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Abstract

Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy

enabling it to cope with antibiotics by cooperating with a different bacterium—Escherichia

coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin.

On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar

percentages. The two bacterial species form a shared colony in which E. coli is transported

by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, con-

sisting of coupled reaction-diffusion equations, describing the development of ring patterns

in the shared colony. Our results demonstrate some of the possible cooperative movement

strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the

behavior of mixed colonies under new conditions such as antibiotic gradients, synchroniza-

tion between colonies and possible dynamics of a 3-species system including P. vortex, E.

coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor

conditions. The derived model was able to simulate an asymmetric relationship between

two or three micro-organisms where cooperation is required for survival. Computationally, in

order to avoid numerical artifacts due to symmetries within the discretizing grid, the model

was solved using a second order Vectorizable Random Lattices method, which is developed

as a finite volume scheme on a random grid.

Introduction

Cooperation between bacterial species is an exciting demonstration of how micro-organisms

can facilitate dispersal by forming multispecies swarms with mutual benefits [1]. For example,

experiments show that different bacterial species can use collective migration to cross barriers

and reach new habitats [2–6]. From a modeling point of view, multispecies swarms and colo-

nies present new theoretical and computational challenges, in particular due to a rich phase

diagram with a multitude of possible emerging patterns.

Here, we focus on explaining recent experiments by Finkelshtein et al. [7] in which the bac-

terial species Paenibacillus vortex (P. vortex) and Escherichia coli (E. coli) were shown to coop-

erate in order to survive and grow in an antibiotic-rich environment. It is known that P. vortex
is a highly effective swarmer that can move rapidly over surfaces [8] and move towards nutri-

ents [9] or away from antibiotics [2, 10]. P. vortex is sensitive to high concentrations of
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ampicillin, a beta-lactam antibiotic that damages the cell wall, leading to death [7]. In contrast,

E. coli cannot produce the lubricant needed for efficient movement across surfaces on high-per-

centage agar plates that permit P. vortex swarming. However, the strain studied carries the gene

encoding a beta-lactamase enzyme that can degrade ampicillin [7]. Surprisingly, Finkelshtein

et al. [7] show that a mixed colony of P. vortex and E. coli can expand the colony size and grow

even at high antibiotic concentrations in which neither species can grow on its own—P. vortex
alone dies because of antibiotics while E. coli alone cannot move toward other regions on the

plate when nutrients available locally are completely consumed. The mixed colony develops a

ring-shaped pattern with intermittent switching between low and high bacterial densities (see

Fig 1). It has been hypothesized that P. vortex carry E. coli towards the edge of the colony so that

the latter can inactivate the antibiotics. Once the antibiotic has been locally deactivated, the col-

ony continues its expansion. Thus, the ringed pattern is formed by sequential transitions

between two growth states: the first is a high-density, cooperating (or expanding) state in which

the colony expands rapidly [7], while the second is a low-density, competing (or building) state,

in which the different types of bacteria compete for the limited nutrient supply. This two-species

cooperation changes the usual, continuous expansion of a P. vortex colony observed under rich

conditions, into a periodic, oscillating growth dynamics.

Following the experimental observations, one of the main assumptions underlying our

model is that P. vortex can appear in two forms or phases [10]. The first, termed a “builder”

phase, occurs when the bacterial density is relatively low. Since movement depends on the abil-

ity of bacteria to extract liquids from the substrate, motility in this phase is low and depends

on the local bacterial density. On the other hand, when the bacterial population is large enough

to support the colony’s expansion then the cells transition to a morphologically different

phase. This subpopulation, termed “explorer”, is characterized by cell elongation and rapid

movement into new territories [10]. We assume that transitions between the phases is a revers-

ible global event that encompasses the entire colony once the average bacterial concentration

reaches a critical high or low threshold. See the methods section for details on how these obser-

vations are implemented.

In this paper, we present a mathematical model describing the bacterial density for the two

bacterial species in an antibiotic environment. Our results are compared with experimental

observations. In particular, we confirm the biological hypotheses on which the model is based

and shed light on the way in which different bacterial species cooperate in order to survive and

develop a shared colony in a hostile environment.

