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Abstract

Purpose

To characterize the relationship between endothelin-1 and fibrosis in epiretinal membranes

in proliferative diabetic retinopathy and explore the role of endothelial-mesenchymal transi-

tion in these membranes.

Methods

Membranes were obtained from eyes undergoing pars plana vitrectomy for complicated pro-

liferative diabetic retinopathy or idiopathic epiretinal membrane. Through standard immuno-

histochemical techniques, we labeled membranes to explore the distribution of endothelin-1

and endothelin receptor B, comparing proliferative diabetic retinopathy and idiopathic epiret-

inal membranes. In addition, membranes were also labeled with markers for fibroblasts,

endothelial, and glial cells and studied with confocal laser scanning microscopy. The inten-

sity of endothelin-1 labeling was quantified using standard image analysis software.

Results

Fourteen membranes were included in the analysis, nine from eyes with proliferative dia-

betic retinopathy and five idiopathic membranes. Flatmount diabetic membranes showed

co-localization of endothelin-1 with S100A4 and CD31. Immunohistochemistry and quantita-

tive analysis of cross-sectional membranes showed significantly higher endothelin-1 label-

ing in proliferative diabetic retinopathy membranes compared to idiopathic membranes

(p<0.05). Diabetic membranes showed more elements staining positive for S100A4 com-

pared to idiopathic membranes.

Conclusion

Epiretinal membrane formation in proliferative diabetic retinopathy involves higher tissue

levels of endothelin-1 and fibroblastic activity. Furthermore, endothelin-1, endothelial and

fibroblastic staining appear to be correlated, suggestive of endothelial-to-mesenchymal

transition in proliferative diabetic retinopathy.
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Introduction

Diabetic retinopathy (DR) is a major cause of blindness worldwide and is prevalent in almost

80% of diabetics after 10 years of diabetes [1]. Pericytes, involved in maintaining the blood-ret-

inal barrier, are affected early in DR, compromising the endothelial cells and initiating a cas-

cade of microvascular changes including microaneurysms and capillary occlusion in early

stages of non-proliferative DR [2]. Proliferative diabetic retinopathy (PDR) is a late stage man-

ifestation of DR, where progressive retinal ischemia leads to elaboration of angiogenic factors,

including VEGF, with ultimate growth of new blood vessels along the interface between the

retina and the vitreous humor. In PDR, angiogenesis and subsequent fibrosis on the retinal

surface often result in the formation of fibrovascular, tractional epiretinal membranes, which

lead to vision threatening complications such as tractional retinal detachment and ultimately

vision loss [2–5].

While the clinical manifestations of advanced DR are well established, the underlying

molecular and biochemical mechanisms remain poorly understood. Recent studies have

shown that the epiretinal membranes and vitreous of patients with PDR contain different pro-

tein marker patterns than non-diabetic tissues [6–10]. One such molecule is endothelin (ET),

which has been shown to be higher in the vitreous of PDR patients compared to non-diabetic

vitreous [11, 12]. Endothelin is a potent vasoconstrictor, which exists in three isoforms: ET-1,

ET-2, and ET-3, of which ET-1 is the most abundant form recognized by endothelin receptors

A (ETA) and B (ETB). In the retina, ET-1 and its receptor ETA have been shown to mediate

decreased retinal blood flow during hyperglycemia and in DR [13]. Furthermore, hyperglyce-

mia has been shown to directly increase ET-1 secretion from endothelial cells [14]. In the ini-

tial stages of DR, ET-1 appears to mediate pericyte death via ETA receptors [5].

