimates when cell type changes, other experi-

ments have seen very different dynamics using other strains of influenza virus in these two

types of cells [72–74]. Further experiments with influenza virus in other cell lines are needed

to properly assess the effect of cell type. We also need to be careful in extrapolating these results

to RSV where virus-cell interactions are different and might be more sensitive to changes in

cell type. Experiments directly comparing the viral kinetics of RSV in different cell lines would

allow us to determine how much using data from different cell lines has contributed to the var-

iability of our measurements. To perform a fair comparison of RSV and influenza virus, we

would ideally like to have data from infections of both viruses in the same type of cells. Since

many influenza virus in vitro experiments are performed in MDCK cells, experimental infec-

tion of these cells with RSV would allow for a good comparison of viral kinetics parameters.

RSV is known to infect MDCK cells [115–118], so this would provide a consistent substrate

for comparing influenza virus and RSV.

Our use of data from specific RSV and influenza virus strains might not be reflective for all

strains. It is known that the RSV A2 strain differs in viral load and pathology from other RSV

strains [119, 120]. It is also demonstrated that variations in the amino acid sequence of enve-

lope proteins may contribute to differences in infection time. It has been shown for instance

that drug-induced mutations in RSV F seem to result in differences in viral infection rate [121,

122]. Moreover, two studies investigating the fitness of an influenza virus drug-resistant strain

demonstrated that although the strain seemed to display equal fitness as compared to the wild-

type strain, the mutation caused subtle differences in the viral kinetics, lengthening one phase
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but shortening another, such that the net effect is that there is little discernible difference in

the viral titers of the two influenza virus strains [20, 21].

A further limitation of this study is the limited amount of information in each individual

data set. While several of the viral kinetics parameters have been previously estimated for in

vitro influenza virus infections, some of our values do not agree well with these estimates. The

infecting time was estimated to be 0.08–1.5 h in several different in vitro experiments using dif-

ferent influenza virus strains [20, 37, 123, 124]. Our median estimates all lie within this range.

Previous estimates of the duration of the eclipse phase obtained in vitro range from 4–11 h [20,

21, 35, 123, 125, 126]. Our median estimates are quite a bit shorter than previous results. The

duration of the infectious phase for influenza virus has also been measured before, with esti-

mates ranging from 10.5–49 h [20, 21, 35, 37], which are again longer than our median esti-

mates for τI. This discrepancy is likely due to identifiability issues particularly for the viral

kinetics model. For the empirical model, which has four free parameters, two of the data sets

only had four data points, limiting the reliability of the parameter estimates. The situation is

even worse for the viral kinetics model, which has six free parameters. In this case, 22 of the 36

data sets used here had 6 or fewer data points, meaning that some of the parameter estimates

are unreliable. This could be the cause of the broad distributions of parameter estimates we find

for τE and τI, leading to difficult in measuring significant differences in these quantities. It is

well-known that viral time course alone will not allow for unique identification of all the param-

eters in the viral kinetics model [39, 127, 128]. Additional data from single-cycle experiments

[20, 21], or from measurements of RNA [128] will help improve confidence in our parameter

estimates. Even simple improvements such as measuring more often for a longer time will

increase reliability of our estimates. While we limited our data sets to those that contained both

growth and decay of virus, several of these experiments had only two points in one of those

phases. With the inherent error in viral titer measurements [129, 130], the limited number of

data points in each time course leads to error in the viral kinetics parameter estimates.

Conclusion

In summary, our analysis has found differences between influenza virus and RSV dynamics in

vitro that are consistent with observed differences in influenza virus and RSV dynamics in

vivo [12]. Our finding of differences in infecting time suggests a possible mechanism at the

virus-cell level for the differences observed in vivo and in vitro. The mechanism of different

infecting times is supported by known differences in the diffusion rates of the two viruses,

although this is not the only factor that determines infecting time. More consistent experi-

ments, as suggested in the discussion, should further help develop our understanding of the

differences in RSV and influenza virus dynamics.
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22. Simon PF, de La Vega MA, Paradis É, Mendoza E, Coombs KM, Kobasa D, et al. Avian influenza

viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast

to human H1N1 viruses. Sci Rep. 2016; 6:24154. https://doi.org/10.1038/srep24154 PMID: 27080193

23. Dobrovolny HM, Baron MJ, Gieschke R, Davies BE, Jumbe NL, Beauchemin CAA. Exploring cell tro-

pism as a possible contributor to influenza infection severity. PLoS ONE. 2010; 5(11):e13811. https://

doi.org/10.1371/journal.pone.0013811 PMID: 21124892

24. Handel A, Longini IM, Antia R. Antiviral resistance and the control of pandemic influenza: The roles of

stochasticity, evolution and model details. J Theor Biol. 2009; 256:117–125. https://doi.org/10.1016/j.