The literature shows a wide variety of approaches to model development of bacterial colonies

[1–5,9,11–24]. The proposed models can be divided into two main categories: discrete models

[3,4,11,15,19,22] and continuous models [3–5,9,11–21,23,24]. In the discrete approach, the

characteristics of individuals or groups in a colony are described, for instance, the location of

individuals, nutrient consumption rates and mortality rates. The advantage of these models is

the differentiation between the characteristics of different individuals and the ability to follow

an individual or specific group for a length of time. However, simulations of realistic bacteria

numbers in a colony are not possible. On the other hand, continuous models describe charac-

teristics shared by a large number of cells, for example, local density averages, mean nutrient

consumption rates etc. The advantage of these models is their relative simplicity. However, they

are not able to focus on a certain bacterial group and the long-term processes influencing it.

A special emphasis was given to the Paenibacillus bacteria, which were found to develop

unique patterns, branching out from the center of the colony in different directions [17, 18].

Experiments have shown that different pattern characteristics, for example, the number and

density of branches and the growth rate, depend on the environment: the growth medium,

humidity, temperature, the amount of nutrients and the initial bacterial concentration [20,21].
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We will focus and generalize the continuous model suggested by Schwarcz et al. [23], involving

coupled partial differential equations. This two-dimensional model was shown to successfully

reproduce all possible patterns observed for different colonies and with realistic growth rates.

See also [12,13,19,24] for similar approaches.

Fig 1. A typical ringed pattern of a mixed P. vortex and E. coli bacterial colony on a 14 cm agar plate containing the antibiotic ampicillin. The rings

represent different bacterial densities in alternating behaviors of building and expansion. Reproduced from [7].

https://doi.org/10.1371/journal.pone.0190037.g001
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One of the main computational challenges in simulating the growth of bacterial colonies and

other complicated reaction-diffusion processes showing pattern formation, is that solutions (or

solution interfaces) may become unstable. As a result, the numerical methods and, in particular,

the grid used for discretization is highly important, as symmetries in the underlying computa-

tional lattice can induce similar symmetries in the solution. To overcome this difficulty, we

applied a Vectorizable Random Lattice (VRL), in which vertices are a set of randomly chosen

points with uniform distribution. See Fig 2 for a simple numerical example. The method, origi-

nally proposed in [25], was adapted for simulating the growth of bacterial colonies in [23].

Here, the numerical scheme is re-derived using a finite-volume approach [26], which facilitates

generalization to different time-stepping schemes and conservative high-order methods.

Materials and methods

For a single species, the model is described in terms of a two-dimensional system of reaction-

diffusion equations as follows (see also [12,13,19,23,24]).

@b
@t
¼ rðDbb

krbÞ þ bðnÞb � mðnÞb

@n
@t
¼ DnDn � lðnÞb

ð1Þ

• The first Eq describes the density of bacteria b(x,y,t). The first term is a nonlinear diffusion

with a coefficient that depends on b. The exponent k describes the mobility of bacteria within

the medium [12,13]. Following [23], we take k = 0 for explorers and k = 1 for builders (see

details below). The second and third terms describe the bacterial reproduction and death

rates, which may depend on the local nutrient concentration [27].

Fig 2. Grid effects. Numerical solutions for the linear (k = 0, top) and non-linear (k = 1, bottom) diffusion

equation @b/@t =r�(bkrb). With linear diffusion, a rectangular lattice (left) and a random lattice (right) yield

similar results. However, with non-linear diffusion, the solution is compact and different lattices yield

observably different numerical solutions. In particular, the 4-fold symmetry of the rectangular grid is apparent

in figure (C).

https://doi.org/10.1371/journal.pone.0190037.g002
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• The second Eq describes the nutrient density n(x,y,t), where, the first term is diffusion and

the second describes nutrient consumption.

For the rest of the paper, bacteria densities is measured in terms of the local area fraction

that cells occupy.

The main purpose of the paper is to generalize the model (1) to the two-species case with

antibiotics.

