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Abstract

Cancer stem-like cells (CSCs) may play a key role in tumor initiation, self-renewal, differenti-

ation, and resistance to current treatments. Dendritic cells (DCs) play a vital role in host

immune reactions as well as antigen presentation. In this study, we explored the suitability

of using CSC peptides as antigen sources for DC vaccination against human breast cancer

and hepatocellular carcinoma (HCC) with the aim of achieving CSC targeting and enhancing

anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used

as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2

molecules on the basis of their binding affinity, as determined by a peptide-T2 binding

assay. Our data showed that CSCs express high levels of tumor-associated antigens

(TAAs) as well as major histocompatibility complex (MHC) molecules. Pulsing DCs with

CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs),

thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs).

The activation of CSC peptide-specific immune responses by the DC vaccine in com-

bination with standard chemotherapy may provide better clinical outcomes in advanced

carcinomas.

Introduction

Tumor cells express antigens that can be recognized by the immune system of their host. Can-

cer patients can be inoculated by these tumor-associated antigens (TAAs) to induce systemic

immune responses that may result in the destruction of various cancers. This procedure is

defined as active immunotherapy, or vaccination [1].

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that

exist in the immune system [2, 3]. DC vaccines aim to stimulate cancer-specific effector T cells

to eradicate tumor cells and to stimulate immunological memory to control cancer recurrence
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[4]. Human DCs are commonly generated from monocytes that are isolated from peripheral

blood mononuclear cells (PBMCs) and differentiated to produce immature DCs (iDCs). The

iDCs then undergo maturation and an antigen-loading step to produce mature DCs (mDCs)

[5]. DCs have been pulsed/activated with tumor lysates, recombinant proteins, or peptides,

and peptide pulsing has been most widely investigated [6–10]. Studies have shown that pep-

tide-pulsed DCs can present antigens to naïve T lymphocytes, and in turn activate and induce

T lymphocytes to become antigen-specific cytotoxic T lymphocytes (CTLs) that target tumor

cells [11]. Both the proliferative and cytolytic functions of tumor-specific CTLs require antigen

recognition by the T cell receptor (TCR) in the context of major histocompatibility complex

class one (MHC class I) molecules presented on APCs or target cells [12].

Hepatocellular carcinoma (HCC) is a malignant disease that is often associated with a very

poor prognosis [13]. While considerable efforts have been made to improve HCC treatment—

which mainly depends on surgical resection, liver transplantation and chemotherapy—the

HCC mortality rate remains high, largely due to cancer recurrence after surgery or intra-

hepatic metastasis that develop through invasion of the portal vein or spread to other parts of

the liver [14]. Breast cancer ranks first among the causes of mortality among females aged

between 20 and 59 years [15]. In recent years, the encouraging trend towards earlier detection

and the increased use of systemic adjuvant treatments have improved breast cancer survival

rates; however, nearly half of all breast cancer patients treated for localized disease develop

metastasis [16]. Cancer stem-like cells (CSCs) typically represent a small fraction of tumor

cells that can self-renew and differentiate into many more mature cancer cells [17]. The failure

of conventional cancer therapy may be due to the presence of residual CSCs that can survive in

a dormant state for many years after remission and result in tumor relapse [18].

In the present study, we investigated the effect of CSC peptides as antigen sources for DC

vaccination against human breast cancer and HCC. Our results revealed that pulsing DCs with

CD44 or EpCAM peptides enhanced T cell stimulation thus resulting in the induction of cell

cytotoxicity. Furthermore, pulsing DCs with EpCAM peptides significantly suppressed tumor

growth. The results of the present study suggest that the capacity of this vaccine to target CSCs

could be exploited as a novel therapeutic strategy to inhibit tumor relapse.

Materials and methods

Cell culture conditions

The human breast adenocarcinoma cell line MCF-7 and the human hepatoma cell line HepG2

were purchased from the American Type Culture Collection (Rockville, MD, USA) and cul-

tured in DMEM (Welgene, Daegu, Korea) supplemented with 10% fetal bovine serum (FBS)

(HyClone, Logan, UT, USA) and 100 U/ml penicillin/streptomycin (Gibco, Carlsbad, CA,

USA) in a humidified atmosphere with 5% CO2 at 37˚C.