The ability of ET-1 to promote fibrosis has been extensively studied in other pathological

conditions, such as pulmonary and cardiac fibrosis [15, 16]. It has been suggested that ET-1 is

involved in fibroblast maturation and the deposition of fibrous tissue in lung [17]. A recent

study showed that ET-1 and ETB are expressed in cells of human epiretinal membranes in pro-

liferative vitreoretinopathy, another form of epiretinal fibrosis [18]. Similarly, membranes of

PDR patients were shown to exhibit diffuse ET-1 expression [3]. Furthermore, DR has been

associated with increased ETB expression in diabetic rat retinas [19]. However, the relative

expression and role of ET-1 and ETB in PDR membranes compared to idiopathic ERMs has

not been studied. While most studies have focused on the expression of ET-1 in PDR fibrovas-

cular membranes, few have explored the relationship between ET-1 expression and fibroblast

proliferation within these epiretinal membranes.

Recent studies have identified endothelial-to-mesenchymal transition (EndoMT) as a

potential mechanistic pathway that is involved in fibrosis [10, 20–23]. In this process, endothe-

lial cells lose their apical-basal polarity along with endothelial cell markers such as CD31.

These endothelial cells transform into mesenchymal cells and take on fibroblastic markers

such as S100A4. EndoMT has been demonstrated in several organ systems including cardiac

and kidney fibrosis [24, 25]. Furthermore, ET-1 has been suggested to be a mediator in

EndoMT in disease processes such as systemic sclerosis [26].

In this study, we investigate the hypothesis that ET-1 plays a role in promoting fibrosis through

EndoMT in PDR. We explore the association between ET-1 and fibroblast proliferation in both

diabetic and idiopathic epiretinal membranes. We studied EndoMT using immunohistochemical

techniques comparing the localization of the fibroblastic marker S100A4 with the endothelial

marker CD31 as well as with ET-1. We also compared the relative immunofluorescence of ETB

with glial fibrillary acidic protein (GFAP) in both diabetic and idiopathic epiretinal membranes in

an effort to further characterize their potential roles in membrane formation.
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Methods

The study protocol and procedures adhered to the ethics tenets of the Declaration of Helsinki

and were approved by the Institutional Review Board at Northwestern University. Epiretinal

membranes were removed from eyes undergoing routine surgery and pars plana vitrectomy

(PPV). Verbal informed patient consent was obtained prior to surgery. Surgeries were routine

23-gauge PPV without the use of adjuvant dyes. Idiopathic membranes were peeled from the

retinal surface with microsurgical forceps, while PDR membranes required a combination of

segmentation with the vitreous cutter followed by removal of the segmented free membranes

with microsurgical forceps. Excised membranes were designated as either from PDR or as idi-

opathic based on the patient history and underlying surgical diagnosis. All membranes were

fixed in a 4% paraformaldehyde for 24 hours and then transferred to a 30% sucrose solution

for 5 hours.

Frozen cross-sections: Tissue preparation and immunohistochemistry

Membranes were embedded in optimal cutting temperature compound (OCT). Tissue sec-

tions (7 μm) were thawed, washed with tris-buffered saline (TBS), and blocked with 10% nor-

mal donkey serum for one hour at room temperature. Samples were incubated with primary

antibody (Table 1) diluted in blocking solution at 4˚C for 18 hours. Following several TBS

washes, sections were incubated with donkey anti-goat rhodamine red (705-295-147, Jackson

ImmunoResearch, West Grove, PA) or donkey anti-rabbit Alexa Fluor 594 (ab96921, Abcam,

Cambridge, UK) secondary antibody for one hour at room temperature. Isolectin IB4 (I21413,

Thermo Fisher Scientific) was used as a vascular marker in lieu of a primary antibody. Sections

were then washed with TBS and stained with DAPI (4’, 6’-diamino-2-phenylindole) to stain

nuclei. In several immunostains, SYTOX Green nucleic acid stain (S7020, Thermo Fisher Sci-

entific, Waltham, MA) replaced DAPI for nuclei staining because of microscope limitations.

Slides were mounted with ProLong Gold Antifade reagent (P36930, Thermo Fisher Scientific).

Each immunostain was performed with a negative control using the secondary antibody with-

out primary antibody. These negative controls showed faint and nonspecific staining.