@b1

@t
¼ r½D1b

k
1
rb1� þ b1ðnÞb1 � m1ðn; aÞb1

@b2

@t
¼ r½D2rb2� þ r½C2b2rb1� þ b2ðnÞb2 � m2ðnÞb2

@n
@t
¼ r½Dnrn� � l1ðnÞb1 � l2ðnÞb2

@a
@t
¼ r½Dara� � pðaÞb2

ð2Þ

• The first Eq. describes the density of P. vortex, denoted b1(x,y,t). This equation is similar in

form to the equation presented in model (1), except that the death term μ1(n,a)b1 depends

also on the antibiotics concentration, a(x,y,t).

• The second Eq. describes the density of E. coli, denoted b2(x,y,t). The first term describes the

(low) self-movement of E. coli as a linear diffusion with a small parameter, D2� D1. The sec-

ond term describes advection with the flow of P. vortex, i.e., in the direction ofrb1. This

component is the main movement component for b2, i.e., D2� C2. The last two terms are

reproduction and death. Note that E. Coli is not sensitive to the antibiotics used in the exper-

iments and, accordingly, its death rate does not depend on a.

• The third Eq. describes the nutrient concentration n(x,y,t), similar to (1b).

• The last Eq describes the antibiotic concentration a(x,y,t), where, the first term describes dif-

fusion and the second term describes the inactivation of the antibiotics by E. coli.

Following [23], the mortality rates are taken as, μ1(n,a) = 0.3a/(1 + 4n) and μ2(n) = 1/(1 +

4n). Reproduction, nutrients and antibiotics degradation rates are taken as linear functions.

See Table 1 for simulation values and [23] for a detailed discussion on the relation between

simulated and physical magnitudes.

We assume no-flux conditions on the domain boundary. In experiments, at the initial inocu-

lation spot the two species are homogenously mixed (normally 50:50). The next stage is the for-

mation of swarming groups of P. vortex but the system rapidly (24 h) corrects to approximately

50:50 even if the initial inoculation is not balanced. The antibiotic and nutrients are initially dis-

tributed homogeneously. Accordingly, nutrient and antibiotics initial concentrations are con-

stants, denoted n0 and a0. The initial bacterial concentrations are a smoothed circle (see below).

Following the biological considerations described above, transitions between the exploring

and building states depend on the average density of P. vortex bacteria in the entire colony,

b1 ¼

Z

B
b1dA
Z

B
dA

; where B ¼ fðx; yÞjb1ðx; yÞ > 10� 6g ð3Þ

Initially, all bacteria are builders. In this phase, motility depends on the ability of cells to

extract liquids from the substrate which, in turn, depends on the local bacterial density. Hence,
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we take k = 1. It has been shown that with a nonlinear diffusion, the colony’s boundary is sharp,

which is consistent with the biological picture of a relatively stationary growth stage. Once b1

becomes larger than a prescribed threshold bmax, the entire colony transitions to a new state of

explorers in which k = 0. In this phase, the expansion rate of the colony is significantly larger. As a

result, the average bacterial density reduces. The colony will switch back to a building state if b1

becomes smaller than a second threshold bmin. Selected parameters values are detailed in Table 1.

The value of bmax also sets the physical scale for the bacterial concentrations. Assuming that

bmax corresponds to an area fraction of approximately 50%, then, unit concentration bi = 1 cor-

responds to an area fraction of about 1=2bmax.

The numerical method

As discussed above, one of the main difficulties in solving equations of the form of (1) and (2)

is that symmetries in the discretizing lattice may become manifested in the numerical solution

[16,23,24]. Different approaches have been suggested to overcome this problem. For example,

[16] suggest adding some low-amplitude random noise to solutions on regular lattices. Instead,

we will apply a random grid method, which does not exhibit any artifact symmetries. We will

follow the Vectorizable Random Lattice (VRL) approach developed in [23,25]. One of the

main goals of this paper is to further develop the numerical analysis of nonlinear reaction-dif-

fusion equations on the VRL.

The random lattice was first presented by Christ et al. [28]. Its main feature is the random

selection of points in the domain. According to [28], the number of vertices on a random lat-

tice in a given area or volume is a random variable with a Poisson distribution (which is called

Table 1. The different parameter values used in simulations. Conversions between simulated and physical units are discussed in the results section.