Flow cytometry and cell sorting

Cells were trypsinized and suspended in phosphate-buffered saline (PBS) containing 2% FBS

at a density of 1×108 cells/ml. For flow cytometry, the MCF-7 cells were incubated with anti-

CD24-FITC and anti-CD44-APC monoclonal antibodies (mAbs) (BD Biosciences, Bedford,

MA, USA), and the HepG2 cells were incubated with the anti-EpCAM-PerCP-Cy5.5 mAb

(BD Biosciences, San Jose, CA, USA) on ice for 60 min. FITC mouse anti-IgG2a, APC mouse

anti-IgG2b and PerCP/Cy5.5 anti-mouse IgG1 (BD Biosciences) were used as isotype control

antibodies. After being washed with PBS supplemented with 1% FBS, the labeled cells were

sorted on a FACSAria Cell Sorter (BD Biosciences, San Jose, CA, USA).
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Cell lysate preparation

Cell pellets were resuspended in an equal volume of Cellgro (Genix, Freiburg, Germany), and

the suspensions were sonicated on ice over 4-min intervals, which included pulsing for 15 sec-

onds on and 15 seconds off, and they were then centrifuged at 14,000 rpm for 30 min. The

supernatants were filtered with a 0.2-μm syringe filter, and the protein concentrations were

determined using Bradford protein assay reagent (Bio-Rad, Hercules, CA, USA). Supernatants

were stored at -80˚C until use.

Western blot analysis

Protein samples were separated by 10% SDS–PAGE and transferred to polyvinylidene difluor-

ide membranes. The membranes were incubated with anti-CD44 (1:200; sc-53298; Santa Cruz

Biotechnology, Dallas, TX, USA), anti-ALDH1/2 (1:200; sc-50385; Santa Cruz Biotechnology),

anti-EpCAM (1:200; sc-25308; Santa Cruz Biotechnology) or anti-GAPDH (1:2000; sc-32233;

Santa Cruz Biotechnology). Antibody immunostaining was achieved using the Super-Signal

West Pico enhanced chemiluminescence substrate, and the proteins were detected using the

LAS-3000 PLUS image analyzer (Fuji Photo Film Co., Kanagawa, Japan).

T2 cell binding assay

The binding affinities of all 9-mer peptides were predicted for HLA class I alleles. Binding pre-

diction analysis was performed using a computer algorithm from the Immune Epitope Data-

base (IEDB) website, and eight peptides with an amino acid sequence motif appropriate for

binding to HLA-A2 were identified. The peptides were synthesized by AbFrontier (Seoul,

Korea). The ability of the peptides to bind HLA-A2 molecules was measured using the T2 cell

line because HLA-A2 expression is stabilized and maintained on the surface of T2 cells when

peptides are bound in the grooves of HLA-A2 molecules to form complexes. T2 cells (2×106/

ml/well of a 24-well plate) were incubated in either medium alone or medium containing

individual peptides at a concentration of 10 μg/ml plus 5 μg/ml β2-microglobulin (Sigma-

Aldrich, St. Louis, Mo, USA) overnight. The HLA-A2 strong-binding HIV peptide ILK-

EPVHGV was used as a positive control in the peptide binding assays. After being incubated

with medium or medium plus peptide, the T2 cells were washed with PBS and incubated with

an anti-HLA-A2-PE mAb (BD Biosciences, BB7.2 clone) for 1 h at 4˚C. The fluorescence

intensity and positive cell percentages were measured on a flow cytometer (BD FACSAria, San

Jose, CA, USA). The ability of each peptide to bind HLA-A2 was evaluated by determining the

mean fluorescence intensity of stained T2 cells that were pulsed with the peptides.