Immunofluorescence images were obtained using a Nikon A1R+ Confocal Laser Micro-

scope System (Minato, Japan). Single plane immunofluorescent images were obtained at total

magnification of 600x.

Flatmount immunohistochemistry and co-localization studies

Three additional diabetic epiretinal membranes were prepared as flatmounts. These mem-

branes were fixed in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA)

diluted in phosphate buffered saline (PBS) for 3–4 hours. The membranes were transferred to

30% sucrose until staining. After several washes, membranes were permeabilized with PBS/

Table 1. Primary antibody profile.

Primary Antibody Dilution Source Manufacturer

ET-1 1:400 Rabbit Peninsula (T-4050)

ETB 1:200 Rabbit Antibody Research Corporation�

S100A4 1:400 Rabbit Abcam (ab27957)

GFAP 1:200 Rabbit Abcam (ab7260)

CD31 1:100 Rabbit Abcam (ab28364)

Abbreviations: ET-1, endothelin-1; ETB, endothelin receptor B; GFAP, glial fibrillary acidic protein.

�ETB antibody was custom made by Antibody Research Corporation, St. Charles, MO.

https://doi.org/10.1371/journal.pone.0191285.t001
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0.5% Triton X-100 for 18 hours at 4˚C. The membranes were blocked with 10% donkey

serum, 0.1% Triton X-100, 1% bovine serum albumin for 5 hours. Rabbit anti-S100A4

(Abcam, Cambridge, UK, ab27957) diluted 1:300 and goat anti-ET-1 (Santa Cruz, Dallas, TX,

sc-21625) diluted 1:75 or rat anti-CD31 (BD Biosciences, San Jose, CA, 553370) diluted 1:50

were applied for 18 hours at 4˚C in blocking solution. After several washes, the membranes

were incubated in donkey anti-rabbit Rhodamine Red (Jackson ImmunoResearch, West

Grove, PA, 711-295-152, 1:300 dilution), donkey anti-goat Alexa Fluor 488 (Jackson Immu-

noResearch, 705-545-147, 1:200 dilution), or goat anti-rat Alexa Fluor 488 (Thermo Fisher Sci-

entific, Waltham, MA, A-11006, 1:200 dilution) diluted in PBS/0.1% Triton X-100 for 18

hours at 4˚C. After several washes, the membranes were counterstained with DAPI (Thermo

Fisher Scientific) for 2 minutes, washed, mounted with ProLong Gold Antifade reagent

(Thermo Fisher Scientific), and sealed.

Quantification of ET-1 immunofluorescence

Immunofluorescence images were obtained using the Zeiss LSM 510 laser scanning confocal

microscope (Oberkochen, Germany). Single plane immunofluorescence and differential inter-

ference contrast (DIC) images were obtained for each membrane at a total magnification of

100x. Microscope settings were kept constant for all imaging. Image analysis was performed

using Fiji software (NIH, Bethesda, MD) [27]. Image stitching was performed on several

images in order to incorporate an entire membrane section in one image. Tissue outlines were

detected via the “Find Edges” plugin function in Fiji software using the DIC image for a given

tissue. The image was thresholded and converted into a binary image. The “analyze particles”

function was used to apply a mask that represented the area of the membrane on brightfield,

which was subsequently used for the corresponding immunofluorescent image. The pixel

intensity of the selected area of the immunofluorescent image was measured. The intensities of

idiopathic and PDR membranes were measured and recorded. An unpaired two tailed Stu-

dent’s t-test was performed using SPSS Statistics. (Version 23.0; IBM Corporation, New York,

USA).

Results

Patient demographics

A total of 14 epiretinal membranes were obtained from nine patients with PDR and five

patients with idiopathic membranes. Two PDR membranes were prepared as flatmounts. One

PDR membrane was excluded from the analysis because the patient was on hydroxychloro-

quine treatment, a medication that has been shown to result in increased autofluorescence of

retinal tissue [28]. Demographic and clinical data are shown in Table 2 and Table 3.