Parameter Value Description

Δt 0.001 Time step length

D1(exploring) 0.35 Diffusion coefficient of P. vortex at exploring state

D1(building) 0.0125 Diffusion coefficient of P. vortex at building state

D2 0.0001 Self-motility diffusion coefficient of E. coli

C2 6 Advection coefficient of E. coli with the flow of P. vortex

Dn 0.25 Diffusion coefficient of the nutrients

Da 0.25 Diffusion coefficient of the antibiotics

β1(exploring) 0.7 P. vortex reproduction rate at exploring state

β1(building) 0.9 P. vortex reproduction rate at building state

β2 0.5 E. coli reproduction rate

k(exploring) 0 Linear diffusion of P. vortex at exploring state

k(building) 1 Linear diffusion of P. vortex at building state

λ1 0.9 Nutrients consumption rate by P. vortex

λ2 0.9 Nutrients consumption rate by E. coli

n0 2 Initial concentration of n

p 0.6 Antibiotic decomposition rate

a0 2 Initial concentration of a

bmax
0.033 Maximal value for b1 at building state

bmin
0.007 Minimal value for b1 at exploring state

r0 0.15 × the domain size Initial colony radius

https://doi.org/10.1371/journal.pone.0190037.t001
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a Poisson random lattice). The randomness decreases the measurable influence of the lattice

on the numerical solution and increases isotropy.

Despite the significant advantage of the Poisson random lattice, its use is numerically com-

plex. In particular, the use of efficient numerical methods such as implicit schemes or imple-

menting parallel computation is difficult [29–32]. In order to take advantage of the random

lattice on one hand, but enable the development of efficient numerical methods on the other,

Moukarzel and Hermann (1992) suggested the VRL [25]. The VRL is also composed of ran-

dom nodes, however, as opposed to the Poisson Random Lattice, the nodes are drawn in a par-

ticular way, giving it additional structure. See Appendix A for further details.

Results

The model (2) was solved with various initial conditions for the functions b1 and b2, reproduc-

ing different experimental setups. Accordingly, the simulated domain corresponds to 90 mm

and every simulation time unit corresponds to about 0.5 hours. For example, units for diffusion

constants are about 1.5�10−6m/sec2 (recall densities are measured in terms of area fraction).

First, we consider each species on its own, i.e., either b1 = 0 and b2 ¼ 1r<r0 or the other way

around. The function 1r<r0 is a smoothed (twice differentiable) indicator function of the unit disk

{r< r0}. Fig 3 shows that, as seen in experiments, neither P. vortex nor E. coli can grow on its own–

a colony of E. coli cannot expand because of its low motility, while P. vortex dies due to antibiotics.

In order to depict the colony and its history, the figure shows the accumulated bacterial density si +
bi, where dsi/dt = μibi, i.e., the sum of live and dead bacteria at location (x,y) up to time t.

In contrast to these results, Fig 4 shows that a mixed colony (initial conditions b1 ¼ b2 ¼ 1r<r0 )

can grow successfully, showing a ring-like pattern, qualitatively similar to experiments. The rings

are of intermittently high and low density and each one represents a different state of the P. vortex
bacteria–exploring or building. Fig 5 depicts the radius of the colonies in all three cases described

above. Similar to the experimental observations (Fig 5A), the simulated colony (Fig 5B) shows a

non-continuous expansion rate, corresponding to the alternating building and exploring states. Fig

6 shows a cross section of the colonies. While the cross section of the mutual colony is periodic

across the radius, P. vortex alone shows a low density decreasing towards the edge (due to antibi-

otic). On the other hand, the density of E. coli increases towards the edge, where nutrients are

higher.

Fig 3. Single-species simulations. Individual species cannot grow. (A) On its own, P. vortex dies due to antibiotics

and the colony does not expand. (B) On its own, E. coli does not expand because the bacteria are unable to move

independently towards a nutrient rich area. Simulation parameters are detailed in Table 1. Simulation time is

equivalent to about 50 hours.

https://doi.org/10.1371/journal.pone.0190037.g003
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It is interesting to note that the periodicity is in the radius rather than the area. This is in

accordance with theories describing the advancing edge as a traveling wave propagating at

constant speed along the colony’s radius [1–5,9,11–24,33–35]. Our simulations suggest that

the builder/explorer phases expand with distinct wave propagation speeds and that the transi-

tions are entrained to changes in the concentration of antibiotics at the front.