iDC generation

Human DCs were generated from monocytes isolated from the PBMCs of healthy HLA-A2

donors using Histopaque1-1077 (Sigma-Aldrich). The PBMCs were resuspended in x-Vivo

medium (Lonza, Walkersville, MD, USA) containing 1% human serum (Sigma-Aldrich) at a

cell density of 1×107 cells/ml and plated in T75 flasks. The flasks were incubated in 5% CO2

at 37˚C for 90 min, and nonadherent cells were then gently resuspended and removed. The

adherent cells were then cultured in LGM-3 medium (Lonza, Walkersville, MD, USA) con-

taining 1% human serum, recombinant human GM-CSF (1,000 units/ml, R&D Systems, USA)

and IL-4 (1,000 units/ml, R&D Systems, USA) for 5 days. Next, the adherent cells were har-

vested, counted, and resuspended in culture medium. The phenotypes of iDCs were deter-

mined by flow cytometry using PE-conjugated anti-CD83 (1:20; IM2218U; Beckman Coulter,

Marseille, France), anti-HLA-ABC (1:20; IM1838U, Beckman Coulter) and PE-conjugated
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anti-HLA-DR (1:20; IM1639, Beckman Coulter) antibodies. The expression of cell surface

markers was then determined by flow cytometry using the Cytomics FC 500 instrument (Beck-

man Coulter, Fullerton, CA, USA).

DC antigen loading

After DC generation, 5×106 iDCs were stimulated with tumor cell lysates and peptides

(500 μg/ml) in the presence of GM-CSF and IL-4. After 4 h, the maturation cocktail [1 μg/ml

TNF-α, IL-1β, IL-6 (all from R&D Systems), and 10 μg/ml prostaglandin E2 (PGE2) (Sigma-

Aldrich)] was added, and the cells were incubated with the cocktail for 2 days.

Autologous T cell activation by DCs sensitized with target cells

PBMCs were incubated in 5% CO2 at 37˚C for 90 min, and nonadherent cells were then gently

resuspended and harvested. DCs were transferred to new 6-well plates and cultured with T

cells in LGM-3 medium containing 1% human serum, GM-CSF and IL-4 for 5 days. Fresh

medium containing cytokines was added each day.

T cell cytotoxic activity assay

T cell cytotoxicity is presented as the percentage of target cells that were lysed. The target

cells were labeled with 5 μM Carboxifluorescein diacetate N-succinimidyl ester (CSFE)

(eBioscience, USA). After labeling, the cells were washed and resuspended at 1×105 cells/ml in

LGM-3 medium (Lonza) supplemented with 1% human serum, GM-CSF, IL-4 and IL-2 (100

units/ml). The T cells were incubated with 1×104 target cells in each FACS tube at various cul-

ture ratios (T cell: target cell = 10:1, 20:1 and 40:1), and the FACS tubes were incubated at

37˚C for 6 h in a humidified, 5% CO2 incubator. After incubation, the cells were stained with

50 μg/ml propidium iodide (PI) (Sigma-Aldrich), a red dye that penetrates the membranes of

dying cells, prior to analysis by flow cytometry (Beckman Coulter FC500, USA). The cytotoxic-

ity was calculated as the percentage of PI-positive cells among the CFSE-positive target cells.

Enzyme-linked immunosorbent assay (ELISA)

The IL-12 and IL-7 that were released by mDCs were detected using the Human IL-12p70

ELISA Kit (Neobioscience Technology, China) and the Human IL-7 ELISA Kit (RapidBio,

California, USA), respectively, according to the manufacturer’s protocols. IFN-γ secretion by

CTLs was detected using the Human IFN-γ ELISA Kit (BD Biosciences, USA) according to the

manufacturer’s protocol. The optical density (OD) of samples was assessed at 550 nm using a

microtiter plate spectrophotometer (Beckman Coulter detection platform, USA).

Animal studies

Female BALB/c nude mice (4 weeks old) were purchased from the Central Lab at Animal Inc.

(Seoul, Korea). All animal procedures were performed according to the protocol approved by

the Dongnam Institute of Radiological and Medical Sciences Institutional Animal Care and

Use Committee. HepG2 cells in the logarithmic growth phase (2×106 cells/50 μl saline) were

subcutaneously inoculated into the right flanks of 5-week-old mice. When the tumors grew to

a size of approximately 35 mm3 (after approximately 10 days), the mice were stratified into

groups of 5 animals that had equal mean tumor volumes and were intravenously (i.v.) treated

with CTLs (EpCAM peptide-stimulated DC-induced CTLs, HepG2 total lysate-stimulated

DC-induced CTLs, DC-induced CTLs or unstimulated T cells) on days 10 and 17 after tumor

implantation. The tumor sizes were measured weekly using calipers, and the tumor volumes
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were calculated using the following formula: (width)2 × length × 0.52. After 7 days, the mice

were sacrificed using abdominal arterial blood collection method to obtain the lymphocytes

from the spleen.