ET-1, S100A4, and CD31 immunoreactivity in flatmount membranes

Two flatmount PDR membranes were analyzed and shown to have co-localization of ET-1

and S100A4 immunofluorescence (Fig 1, P7, P8). In addition, co-localization of S100A4 and

CD31 was also observed in PDR membranes (Fig 1, P8, P9).

S100A4 immunoreactivity in cross sections

Identification of fibroblasts was performed by immunostaining with S100A4. Idiopathic epir-

etinal membranes showed little immunoreactivity with S100A4 and generally had less cellular

components within the membrane (Fig 2). However, PDR membranes had variable S100A4

immunoreactivity. While some PDR epiretinal membranes exhibited strong and widespread
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cellular S100A4 labeling (Fig 2, P1, P2), others showed more limited immunoreactivity (Fig 2,

P3, P6).

ET-1 immunoreactivity in cross sections

Confocal microscopy analysis of PDR epiretinal membranes showed moderate ET-1 immu-

nostaining throughout the tissue (Fig 3, Panel A). Idiopathic membranes generally showed less

ET-1 immunostaining compared to diabetic epiretinal membranes. In addition, merged

images with DAPI show that ET-1 was localized to the cytoplasm of these cells. Quantitative

analysis of ET-1 immunofluorescence (Fig 3, Panel B) showed that PDR membranes had sig-

nificantly higher mean pixel intensity (222.4 ± 30.9 arbitrary units) than idiopathic epiretinal

membranes (108.5 ± 21.8 arbitrary units; unpaired t-test, p<0.05). When double immunos-

taining was performed with S100A4, ET-1 was observed to co-localize with S100A4 in diabetic

epiretinal membranes (Fig 4).

ETB immunoreactivity in cross sections

ETB was detected in both PDR and idiopathic ERMs. Analysis via confocal microscopy

showed variable levels of ETB immunofluorescence throughout PDR and idiopathic mem-

branes (Fig 5). Of the diabetic membranes, P1 and P4 had the most prominent ETB staining,

while E4 showed the most prominent ETB staining among the idiopathic membranes.

GFAP immunoreactivity in cross sections

Glial cellular components were detected through immunostaining with GFAP. Both idiopathic

and diabetic ERMs had variable GFAP immunofluorescence. Diabetic patients P2 and P6, along

with idiopathic patients E3 and E5, showed particularly strong GFAP immunofluorescence (Fig

Table 3. Demographic characteristics of patients with idiopathic epiretinal membranes.

ERM Number Age/Sex Visual Symptom Duration Past Medical History

E1 57/F 3 months None

E2 71/M 3 months None

E3 44/M 2 years Kjer’s optic neuropathy

E4 72/F 5 years Hypertension, hyperlipidemia

E5 65/M 1 year None

Abbreviations: ERM, epiretinal membrane.

https://doi.org/10.1371/journal.pone.0191285.t003

Table 2. Demographic characteristics of patients with proliferative diabetic retinopathy epiretinal membranes.

ERM Number Age/Sex Diabetes Type Duration of Diabetes (yrs) HbA1c Past Medical History

P1 44/M 1 39 7.6 ESRD

P2 53/M 2 9 8.3 Esophageal cancer, smoking

P3 51/F 1 >30 8.1 None

P4 39/F 2 15 7 None

P5 30/F 1 17 13.9 Pregnant at time of surgery for repair traction retinal detachment and ERM removal

P6 29/M 1 18 8 Asthma

P7 53/F 2 6.4 Hypertension, coronary artery disease, asthma

P8 33/F 1 >25 7.2 None

P9 45/M 2 20 8.2 Hypertension, asthma

Abbreviations: ERM, epiretinal membrane; ESRD, end-stage renal disease; HbA1C, hemoglobin A1C.

https://doi.org/10.1371/journal.pone.0191285.t002
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6). In patients E3 and E5, GFAP is seen in only portions of the membranes while other areas are

devoid of GFAP staining. However, in patients P2 and P6, GFAP immunofluorescence is more

diffuse.