In addition, we note that the results are not specific to the parameters detailed in Table 1. See

S1 Fig for a qualitative description of the dependence of the results on different parameters.

Another possible variation of our model is to assume that the builder/explorer transition depends

on the average density of both P. vortex and E. coli. To this end, Eq (3) was modified by replacing

b1 with b1 + b2. S2 Fig show that our results are practically unchanged. All simulation parameters

are the same, except for slightly shifted values for bmin and bmax (0.029 and 0.066, respectively).

Fig 4. Two-species simulations. The joint P. vortex and E. coli bacterial colony in an antibiotic environment

develops ring-like patterns. All simulation parameters are the same as in Fig 3.

https://doi.org/10.1371/journal.pone.0190037.g004

Fig 5. Comparing experiments and simulations. The colony radius as a function of time. Left: experiments (reproduced from [7]

showing P. vortex alone (full blue squares), E. coli alone (empty red squares) and the combined colony (black diamonds). Right:

Simulations. Both figures show the non-continuous increase in the radius of the joint colony but only small, marginal expansion of each

species on its own. Simulation units were converted to experimental ones as explained in the text.

https://doi.org/10.1371/journal.pone.0190037.g005
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In order to further examine the coupling between the builder/explorer transitions with the

multi-species interaction, we study the dynamics of our model under initial conditions which

were not realized in the experiments of [7]. Fig 7 depicts simulation results with initial two sep-

arated colonies, each one containing both P. vortex and E. coli. While separated, each colony

determines the builder/explorer phase on its own. Once the two colonies overlap, the phase is

the same and the colonies synchronize.

Fig 8 depicts simulation results with an initial sharp gradient in the antibiotic concentra-

tion, a(x,y,t) = 1{x<0}, i.e., only the left half of the domain contains antibiotics. All other param-

eters are exactly the same. Interestingly, we see that although the mixed colony can expand in

all directions, the colony only grows towards the antibiotics-free half.

Finally, we begin to explore more complicated systems and dynamics. We consider a joint

P. vortex and E. coli colony that also includes a microalgae, such as Chlorella vulgaris. This

algae is non-motile but can produce carbon that acts as additional nutrients to the bacteria

(Finkelshtein and Polikovsky, unpublished). It has been suggested that P. vortex can transport

and use the algae to fix carbon. See Appendix B for the precise formulation of the model and

simulation details. Fig 9 depicts simulation results showing that P. vortex carries both micro-

Fig 6. A snapshot of the simulated cross-sections of the different colonies: P. vortex and E. coli (solid black line), only P.

vortex (dotted red) and only E. coli (dashed blue).

https://doi.org/10.1371/journal.pone.0190037.g006
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organisms. Our preliminary results show that not only is such a system stable, it can facilitate a

more rapid colony expansion than in the absence of C. vulgaris.

Discussion

In nature, bacterial cultures are typically highly heterogenous, involving thousands of bacterial

species and other micro-organisms. Within such diverse systems, cooperation is a major sur-

vival strategy. This includes cooperative movement (e.g. swarming) in multi-species suspen-

sions [1]. Taking the first steps in understanding such cultures, several recent experiments

considered simple mixtures of 2 or 3 micro-organisms, for example, two bacteria or bacteria

and fungi, revealing highly complex dynamics and patterns.

Here, we present a model describing cooperation between P. vortex and E. coli species. The

model describes the joint movement of bacteria in a hostile environment containing antibiot-

ics and sparse nutrients. Our results demonstrate that, on one hand, the bacteria must cooper-

ate in order to survive this environment while at the same time compete over the available

nutrients. The model was solved on a Vectorizable Random Lattice, using new high order

schemes that conserve mass. Similar to experiments, simulations show a ring-like pattern con-

sistent with intermittent builder and explorer bacterial phases.

Our exploration into new possible system setups offer several predictions that may be tested

experimentally. For example, with a sharp antibiotics gradient, our simulations suggest that

the mixed colony only grows towards the low-antibiotics region. This occurs although our

model does not include explicit terms that enable P. vortex to “unload” E. coli if it is not needed

Fig 7. Simulation results with two colonies (P. vortex+E. coli). Left: Initial colonies. Right: After 30 hrs.