Immunohistochemistry

Paraffin-embedded sections were prepared from tumor tissue samples that had been previ-

ously fixed in 4% buffered formalin. Immunohistochemistry was performed on the deparaffi-

nized sections that had been pretreated for antigen retrieval with EDTA Tris-HCl buffer

[distilled water (DW): 1 M Tris-HCl (pH 9.0): 0.25 M EDTA (pH 7.0) = 500:5:2] in a micro-

wave for 15 min. Endogenous peroxidase activity was quenched with 0.3% H2O2 for 10 min in

DW. To reduce background staining, the sections were treated for 1 h with 5% normal horse

serum (VECTASTAIN ABC HRP Kit). The samples were incubated with anti-EpCAM (Santa

Cruz biotechnology) in a humidified chamber at 4˚C overnight. Next, the samples were incu-

bated for 1 h with secondary mAbs, a biotinylated antibody and the ABC complex (VECTAS-

TAIN ABC HRP Kit). The samples were dyed with a DAB Peroxidase Substrate Kit (Vector

Lab, USA). The cells were counterstained using hematoxylin (Sigma-Aldrich, USA), and the

immunohistochemistry images were collected using an upright microscope (Nikon ECLIPSE

80i, Japan).

Statistical analysis

The results are expressed as the means ± standard deviation (SD). Significant differences

between the treatments and control were evaluated by ANOVA (followed by the Dunnett’s

test). A p-value less than 0.05 was defined as significant.

Results

Identification of HLA-A2-restricted peptides

CSCs are a subset of cancer cells bearing stem cell features such as self-renewal and the ability

to differentiate into progeny cells, and play a pivotal role in cancer initiation, progression and

recurrence [17]. Several cell surface markers for separating CSCs have been identified in vari-

ous types of cancers. CD44+CD24- subpopulation has been regarded as a marker of CSCs in

breast cancer cells. In HCC, EpCAM+ cells have been reported to have CSC properties [19].

We screened partial amino acid sequences of CD44 and EpCAM for HLA-A2-binding pep-

tides using a peptide binding database. The IEDB is based on the predicted binding strength

between a specific peptide and related MHC molecules. By comparing the predicted binding

scores, we identified eight peptides for each marker (CD44 and EpCAM) that have high affin-

ity for HLA-A2 molecules.

The predicted HLA-A2-binding affinities of the peptides were measured using the T2 cell

binding assay. A peptide from HIV type 1 reverse transcriptase (HIV-pol) was used as a posi-

tive control [20]. As shown in Table 1, the strongest binding affinity for TAAs was observed

with the HLA-A2 molecule. Good and intermediate binders were chosen for subsequent DC

vaccination-based immunogenicity studies in MCF-7 and HepG2 cells.

CD44 peptide-specific CTLs can effectively kill MCF-7 CSCs

A subpopulation (CD44+CD24-) of MCF-7 cells was separated and collected by flow cytometry

(Fig 1A). To study whether CSCs from MCF-7 cells express certain TAAs, we measured the

expression levels of aldehyde dehydrogenase (ALDH), a detoxifying metabolic enzyme that is

often associated with stem and progenitor cell populations [21]. Western blot analysis was
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used to examine the expression of ALDH in the FACS-sorted cells. As shown in Fig 1B, ALDH

was highly expressed in CD44+CD24- cells and CD44+ cells.

DCs loaded with various antigens were co-cultured with T cells and CD44+ MCF-7 cells for

6 h. FACS analysis was performed to compare the cytotoxic activities of CTLs induced by

unstimulated DCs (DC-CTLs), TL-CTLs (MCF-7 Tumor cell lysate stimulated DC-CTLs),

Sorting-CTLs (CD44+ MCF-7 cell lysate stimulated DC-CTLs) and Pep-CTLs (which were

induced by DCs stimulated with one of the following peptides: CD44-1, CD44-3 or CD44-6)

against CD44+ MCF-7 cells. The results showed that Pep-CTLs had a more efficient cytotoxic

activity against CD44+ MCF-7 cells than did Sorting-CTLs and TL-CTLs (Fig 1C).