IB4 and CD31 immunoreactivity in cross sections

CD31 immunoreactivity was detected in a flatmount diabetic ERM as shown in Fig 1. In addi-

tion, CD31 was observed to co-localize with S100A4 in these flatmount ERMs. However,

cross-sectional immunohistochemistry of PDR and idiopathic ERMs failed to show specific

endothelial cell staining with IB4 or CD31 antibodies.

Fig 1. Co-localization of endothelin-1 (ET-1) with S100A4 and CD31. Panel A shows merged confocal images of

ET-1 (green) and S1004A (red) immunofluorescence in flatmount proliferative diabetic retinopathy epiretinal

membranes. Panel B shows merged confocal images of co-localization of ET-1 (green) and CD31 (red)

immunofluorescence in flatmount proliferative diabetic retinopathy epiretinal membranes. Nuclei are labeled with

DAPI (blue). Patient numbers are indicated in the upper-right corners. Scale bars: 25 μm.

https://doi.org/10.1371/journal.pone.0191285.g001
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Fig 2. Fibroblast (S100A4) immunofluorescence in cross-sectional proliferative diabetic retinopathy and idiopathic epiretinal

membranes. Patient numbers are indicated in the upper-right corners. Confocal images show diabetic epiretinal membranes (top)

have more S100A4-positive cells (red) than idiopathic epiretinal membranes (bottom). Nuclei are labeled with SYTOX Green nuclear

stain (green). Scale bars: 50 μm.

https://doi.org/10.1371/journal.pone.0191285.g002

Fig 3. Endothelin-1 (ET-1) immunofluorescence in cross-sectional proliferative diabetic retinopathy and idiopathic epiretinal membranes. Panel A shows

confocal images of individual diabetic epiretinal membranes (top) show moderate ET-1 (red) staining throughout the tissue. Confocal images of idiopathic epiretinal

membranes (bottom) showed weaker ET-1 immunofluorescence compared to diabetic epiretinal membranes. Nuclei are labeled with DAPI (blue). Patient numbers are

indicated in the upper-right corners. Scale bars: 50 μm. Panel B shows quantification of ET-1 immunofluorescence in cross-sectional idiopathic and proliferative

diabetic retinopathy epiretinal membranes. Pixel intensity was measured in arbitrary units (AU). Black bars represent the mean pixel intensity for the given type of

epiretinal membrane.

https://doi.org/10.1371/journal.pone.0191285.g003
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Discussion

Fibrovascular membrane formation in PDR involves the proliferation of fibroblasts alongside

regressing abnormal vasculature, with eventual contraction of these membranes leading to ret-

inal detachment [29]. In general, diabetic membranes showed more diffuse staining for fibro-

blasts, as shown in Fig 2. Idiopathic epiretinal membranes showed minimal S100A4 staining,

suggesting that active fibrosis and fibroblastic transformation may not be a prominent feature

of membrane formation in these patients. In general, fibrosis is a well-recognized hallmark of

Fig 4. Co-localization of Endothelin-1 (ET-1) and S100A4 in representative cross-sectional proliferative diabetic retinopathy and idiopathic

epiretinal membranes. Merged confocal images of diabetic ERMs (A) show co-localization of ET-1 (green) and S100A4 (red). Nuclei are labeled

with DAPI (blue). Patient numbers are indicated in the upper-right corners. Scale bars: 50 μm.

https://doi.org/10.1371/journal.pone.0191285.g004

Fig 5. Endothelin receptor B (ETB) immunofluorescence in cross-sectional proliferative diabetic retinopathy and idiopathic

epiretinal membranes. Confocal images of diabetic ERMs (top) show variable ETB (red) staining among tissue samples. Confocal

images of idiopathic ERMs (bottom) also showed variable ETB immunofluorescence. Nuclei are labeled with SYTOX Green nuclear

stain (green). Patient numbers are indicated in the upper-right corners. Scale bars: 50 μm.