Upon contact, the builder/explorer phases of the two colonies synchronize.

https://doi.org/10.1371/journal.pone.0190037.g007

Fig 8. Simulation results for a plate in which only the left half of the domain initially has antibiotics.

(A) The concentration of antibiotics, (B) P. vortex and (C) E. coli after 13hrs. The colony only grows to the right

(no antibiotic) although in principle, the mixed colony can also grow to the left.

https://doi.org/10.1371/journal.pone.0190037.g008
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(to save energy). Simulations with two colonies suggest that the ring pattern should synchro-

nize once the colonies are in contact. Such an experiment can validate our assumption that

that builder/explorer phase is a global colony-wide property.

Finally, to the best of our knowledge, our three-species model is the first attempt to model

realistic three-species colonies including phenotype heterogeneity (P. vortex builder/explorers)

with a particular function or objective in mind. An additional important factor, which is not

currently taken into account in our model, is the ability of P. vortex to deposit, or unload E.

coli or algae. This is particularly important if the larger algae could overgrow. For example, this

could be modelled as an upper limit on transport capacity.

Understanding the dynamics of multi-species colonies is a rapidly growing field as microbi-

ologist are increasingly aware of swarming organisms composed of multiple subpopulations

[36]. This work takes another step towards simulating a ’moving ecosystem’ or the construc-

tion of ‘multispecies consortia’ within the growing field of synthetic ecology [37].

Appendix A: The numerical method

In this appendix, we review the construction of the Vectorial Random Lattice (VRL). In addi-

tion, we present a new systematic method for discretizing nonlinear reaction-diffusion

Fig 9. Simulation results for a 3-species system.

https://doi.org/10.1371/journal.pone.0190037.g009
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equations such as (1) or (2) using the finite volume approach [26]. We apply both forward-

Euler and Crank-Nicolson time steps and discuss solution of the resulting implicit equations

using iterative methods.

The VRL is constructed by first choosing a single point drawn randomly in each cell of a uni-

form rectangular lattice with grid spacing h (called the reference lattice). Let 0� di� h denote a

minimal distance between two adjacent random nodes in direction i. If the distance between two

points in cells that are adjacent in the direction i are closer than a distance di, then the two points

are redrawn. Therefore, the values of di determine the randomness of the lattice: for di = 0 ran-

domness is maximal, while with di = h the lattice is rectangular. The set of random points chosen

within the cells of the reference lattice are the nodes of the VRL. Consider the Voronoi diagram

associated with this set of points. A pair of nodes {vi,vj} with i 6¼ j are called natural neighbors in

the Voronoi partition if vi and vj share a common face. The Delaunay triangulation, which is the

VRL, is obtained by linking all pairs of natural neighbors. The process is depicted in Fig 10.

An equivalent method for obtaining the Delaunay triangulation for the randomly drawn

nodes consists of finding all the trios of nodes located on the perimeter of a circle that does not

contain (inside or on the edge) additional nodes. The three nodes will be natural neighbors

with each other [30,31,32].

In contrast to uniform lattices, in which all interior nodes have the same number of neigh-

bors, the number of neighbors in VRL varies. The mean number of neighbors is roughly six

(identically, the average number of faces in each polygon in a Voronoi diagram is approxi-

mately six). The closer two cells on the reference lattice are to each other, the probability that

the Voronoi nodes in those cells will be natural neighbors increases. However, there is a non-

zero probability that a pair of nodes from non-adjacent cells on the reference lattice are also

natural neighbors, thus enabling isotropic connections of the nodes. The probabilities of natu-

ral neighbors being found in different distances was calculated in [25]. In particular, it drops

sharply (below 10−4) for the next-next-nearest neighbors.

Fig 10. The stages of creating the VRL. (a) A uniform reference lattice with a single node chosen uniformly

in each cell. (b) The Voronoi diagram for the random nodes. (c) The Delaunay triangulation yields (d), the final

VRL.

https://doi.org/10.1371/journal.pone.0190037.g010
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Calculating the Laplacian on a VRL

The Laplacian operator in the diffusion equation is composed of the divergence of the flux of a

conserved quantity. In general, for a given flux vector J, the diffusion term takes the form,

r � J ¼ r � ½cðx; y; φÞrφ�;

Where φ(x,y) and ψ(x,y,φ) are given function. For example, φ = b and ψ = bk for a nonlinear

diffusion, with k = 0 for the Laplacian.