jtbi.2008.09.021 PMID: 18952105

25. Canini L, Conway JM, Perelson AS, Carrat F. Impact of Different Oseltamivir Regimens on Treating

Influenza A Virus Infection and Resistance Emergence: Insights from a Modelling Study. PLoS

Computational Biology. 2014; 10(4):e1003568. https://doi.org/10.1371/journal.pcbi.1003568 PMID:

24743564

26. Heldt FS, Frensing T, Pflugmacher A, Gropler R, Peschel B, Reichl U. Multiscale Modeling of Influ-

enza A Virus Infection Supports the Development of Direct-Acting Antivirals. PLoS Comput Biol. 2013;

9(11):e1003372. https://doi.org/10.1371/journal.pcbi.1003372 PMID: 24278009

27. Bocharov GA, Romanyukha AA. Mathematical model of antiviral immune response III. Influenza A

virus infection. J Theor Biol. 1994; 167(4):323–360. https://doi.org/10.1006/jtbi.1994.1074 PMID:

7516024

28. Hancioglu B, Swigon D, Clermont G. A dynamical model of human immune response to influenza A

virus infection. J Theor Biol. 2007; 246(1):70–86. https://doi.org/10.1016/j.jtbi.2006.12.015 PMID:

17266989

29. Price I, Mochan-Keef ED, Swigon D, Ermentrout GB, Lukens S, Toapanta FR, et al. The inflammatory

response to influenza A virus (H1N1): An experimental and mathematical study. J Theor Biol. 2015;

374:83–93. https://doi.org/10.1016/j.jtbi.2015.03.017 PMID: 25843213

30. Canini L, Carrat F. Population Modeling of Influenza A/H1N1 Virus Kinetics and Symptom Dynamics.

J Virol. 2011; 85(6):2764–2770. https://doi.org/10.1128/JVI.01318-10 PMID: 21191031

31. Reddy MB, Yang KH, Rao G, Rayner CR, Nie J, Pamulapati C, et al. Oseltamivir Population Pharma-

cokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design. Plos

One. 2015; 10(10):e0138069. https://doi.org/10.1371/journal.pone.0138069 PMID: 26460484

32. Parrott N, Davies B, Hoffmann G, Koerner A, Lave T, Prinssen E, et al. Development of a Physiologi-

cally Based Model for Oseltamivir and Simulation of Pharmacokinetics in Neonates and Infants. Clin

Pharmacokinet. 2011; 50(9):613–623. https://doi.org/10.2165/11592640-000000000-00000 PMID:

21827216

RSV influenza comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0192645 February 8, 2018 19 / 24

https://doi.org/10.4155/fmc.14.30
https://doi.org/10.4155/fmc.14.30
http://www.ncbi.nlm.nih.gov/pubmed/24941871
https://doi.org/10.1016/j.virusres.2011.09.020
http://www.ncbi.nlm.nih.gov/pubmed/21963675
https://doi.org/10.1093/infdis/jiu828
http://www.ncbi.nlm.nih.gov/pubmed/25713060
https://doi.org/10.1371/journal.pone.0126959
http://www.ncbi.nlm.nih.gov/pubmed/26010881
https://doi.org/10.1056/NEJMoa1401184
http://www.ncbi.nlm.nih.gov/pubmed/25140957
https://doi.org/10.1056/NEJMoa1413275
http://www.ncbi.nlm.nih.gov/pubmed/26580997
https://doi.org/10.1128/JVI.07244-11
http://www.ncbi.nlm.nih.gov/pubmed/22837199
https://doi.org/10.1371/journal.pone.0126115
https://doi.org/10.1371/journal.pone.0126115
http://www.ncbi.nlm.nih.gov/pubmed/25992792
https://doi.org/10.1038/srep24154
http://www.ncbi.nlm.nih.gov/pubmed/27080193
https://doi.org/10.1371/journal.pone.0013811
https://doi.org/10.1371/journal.pone.0013811
http://www.ncbi.nlm.nih.gov/pubmed/21124892
https://doi.org/10.1016/j.jtbi.2008.09.021
https://doi.org/10.1016/j.jtbi.2008.09.021
http://www.ncbi.nlm.nih.gov/pubmed/18952105
https://doi.org/10.1371/journal.pcbi.1003568
http://www.ncbi.nlm.nih.gov/pubmed/24743564
https://doi.org/10.1371/journal.pcbi.1003372
http://www.ncbi.nlm.nih.gov/pubmed/24278009
https://doi.org/10.1006/jtbi.1994.1074
http://www.ncbi.nlm.nih.gov/pubmed/7516024
https://doi.org/10.1016/j.jtbi.2006.12.015
http://www.ncbi.nlm.nih.gov/pubmed/17266989
https://doi.org/10.1016/j.jtbi.2015.03.017
http://www.ncbi.nlm.nih.gov/pubmed/25843213
https://doi.org/10.1128/JVI.01318-10
http://www.ncbi.nlm.nih.gov/pubmed/21191031
https://doi.org/10.1371/journal.pone.0138069
http://www.ncbi.nlm.nih.gov/pubmed/26460484
https://doi.org/10.2165/11592640-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/21827216
https://doi.org/10.1371/journal.pone.0192645