https://doi.org/10.1371/journal.pone.0191285.g005
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advanced PDR; therefore, the intense fibroblast presence in diabetic membranes is not surpris-

ing. This is consistent with recent evidence showing increased fibrocyte activity in PDR epiret-

inal membranes [30]. It is interesting to note that only PDR flatmount tissue showed specific

staining for CD31, a marker of endothelial cells. This is in contrast to previous studies that

demonstrated a relatively high number of endothelial cells in PDR membranes. There are sev-

eral potential explanations for these diverse findings, including the fact that blood vessels are

only sparsely distributed in these membranes and may be missed in cross-section preparations.

Another potential explanation relates to the process of EndoMT, characterized by the loss of

endothelial vascular markers along with the acquisition of fibroblastic markers, which could

explain the variation in the expression of vascular markers such as CD31. Membranes with

relatively sparse CD31 may represent a more advanced stage in the EndoMT process. When

single sections were used for immunostaining, it is possible that areas with CD31 staining

were missed. Flatmounted membranes were more likely to demonstrate both the overall

Fig 6. Glial fibrillary acid protein (GFAP) immunofluorescence representative cross-sectional proliferative diabetic

retinopathy and idiopathic epiretinal membranes. Confocal images of both diabetic (top) and idiopathic ERMs (bottom) show

GFAP (green) immunostaining within the tissue stroma. Nuclei are labeled with DAPI (blue). Patient numbers are indicated in the

upper-right corners. Scale bars: 25 μm.

https://doi.org/10.1371/journal.pone.0191285.g006
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distribution of cellular markers as well as individual blood vessels. We used the cross-sectional

approach, in addition to flatmounting, to maximize the number of sections and the range of

antibodies and molecular stains we can apply to each individual membrane.

In immunostained flatmount diabetic ERMs, we identified vessels that were immunola-

beled with both ET-1 and S100A4 (Fig 1, P7, P8). Furthermore, we identified cellular elements

that co-expressed both CD31 and S100A4 (Fig 1, P8, P9). These findings highlight the possibil-

ity that vasculature within these membranes are undergoing a transition towards fibrosis, via

EndoMT. Fibrosis does not appear to be separate process from endothelial cell dysfunction

but is considered a maladaptive process in various ischemic and vascular diseases, such as pul-

monary hypertension and vein graft remodeling [31, 32]. In patients with PDR, we believe that

these endothelial cells are intimately involved and may transdifferentiate to give rise to the pro-

liferation of fibroblasts [20–23].

The co-localization of CD31, ET-1 and S100A4 seen in Figs 1 and 4 suggests that endothe-

lial cell dysfunction is related to fibroblast proliferation in PDR, and supports the potential for

endoMT in this process. Studies have shown that fibrosis can be associated with EndoMT as

well as transdifferentiation of several cell types, including pericytes and epithelial cells [33]. It

is possible that the diabetic ERMs in this study represent the latter stages of EndoMT in PDR,

which is characterized by the diminishing presence of the vascular network as endothelial cells

transition towards a fibroblastic phenotype [23, 34]. This process of transition can also explain

the variable expression of S100A4, CD31 and ET-1 seen in diabetic ERMs. In one study, ET-1

treatment of endothelial cells resulted in increased transformation to a fibroblast state [26].

In this study, we demonstrate diffuse staining for ET-1 in diabetic and idiopathic mem-

branes, where immunofluorescence quantification showed significantly higher intensity of

ET-1 in PDR membranes (Fig 3). Our results suggest that, while ET-1 may be important in

mediating fibrosis in various retinal pathologies, this role is particularly heightened in PDR.