Lemma 1: Let φ(x,y) denote a continuously twice differentiable function and let μi be the

set of Voronoi nodes which are natural neighbors of a node vi. Then, the Laplacian is given by

DφðviÞ ¼
X

j2mi
wij½φðvjÞ � φðviÞ� þ Oðh

2Þ;

where wij = fij/(lijAi) and,

• fij is the length of the mutual face connecting nodes vi and vj.

• lij is the Euclidean distance between vi and vj.

• Ai is the area of Vi, the Voronoi cell to which vi belongs.

Proof: We will prove lemma 1 using the finite volume approach. See [23,32] for an alterna-

tive derivation.

In order to numerically approximate Δφ(vi), we calculate the average value of the Laplacian

in each Voronoi cell,

DφðviÞ � DφðviÞ ¼
1

Ai

Z

Vi

r � rφds ¼
1

Ai

Z

@Vi

rφ � n̂dl; ð4Þ

where ds is an area element, @Vi is the boundary of Vi, dl a length element, n̂ an external nor-

mal to Vi and we have used the divergence theorem. For a uniform grid with spacing h, the

error in approximating Δφ by its average in a cell is of the order h2 [26]. This is not as simple

in the random grid because there is some small probability that the distance to one of the natu-

ral neighbors is large. Nonetheless, the probability of such an event decreases rapidly. For

example, the probability to have a neighbor with distance larger than 4h is smaller than 0.01

[25]. Moreover, for any � > 0, there exists a constant D independent of h such that the proba-

bility to have a neighbor with distance larger than Dh is smaller than �. We therefore neglect

this event and assume that the accuracy of the finite volume approximation is of order h2.

If vi hasm natural neighbors, its boundary @Vi can be written as the union ofm polygonial

faces. Denoting the common face of the Vi and Vj cells by Kij, the integral on the RHS of Eq (4)

can be written as

1

Ai

Xm

j¼1

Z

Kij

rφ � n̂dl ¼
1

Ai

Xm

j¼1

φnj � φ
n
i

lij
fij þ Oðh

2Þ ¼
Xm

j¼1

wijðφ
n
j � φ

n
i Þ þ Oðh

2Þ;

which concludes the proof of Lemma 1.

Lemma 2:

r � ½crφ� ¼
1

2

X

j2mi
wij½cðvjÞ þ cðviÞ�½φðvjÞ � φðviÞ� þ Oðh

2Þ:

The proof is similar to Lemma 1.

Using the formulas derived above, different numerical schemes such as forward-Euler,

backward-Euler and Crank-Nicolson can be easily developed. For example, with forward-
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Euler, the numerical flux from cell Vi to cell Vi is given by

JFE
ji ¼

1

2
wijðc

n
i þ c

n
j Þðφ

n
i � φ

n
j Þ;

where φni ¼ φðvi; nDtÞ. In particular, the flux is skew-symmetric,

JFE
ji ¼ � J

FE
ij ;

which implies that the discretized concentration φ is conserved. Similarly, using Crank-Nicol-

son, the numerical flux is given by,

JCN
ji ¼

1

4
wij½ðc

n
i þ c

n
j Þðφ

n
i � φ

n
j Þ þ ðc

nþ1

i þ c
nþ1

j Þðφ
nþ1

i � φnþ1

j Þ�;

which is again skew-symmetric.

Iterative solutions for implicit methods

In our model, we take ψ = φk, and the Crank-Nicolson scheme reduces to

φnþ1
i � φni

Dt
¼
D
4

X

j2mi

wij
�
φnj
�k
þ
�
φni
�k

� ��
φnj � φ

n
i

�
þ
X

j2mi

wij φnþ1

j

� �k
þ
�
φnþ1

i

�k
� �

φnþ1

j � φnþ1

i

� �
( )

:

With linear diffusion, k = 0, solving for φnþ1
i amounts to a sparse linear set of equations.

However, with a nonlinear diffusion, k� 1, the system becomes non-linear. For simplicity, we

consider the case k = 1, which is relevant to our model. Larger values of k are treated similarly.