Therefore, we hypothesized that CTLs stimulated by DCs pulsed with CD44 peptide can

recognize the CD44 naturally present in breast cancer cells in the context of HLA-A2 and kill

CD44 positive MCF-7 tumor cells.

EpCAM+ HepG2 cells are more immunogenic

EpCAM+ HepG2 cells were sorted by flow cytometry, and after sorting, more than 90% of the

purified cells expressed EpCAM (Fig 2A and 2B).

Tumor antigens must be presented by MHC class I molecules to be recognized by specific

CTLs, and MHC class I molecule expression is essential for CTL activation [22]. Therefore, we

Table 1. Binding affinity of TAA for HLA-A2 molecules.

Peptide sequence Percentile rank a Mean fluorescent intensity b

Media 17.2 ± 1.2

HIV-pol ILKEPVHGV 2 66.6 ± 2.7 #

CD44 MCF-7 lysates 34.3 ± 3.0 #

CD44+MCF7 lysates 40.9 ± 3.3 #

1 YIFYTFSTV 0.6 57.7 ± 2.1 # *

2 LILAVCIAV 1 48.1 ± 2.9 # *

3 SLLALALIL 1.7 56.0 ± 2.0 # *

4 IILASLLAL 2.3 49.4 ± 2.4 # *

5 WLIILASLL 3.4 50.3 ± 2.9 # *

6 VLLQTTTRM 4.7 54.7 ± 1.6 # *

7 GLVEDLDRT 6.9 44.0 ± 3.6 # *

8 TVGDSNSNV 8.3 38.3 ± 4.2 #

EpCAM HepG2 lysates 32.9 ± 3.0 #

EpCAM+HepG2 lysates 38.2 ± 1.3 #

1 VVAGIVVLV 1.5 63.0 ± 2.0 # *

2 GLKAGVIAV 2.0 51.8 ± 2.3 #

3 VLAFGLLLA 2.1 48.7 ± 2.8 #

4 RTYWIIIEL 2.1 52.5 ± 0.9 # *

5 SMCWCVNTA 2.3 58.5 ± 2.8 # *

6 SMQGLKAGV 2.3 47.9 ± 2.0 #

7 ILYENNVIT 3.8 56.0 ± 1.9 #

8 LLLAAATAT 4.8 35.2 ± 1.8 #

a CTL epitope prediction score as calculated by the IEDB software (http://www.iedb.org)
b Mean fluorescent intensity of stained T2 cells pulsed with peptides.

The data are expressed as the mean±SD, and significant differences emerged between the treated groups with ANOVA followed by Dunnett’s test.
# P<0.05, compared with Media.

* P<0.05, compared with the MCF-7 or HepG2 lysates.

https://doi.org/10.1371/journal.pone.0190638.t001
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evaluated the expression of MHC class I and class II molecules on CSCs. The expression of

HLA-ABC (MHC-I) and HLA-DR (MHC-II) on EpCAM+ HepG2 cells was examined by flow

cytometry. The MHC markers were expressed at higher levels on EpCAM+ HepG2 cells than

on HepG2 cells, suggesting that EpCAM+ HepG2 cells are more immunogenic (Fig 2C).

To determine if CSC lysates and CSC peptides, which upregulate the HLA-A2 molecule,

actually bind to the HLA-A2 molecule, we tested the binding affinity of EpCAM+ HepG2 cells

and EpCAM-1 peptides using a T2 cell binding assay. As shown in Table 1, the EpCAM-1 pep-

tide had a stronger binding affinity than that of EpCAM+ HepG2 cells for the HLA-A2

molecule.