33. Beggs NF, Dobrovolny HM. Determining drug efficacy parameters for mathematical models of influ-

enza. J Biol Dynamics. 2015; 9(S1):332–346. https://doi.org/10.1080/17513758.2015.1052764

34. Koizumi Y, Iwami S. Mathematical modeling of multi-drugs therapy: a challenge for determining the

optimal combinations of antiviral drugs. Theor Biol Med Model. 2014; 11:41. https://doi.org/10.1186/

1742-4682-11-41 PMID: 25252828

35. Holder BP, Beauchemin CAA. Exploring the effect of biological delays in kinetic models of influenza

within a host or cell culture. BMC Public Health. 2011; 11(S1):S10. https://doi.org/10.1186/1471-2458-

11-S1-S10 PMID: 21356129

36. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza A virus infec-

tion in humans. J Virol. 2006; 80(15):7590–7599. https://doi.org/10.1128/JVI.01623-05 PMID:

16840338

37. Beauchemin CAA, McSharry JJ, Drusano GL, Nguyen JT, Went GT, Ribeiro RM, et al. Modeling

amantadine treatment of influenza A virus in vitro. J Theor Biol. 2008; 254:439–451. https://doi.org/10.

1016/j.jtbi.2008.05.031 PMID: 18653201

38. Kakizoe Y, Nakaoka S, Beauchemin CAA, Morita S, Mori H, Igarashi T, et al. A method to determine

the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain. Scientific

Reports. 2015; 5:10371. https://doi.org/10.1038/srep10371 PMID: 25996439

39. Miao H, Xia X, Perelson AS, Wu H. On Identifiability of Nonlinear ODE Models and Applications in

Viral Dynamics. SIAM Review. 2011; 53(1):3–39. https://doi.org/10.1137/090757009 PMID:

21785515

40. Bermingham A, Collins PL. The M2–2 protein of human respiratory syncytial virus is a regulatory factor

involved in the balance between RNA replication and transcription. Proc Natl Acad Sci USA. 1999;

99:11259–11264. https://doi.org/10.1073/pnas.96.20.11259

41. Brock SC, Goldenring JR, James E Crowe J. Apical recycling systems regulate directional budding of

respiratory syncytial virus from polarized epithelial cells. Proc Natl Acad Sci USA. 2003; 100

(25):15143–15148. https://doi.org/10.1073/pnas.2434327100 PMID: 14630951

42. Liesman RM, Buchholz UJ, Luongo CL, Yang L, Proia AD, DeVincenzo JP, et al. RSV-encoded NS2

promotes epithelial cell shedding and distal airway obstruction. J Clin Invest. 2014; 124(5):2219–

2233. https://doi.org/10.1172/JCI72948 PMID: 24713657

43. Marquez A, Hsiung GD. Influence of glutamine on multiplication and cytopathic effect of respiratory

syncytial virus. Proc Soc Exp Biol Med. 1967; 124:95–99. https://doi.org/10.3181/00379727-124-

31674 PMID: 6017798

44. Shahrabadi MS, Lee PWK. Calcium Requirement for Syncytium Formation in HEp-2 Cells by Respira-

tory Syncytial Virus. J Clin Microbiol. 1988; 26(1):139–131. PMID: 3343306

45. Straub CP, Lau WH, Preston FM, Headlam MJ, Gorman JJ, Collins PL, et al. Mutation of the elongin C

binding domain of human respiratory syncytial virus non-structural protein 1 (NS1) results in degrada-

tion of NS1 and attenuation of the virus. Virol J. 2011; 8:252. https://doi.org/10.1186/1743-422X-8-252

PMID: 21600055

46. Villenave R, O’Donoghue D, Thavagnanam S, Touzelet O, Skibinski G, Heaney LG, et al. Differential

cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates in primary pediatric bron-

chial epithelial cells. Virol J. 2011; 8:43. https://doi.org/10.1186/1743-422X-8-43 PMID: 21272337

47. Villenave R, Thavagnanam S, Sarlang S, Parker J, Douglas I, Skibinski G, et al. In vitro modeling of

respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in

vivo. Proc Natl Acad Sci USA. 2012; 109(13):5040–5045. https://doi.org/10.1073/pnas.1110203109

PMID: 22411804

48. Duan S, Boltz DA, Seiler P, Li J, Bragstad K, Nielsen LP, et al. Oseltamivir—Resistant Pandemic

H1N1/2009 Influenza Virus Possesses Lower Transmissibility and Fitness in Ferrets. PLoS Path.