First, rewrite the Crank-Nicolson scheme as,

φnþ1

i 1þ
DDt

4

X

j2mi

wijφ
nþ1

i

 !

¼
DDt

4

X

j2mi

wij½ðφ
n
j Þ

2
� ðφni Þ

2
� þ

DDt
4

X

j2mi

wijðφ
nþ1

j Þ
2
þ φni :

Using matrix notation, the system takes the form,

I �
DDt

4
W � diagðFnþ1Þ þ

DDt
4
Z � diagðFnþ1Þ

� �

Fnþ1 ¼

I þ
DDt

4
W � diagðFnÞ �

DDt
4
Z � diagðFnÞ

� �

Fn;

ð5Þ

where, assuming a N ×N reference lattice, Fn 2 RN2

denotes the solution vector

Fn ¼ ðφv1 ; . . . ;φvN2
Þ
T
;

W 2 MN2 denotes the N2 ×N2 weighted adjacency matrix,

Wij ¼
wij j 2 mi

0 j =2 mi

(

and Z 2 MN2 is a diagonal matrix with elements Zii ¼
X

j2mi
wij. In the above, diag(Fn) denotes

the N2 ×N2 diagonal matrix with Fn on the diagonal. Noting that all matrices are sparse, the

system (5) is solved iteratively using a splitting method (we applied Gauss-Seidel). For each n,
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we formally write,

I �
DDt

4
W � diagðVðrÞÞ þ

DDt
4
Z � diagðVðrÞÞ

� �

Fnþ1 ¼

I þ
DDt

4
W � diagðFnÞ �

DDt
4
Z � diagðFnÞ

� �

Fn

and begin with an initial guess, V(0) = Fn. Then, at each iteration, the new value of approximate

solution for Fn+1 is substituted into V(r).

Additional numerical details as well as solution of toy models and error analysis are detailed

in [24].

Appendix B: Three species simulations

Our 3-species simulations added another component to the system–an algae. The algae

donates fixed Carbon to P vortex and E coli, which effectively acts as additional nutrients. On

the other hand, the algae compete with the bacteria on available nutrients.

Over all, our model is described by the following system of reaction-diffusion equations in

which X(x,y,t) denotes the concentration of algae.

@b1

@t
¼ r½D1b

k
1
rb1� þ b1ðnÞð1þ rXXÞb1 � m1ðn; aÞb1

@b2

@t
¼ r½D2rb2� þ r½C2b2rb1� þ b2ðnÞð1þ rXXÞb2 � m2ðnÞb2

@X
@t
¼ r½DXrb2� þ r½CXb2rb1� þ bXðnÞX � mXX

@n
@t
¼ r½Dnrn� � l1ðnÞb1 � l2ðnÞb2 � lXðnÞX

@a
@t
¼ r½Dara� � pðaÞb2

ð6Þ

See Table 2 for simulation parameters.

Table 2. Parameter for 3-species simulations. Conversions between simulated and physical units are dis-

cussed in the results section.

Parameter Value Description

rX 1 Dependency coefficient of P. vortex reproduction by the algae

DX 0.25 Self-motility diffusion coefficient of the algae

CX 10 Advection coefficient of the algae with the flow of P. vortex

βX 0.25 Algae reproduction rate

μX 0.1 Algae consumption rate

λX 0.9 Nutrients consumption rate by the algae

n0 0.5 Initial concentration of n

a0 2 Initial concentration of a

bmax
0.04 Maximal value for b1 at building state

bmin
0.02 Minimal value for b1 at exploring state

https://doi.org/10.1371/journal.pone.0190037.t002
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Supporting information

S1 Fig. Parameters sensitivity analysis. A: a0 = 1, 3 (±50% of default value) B: n0 = 1, 3

(±50%); C1: bmax ¼ 0:0396; 0:0264 ð�20%Þ; D: Cb2
¼ 4; 8 ð�50%Þ; E: Db2

¼ 1:2E � 4;

8E � 5 ð�20%Þ.

(TIF)

S2 Fig. Simulations results with a modified rule for transitioning between builder/explorer

phases. Results are practically the same as obtained with Eq (3). See the results section for

details.

(TIF)
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