While the pathophysiology of fibrous tissue formation in PDR is likely complex and currently

understudied, previous studies have shown that ET-1 is upregulated in cardiac fibrosis in dia-

betics as well as in ischemic myocardial tissue [24, 35, 36]. However, it remains unclear if ET-1

found in these diabetic membranes is produced from the cells within the membranes. One

study determined that ET-1 is expressed in cells derived from PDR membranes [37]. Other

studies have established that both serum and vitreous ET-1 levels are higher in diabetic

patients than in non-diabetics [3]. Thus, the source of ET-1 found in ERMs may be a combina-

tion of retinal origin and also the systemic circulation.

As shown in Fig 5, ETB was detected in both idiopathic and diabetic membranes. Interest-

ingly, some diabetic membranes exhibited intense staining while others showed minimal stain-

ing. Similar variation was present in the idiopathic membranes, where ETB could be seen in

particular zones of the tissue rather than throughout the entire tissue section. Compared to the

cytoplasmic localization of ET-1, ETB appears to localize predominantly to the periphery of

the cell, likely the cell membrane. This localization of ETB is expected given that the receptor

is a transmembrane G protein-coupled receptor [38]. In diabetic membranes, the level of ET-1

immunofluorescence did not qualitatively correlate with the level of ETB immunostaining.

Several diabetic epiretinal membranes with high mean pixel intensities of ET-1 immunofluo-

rescence had fairly mild ETB immunofluorescence (Fig 5, P2, P3). This discrepancy is difficult

to interpret given the complexity of interactions between ET-1 and ETB [39, 40].

The presence of GFAP immunostaining in both PDR and idiopathic epiretinal membranes

(Fig 6) suggests that glial cells, such as retinal Müller cells and astrocytes, are a prominent com-

ponent of these membranes. Indeed, it has been shown that glial cells, particularly retinal Müller

cells have been found in idiopathic and diabetic epiretinal membranes [41–43]. Müller cells are

believed to upregulate GFAP expression in conditions involving retinal traction [44]. Because
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this mechanical stress likely occurs in both idiopathic and diabetic epiretinal membrane forma-

tion, it is not surprising that both types of epiretinal membranes exhibit increased GFAP. The

relatively higher immunostaining of ET-1 and S100A4 in PDR epiretinal membranes may be an

indication that PDR epiretinal membranes arise via different mechanisms than idiopathic epir-

etinal membranes. The precursor events to PDR epiretinal membranes often involve complica-

tions such as angiogenesis and hemorrhage secondary to retinal vasculature damage. These

membranes are usually intricately associated with regressing and active neovascular fronds

growing on the posterior vitreous face. The resulting membrane formation could arise second-

ary to the release of fibrotic markers from the damaged endothelium or as we hypothesize,

through EndoMT, the transition of endothelial cells to active fibroblasts. However, additional

markers such type I collagen and α-SMA are needed to provide confirmatory evidence.

The patient characteristics were highly heterogeneous in this study, which poses several

challenges in interpreting the composition of the epiretinal membranes, including the age dif-

ference between the two groups, with diabetic patients being overall younger in age. While this

may represent a potential bias in patient selection, the diabetic patients often presented with

epiretinal membranes after years of having diabetes and usually in the setting of advanced pro-

liferative disease with exuberant angiogenesis. The epiretinal membranes formed in PDR are

simply the result of a disease process that typically presents earlier in life. Idiopathic epiretinal

membranes were typically seen in older patients, suggesting that the process driving their for-

mation is not substantial until later in life. We believe the mechanisms for DR and idiopathic

membranes are potentially different based on the differences observed in immunostaining.