Characterization of DCs pulsed with HepG2 TAAs

As shown in Fig 3A, mDCs isolated from the PBMCs of a healthy HLA-A2+ donor were loaded

with TL-DCs (HepG2 cell lysate stimulated), Sorting-DCs (EpCAM+ HepG2 cell lysate stimu-

lated) or Pep-DCs (EpCAM-1 peptide stimulated). These human mDCs highly expressed

CD83, HLA-ABC (MHC-I) and HLA-DR (MHC-II) at levels similar to those expressed by

Fig 1. The specific lytic activity of MCF-7 cancer stem-like cell antigens. (A) Identification of populations of MCF-7 cells by flow cytometry

analysis of CD44 and CD24 expression. (B) Western blot showing CD44 and ALDH protein expression in CD44+, CD44- and CD44+CD24- MCF7-

cells. (C) Targeted killing of CD44+ MCF-7 cells by tumor-associated antigen-pulsed, DC-induced CTLs. The data are expressed as the mean±SD,

and significant differences between the treated groups were detected using ANOVA followed by the Dunnett’s test. # p<0.05 compared with the

DC-CTLs. * p<0.05 compared with the TL-CTLs.

https://doi.org/10.1371/journal.pone.0190638.g001
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mDCs that were not loaded with antigens. Thus, the loading DCs with EpCAM peptides

resulted in the efficient generation of mDCs without altering the phenotype of the mDCs.

Cytokine secretion is often assessed to determine DC function, and DCs reportedly pro-

duce IL-7 and IL-12, which contributes to T lymphocyte activation [23–24]. Therefore, we

measured IL-7 and IL-12 production by iDCs and mDCs pulsed with or without TAAs. The

concentrations of IL-7 and IL-12 in the mDC culture supernatants were significantly higher

than those in the iDC culture supernatants. However, there were no significant differences in

the concentrations of IL-7 and IL-12 among the TL-DCs, Sorting-DCs, Pep-DCs or mDCs

pulsed without antigens in the culture supernatants (Fig 3B and 3C).

EpCAM peptide-specific CTLs can effectively kill HepG2 CSCs

To confirm the activation of lymphocytes by EpCAM peptide-stimulated DCs, we investigated

the levels of IFN-γ secreted by T cells following stimulated with tumor antigens. To generate

antigen-specific CTLs from healthy donors, DCs loaded with various antigens were co-cul-

tured with T cells at a DC: T cell ratio of 1:5 for 5 days. T cells stimulated with EpCAM pep-

tide-loaded DCs produced significantly higher levels of IFN-γ than did T cells stimulated with

Fig 2. The immunological phenotype of HepG2 cancer stem-like cells. (A) The top 10% most brightly stained EpCAM positive HepG2 cells

were purified by flow cytometry. A representative analysis of EpCAM+ HepG2 cell purity after sorting is shown. (B) The expression of EpCAM in

EpCAM negative or positive HepG2 cells was evaluated using western blot analysis. (C) Flow cytometry analysis of HLA-ABC (MHC-I) and

HLA-DR (MHC-II) expression in EpCAM+ HepG2 cells. HLA-ABC and HLA-DR expression in EpCAM+ HepG2 cells is indicated by the black areas.

The data are expressed as the mean±SD, and significant differences between the treated groups were detected using ANOVA followed by the

Dunnett’s test. # p<0.05 compared with the HepG2.

https://doi.org/10.1371/journal.pone.0190638.g002
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TL- or Sorting-DCs (Fig 4A). The data suggest that DC vaccination using EpCAM peptides

can elicit a strong antigen-specific CTL response.

To determine whether the stimulated T cells contained antigen-specific CTLs, we per-

formed cytotoxicity analyses. FACS analysis was used to compare the cytotoxic activities of

DC-CTLs, TL-CTL (HepG2 cell lysate stimulated DC-CTLs), Sorting-CTLs (EpCAM+ HepG2

cell lysate stimulated DC-CTLs) and Pep-CTLs (EpCAM-1 peptide stimulated DC-CTLs) tar-

geting EpCAM+ HepG2 and EpCAM- HepG2 cells. Pep-CTLs had the most efficient cytotoxic

activity against EpCAM+ HepG2 cells (Fig 4B). However, TL-CTLs were more efficient than

Pep-CTLs against EpCAM- HepG2 cells (Fig 4C).

These results indicate that CTLs stimulated by EpCAM peptide-pulsed DCs can recognize

the EpCAM present on HepG2 cells in the context of HLA-A2 and kill EpCAM-positive

HepG2 tumor cells.