2010; 6(7):e1001022. https://doi.org/10.1371/journal.ppat.1001022

49. Kaminski MM, Ohnemus A, Staeheli P, Rubbenstroth D. Pandemic 2009 H1N1 Influenza A Virus Car-

rying a Q136K Mutation in the Neuraminidase Gene Is Resistant to Zanamivir but Exhibits Reduced

Fitness in the Guinea Pig Transmission Model. J Virol. 2013; 87(3):1912–1915. https://doi.org/10.

1128/JVI.02507-12 PMID: 23192869

50. LeGoff J, Rousset D, Abou-Jaoude G, Scemla A, Ribaud P, Mercier-Delarue S, et al. I223R Mutation

in Influenza A(H1N1)pdm09 Neuraminidase Confers Reduced Susceptibility to Oseltamivir and Zana-

mivir and Enhanced Resistance with H275Y. PLOS One. 2012; 7(8):e0037095. https://doi.org/10.

1371/journal.pone.0037095

51. Cubitt B, de la Torre JC. Amantadine does not have antiviral activity against Borna disease virus. Arch

Virol. 1997; 142:2035–2042. https://doi.org/10.1007/s007050050220 PMID: 9413511

RSV influenza comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0192645 February 8, 2018 20 / 24

https://doi.org/10.1080/17513758.2015.1052764
https://doi.org/10.1186/1742-4682-11-41
https://doi.org/10.1186/1742-4682-11-41
http://www.ncbi.nlm.nih.gov/pubmed/25252828
https://doi.org/10.1186/1471-2458-11-S1-S10
https://doi.org/10.1186/1471-2458-11-S1-S10
http://www.ncbi.nlm.nih.gov/pubmed/21356129
https://doi.org/10.1128/JVI.01623-05
http://www.ncbi.nlm.nih.gov/pubmed/16840338
https://doi.org/10.1016/j.jtbi.2008.05.031
https://doi.org/10.1016/j.jtbi.2008.05.031
http://www.ncbi.nlm.nih.gov/pubmed/18653201
https://doi.org/10.1038/srep10371
http://www.ncbi.nlm.nih.gov/pubmed/25996439
https://doi.org/10.1137/090757009
http://www.ncbi.nlm.nih.gov/pubmed/21785515
https://doi.org/10.1073/pnas.96.20.11259
https://doi.org/10.1073/pnas.2434327100
http://www.ncbi.nlm.nih.gov/pubmed/14630951
https://doi.org/10.1172/JCI72948
http://www.ncbi.nlm.nih.gov/pubmed/24713657
https://doi.org/10.3181/00379727-124-31674
https://doi.org/10.3181/00379727-124-31674
http://www.ncbi.nlm.nih.gov/pubmed/6017798
http://www.ncbi.nlm.nih.gov/pubmed/3343306
https://doi.org/10.1186/1743-422X-8-252
http://www.ncbi.nlm.nih.gov/pubmed/21600055
https://doi.org/10.1186/1743-422X-8-43
http://www.ncbi.nlm.nih.gov/pubmed/21272337
https://doi.org/10.1073/pnas.1110203109
http://www.ncbi.nlm.nih.gov/pubmed/22411804
https://doi.org/10.1371/journal.ppat.1001022
https://doi.org/10.1128/JVI.02507-12
https://doi.org/10.1128/JVI.02507-12
http://www.ncbi.nlm.nih.gov/pubmed/23192869
https://doi.org/10.1371/journal.pone.0037095
https://doi.org/10.1371/journal.pone.0037095
https://doi.org/10.1007/s007050050220
http://www.ncbi.nlm.nih.gov/pubmed/9413511
https://doi.org/10.1371/journal.pone.0192645


52. De Baets S, Schepens B, Sedeyn K, Schotsaert M, Roose K, Bogaert P, et al. Recombinant Influenza

Virus Carrying the Respiratory Syncytial Virus (RSV) F 85–93 CTL Epitope Reduces RSV Replication

in Mice. J Virol. 2013; 87(6):3314–3323. https://doi.org/10.1128/JVI.03019-12 PMID: 23302879
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