However, we cannot rule out subtle mechanistic similarities given that these membranes and

our studies are essentially snapshots of a dynamic and chronic disease process. While it is pos-

sible that idiopathic membranes are derived from patients who present early in their disease

course (thus the smaller membranes with fewer cells), the complications of diabetic retinopa-

thy likely account for the increase in fibrotic components seen in diabetic ERMs. Another

important distinction in the pathogenesis of these two entities relates to the tight relationship

between fibrosis and angiogenesis in diabetic membranes, a temporal and spatial relationship

that suggests an intricate process that entangles the two pathologic mechanisms, with endoMT

as one potential uniting pathomechanism. Concomitant medical conditions, ocular treat-

ments, and duration of disease could potentially affect the properties of their membranes. Dia-

betic patients tended to have more frequent health maintenance visits than patients with

idiopathic membranes. In general, diabetic epiretinal membranes were larger in size compared

to idiopathic membranes. While this may reflect a difference in the underlying molecular

mechanisms of membrane formation, symptom characteristics may have also contributed.

Patients with idiopathic membranes typically presented with mild blurring of the vision and

metamorphopsia as their visual complaint. These patients could attribute their main symptom

with the formation of an epiretinal membrane. In contrast, diabetic patients presented with

several ocular morbidities related to DR, many of which preceded the formation of the mem-

brane. Most of these eyes underwent surgery to repair acute on chronic traction retinal detach-

ment. These diabetic patients may have presented only after becoming severely symptomatic

or with a large, longstanding epiretinal membrane and decreased vision due to progression of

their traction detachment into the macula.

Lack of membrane orientation is a limitation to this study. Membranes peeled from the ret-

inal surface often lost their orientation during processing making it close to impossible to

determine the vitreal or retinal side. Thus, during cryosectioning, it was not possible to deter-

mine the exact geometry in which the epiretinal membrane was sectioned. In addition, several

idiopathic and diabetic epiretinal membranes yielded a limited number of sections because of
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the small size of the tissue. This posed a logistical hurdle as several epiretinal membranes could

not be immunostained with all antibody targets due to the limited number of sections.

Sample size and patient heterogeneity are other limitations to this study. Patients were

recruited on a rolling basis. Patients who progress to traction detachment often have developed

other significant clinical complications of diabetic detachment and these patients had prior

ocular treatments for their PDR, including laser and injection therapies, which may complicate

the molecular content of the eye and epiretinal membranes. We excluded from this study dia-

betic eyes that had undergone extensive treatment with anti-angiogenic medications. In addi-

tion, several membranes could not be successfully retrieved intact and could not be included

in this study. However, the differences between the two study groups remained statistically sig-

nificant, even with this small sample size.

Strengths

Our study focused on membranes collected using the same surgical protocol (single surgeon),

which did not use adjuvant dyes for staining. Overall, we used standardized approaches for

immunostaining with emphasis on appropriate controls, with staining of idiopathic and dia-

betic membranes at the same time using the same reagents. This allowed for more consistent

measurements of pixel intensities across all samples, especially for quantification of ET-1. We

used an automated image analysis approach to define tissue boundaries based on DIC imagery

for ET-1 quantification. This protocol increased the objectivity and confidence of the quantifi-

cation analysis [45].

In conclusion, we have shown that ET-1 and fibroblast immunostaining are more evident

in PDR than in idiopathic membranes. These findings support the hypothesis that ET-1 is

upregulated in advanced PDR and may be an important player in the pathophysiology of fibro-

blastic transitions. In addition, the co-localization of ET-1 and S100A4 staining suggests that

ET-1 may be linked to fibroblastic proliferation in PDR. We also demonstrate co-localization

of CD31 and S100A4 in these diabetic membranes, suggestive of the transformative process

associated with EndoMT. Because of the differences in cellular composition, we believe epiret-

inal membranes in PDR arise from different mechanisms than idiopathic epiretinal mem-

branes. Since this was a pilot study, we believe that quantitative measurements, including

protein and RNA analysis are important aspects for future studies, which are currently under-

way. Further work is required to better delineate the exact pathophysiologic mechanism by

which ET-1 promotes the transition towards fibroblast phenotype and to explore whether ET-

1 could present a viable therapeutic target to address and perhaps prevent fibroblastic transfor-

mation and tractional retinal detachments in PDR.
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