DC vaccination using EpCAM peptides inhibits HepG2 cell-induced

tumor growth

To investigate whether EpCAM peptide-pulsed CTLs targeting HepG2 CSCs can induce anti-

tumor immunity in vivo, we established a HepG2 hepatoma cancer model. In the present

study, BALB/c nude mice received adoptive immunotherapy by receiving an intravenous

Fig 3. Analysis of DC surface markers and the cytokine secretion assay. (A) The immunophenotype of DCs pulsed with antigens. The mDC

phenotypes were analyzed by flow cytometry using the indicated antibodies (black areas) and isotype controls (white areas). (B and C) IL-7 (B) and

IL-12 (C) levels in DC culture supernatants, as determined by ELISA. The data are expressed as the mean±SD, and significant differences

between the treated groups were detected using ANOVA followed by the Dunnett’s test. # p<0.05 compared with the iDCs.

https://doi.org/10.1371/journal.pone.0190638.g003
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injection of Pep-CTLs on days 10 and 17 after tumor implantation. The control groups were

injected with TL-CTLs, DC-CTLs or T cells (Fig 5A).

As shown in Fig 5B, the tumors were smallest in the Pep-CTL group at 24 days, followed by

the TL-CTL group, the DC-CTL group and the T cell group. To determine whether the relative

protective effect of Pep-CTL vaccination was due to tumor-specific immunity, we performed a

CTL assay. Tumor-specific CTLs against EpCAM+ HepG2 cells were evaluated with by FACS

analysis using lymphocytes from the four treated groups. The percentage of EpCAM+ HepG2

cells lysed by the lymphocytes from mice treated with Pep-CTLs increased significantly as the

ratio of effectors to targets increased (Fig 5C). To examine the effects of Pep-CTLs on EpCAM

expression in tumor tissue, we performed immunohistochemical analyses. Tumor tissue from

the EpCAM peptide-CTL group showed weak expression, as determined by immunohisto-

chemical staining of EpCAM (Fig 5D).

Fig 4. Characterization of the EpCAM peptide-specific CTL responses against HepG2 CSCs. (A) IFN-γ release by antigen-specific CTLs stimulated

by antigens. Naïve T cells stimulated by co-culturing with tumor antigen-pulsed DCs were analyzed by ELISA for their production of IFN-γ. (B and C)

Results from a cytotoxicity assay of CD8+ T cells activated by tumor antigen-pulsed DCs. Different DCs were co-cultured at a ratio of 1:5 with lymphocytes

for 5 days. The non-adherent cells were collected and counted as effector cells. The effector cells were co-cultured with the EpCAM positive (B) and

EpCAM negative (C) HepG2 cells at different ratios for 6 h at 37˚C in a 5% CO2 incubator. The data are expressed as the mean±SD, and significant

differences between the treated groups were detected using ANOVA followed by the Dunnett’s test. # p<0.05 compared with the DCs or DC-CTLs, and

* p<0.05 compared with the TL-CTLs.

https://doi.org/10.1371/journal.pone.0190638.g004
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These results indicate that EpCAM peptide-CTLs inhibit tumor growth in vivo and induce

specific immune responses that target CSCs.

Discussion

DCs are professional APCs that are present in small numbers in all body tissues [25], and they

are responsible for capturing and presenting antigens for the initiation of T cell immune

responses. Tumor antigens in the form of peptides, proteins, DNA and RNA have been used

Fig 5. The antitumor efficacy of the EpCAM peptide-pulsed, DC-induced CTLs in HepG2 tumor-bearing mice. (A) The experimental setup and

showing the injection schedule for the tumor-associated antigen-pulsed, DC-induced CTLs. (B) Inhibition of tumor growth analysis. Tumor-bearing BALB/c

nude mice were treated with intravenous injections of Pep-CTLs (EpCAM peptide stimulated DC-CTLs), TL-CTLs (HepG2 cell lysate stimulated DC-CTLs),

DC-CTLs and T cells on days 10 and 17 after tumor implantation. (C) EpCAM+ HepG2-specific cytotoxicity. Lymphocytes were isolated from the Pep-CTL-,

TL-CTL-, DC-CTL- or T cell-treated mice on day 14 post-inoculation. (D) Immunohistochemistry with anti-EpCAM antibodies in HepG2 tumor tissue. Tumor

regions of a section from a tumor isolated on day 24 after tumor implantation. Original magnification, 200×. The data are expressed as the mean±SD, and

significant differences between the treated groups were detected using ANOVA followed by the Dunnett’s test. #P<0.05 compared with the DC-CTLs, and

* p<0.05 compared with the TL-CTLs.

https://doi.org/10.1371/journal.pone.0190638.g005
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to sensitize DCs [26]. Recent studies have demonstrated that CSCs are closely related to tumor

occurrence, progression, metastasis, recurrence, drug resistance and immune evasion [27–29].

Therefore, in this study, we prepared EpCAM+ HepG2 lysates and EpCAM peptides from hep-

atoma stem-like cells for use in antigen-loaded DC-based vaccines. Human DCs pulsed with

EpCAM peptide antigens effectively induced EpCAM peptide-specific CTLs in vitro, and these

CTLs effectively killed EpCAM-expressing HepG2 cells.

In general, because the recognition of antigens presented by DCs by TCR of T lymphocytes

is limited by MHC molecules, the killing of target cells by activated CTLs is also limited by MHC

molecules [30]. The affinity with which an epitope binds to an MHC molecule plays a key role in

determining its immunogenicity [31], and high affinity MHC epitope interactions tend to be

associated with higher immune responsiveness. As shown in Table 1, we selected EpCAM pep-

tides with high affinity to HLA-A2 molecules and generated EpCAM peptide-specific CTLs

using EpCAM peptide-pulsed DCs as APCs. We found that EpCAM+ HepG2 cells express high

levels of HLA-ABC (MHC-I) and HLA-DR (MHC-II) molecules. Additionally, EpCAM pep-

tides had a stronger binding affinity for the HLA-A2 molecule than did the EpCAM+ HepG2

cells in a T2 cell binding assay, suggesting that EpCAM peptides are more immunogenic (Fig 2).

Tumor-specific CD8-positive CTLs are the most important effector cells for antitumor

responses [32, 33]. In the present study, human mDCs from a healthy HLA-A2+ donor were

loaded with various antigens (HepG2 cell lysates, EpCAM+ HepG2 cell lysates and EpCAM

peptides) (Fig 3) and co-cultured with T cells to generate antigen-specific CTLs. The results

showed that the EpCAM peptide antigens induced higher levels of T cell IFN-γ secretion and

that the EpCAM peptide CTLs had the most efficient cytotoxic activity against EpCAM+

HepG2 cells. These results indicate that CTLs stimulated by EpCAM peptide-pulsed DCs can

recognize the EpCAM presented by HepG2 cells in the context of HLA-A2and kill EpCAM

positive HepG2 tumor cells (Fig 4). Moreover, in MCF-7 human breast adenocarcinoma cells,

the CD44-1 peptide had the strongest binding affinity for the HLA-A2 molecule, and CD44-1

peptide stimulated DC-CTLs exhibited the most efficient cytotoxic activity against CD44+

MCF-7 cells (Fig 1C).

Finally, we investigated whether the EpCAM peptide-pulsed, DC-induced CTLs targeting

CSCs could induce antitumor immunity in vivo. The results showed that vaccination of nude

mice with EpCAM peptide-CTLs delayed tumor growth induced by HepG2 cells. The FACS-

based cytotoxicity assay of tumor-specific CTLs against EpCAM+ HepG2 cells using lympho-

cytes from the four treatment groups showed that EpCAM peptide-CTLs increased the cyto-

toxic activity significantly as the ratio of effectors to targets increased. The tumor tissue from

the EpCAM peptide-CTLs group showed weak expression, as determined by EpCAM immu-

nohistochemical staining. These results indicate that vaccination with CSC peptide-primed

DCs can induce specific immune responses that target CSCs in the HepG2 hepatoma tumor

model (Fig 5).

Our present study demonstrated that CSC peptides are present on HLA-A2 molecules and

that the killing of CSCs expressing human breast and HCC CSCs by peptide-specific CTLs is

restricted by HLA-A2. Therefore, CSC peptides may be better sources of antigens for cancer

immunization that are the sources that are currently used. Additionally, CSC peptide-pulsed,

DC-induced CTLs can be used for vaccination immunotherapy to eliminate human breast and

HCC CSCs.
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