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Abstract

Microcystins are secondary metabolites produced by several freshwater, bloom-forming

cyanobacterial species. Microcystin-producing cyanobacteria co-occur with a complex com-

munity of heterotrophic bacteria. Though conflicting, studies suggest that microcystins affect

the physiology of heterotrophic bacteria by inducing oxidative stress and increasing cell

envelope permeability. Based on these observations, we hypothesized that exposure to

microcystin should induce differential expression in genes responding to oxidative and

envelope stress and trigger shifts in metabolite pools. We tested this hypothesis by exposing

Escherichia coli MG1655 to 1 and 10 mg/L microcystin-LR and monitored global changes to

gene expression, cellular metabolite pools, and lipid composition using RNA-sequencing

and UPLC-MS. Contrary to reported studies, we observed no evidence that microcystin-LR

induced oxidative or cell envelope stress in E. coli under the tested conditions. Our results

suggest a potential difference in mechanism by which microcystin-LR interacts with hetero-

trophic bacteria vs. cyanobacteria.

Introduction

Microcystins are secondary metabolites produced by a number of freshwater, bloom-forming

cyanobacteria that include species from the generaMicrocystis, Anabaena, Planktothrix, Oscil-
latoria, and Nostoc. However,Microcystis spp. are typically the most common and widespread

producers of greatest concern [1, 2]. The presence of microcystins during a harmful cyanobac-

terial bloom greatly increases the potential for ecologic harm, economic loss, and the threat to

public health [3–5].

Microcystin is an enigmatic metabolite. It is a nitrogen- and energy-expensive molecule to

produce [6], suggesting that it must provide some advantage to producers; however, many

strains of the aforementioned genera are genetically incapable of making the toxin [7]. Blooms

are often comprised toxic and non-toxic strains, with successional replacement of one type for

the other occurring over the course of the bloom [8–10]. While a number of physiological and

ecological functions of microcystin have been proposed, including allelopathy, cell signaling,
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cell-wide metabolism regulation, and protein stabilization during periods of oxidative stress

[11–14], no intracellular function has been clearly demonstrated as of yet.

Microcystin is a cyclic peptide composed of seven amino acids. Over 200 congeners have

been identified and they differ primarily by amino acids incorporated into the ring at positions

2 and 4 and by methylation of the ring at various positions [1, 15]. Microcystin-producing

cyanobacteria co-occur with a complex and dynamic community of free-living and epibiotic

heterotrophic bacteria [16–18]. An immediate ecological question then arises: how does mi-

crocystin affect the physiology of heterotrophic bacteria co-occurring with a bloom. A handful

of studies have directly addressed this question using purified microcystins [19–25]. Results

have been varied and sometimes conflicting. The earliest study reported that microcystin had

no effect on unspecified Gram-negative and Gram-positive bacteria [19]. Lahti et al. [21] ob-

served variable effects ranging from stimulatory to inhibitory when fractionated extracts con-

taining microcystin-RR (MCRR; arginine incorporated into positions 2 and 4) were applied to

bioluminescent bacteria and Pseudomonas putida. Two additional studies suggested microcys-

tin had little effect on growth. In one, neither microcystin-LR (MCLR; leucine and arginine

incorporated into positions 2 and 4, respectively) or MCRR at up to 8 mg/L produced growth

inhibition inMicrococcus luteus, Bacillus cereus, B. subtilis, Aeromonas hydrophila or Escheri-
chia coli [22], while in the other, no growth inhibition was observed in either Bacillus sp. or P.

aeruginosa using an unspecified concentration of microcystin [23]. In contrast, Valdor and

Aboal [24] found that E. coli growth was inhibited by MCLR concentrations of 5 mg/L and

higher and by MCRR and microcystin-YR (MCYR; tyrosine and arginine incorporated into

positions 2 and 4, respectively) at concentrations of 12.5 mg/L and higher. A more recent

study showed species-dependent growth inhibition of isolates from lakes in Portugal using

microcystin-LR, -RR, and -YR at concentrations as low as 1 μg/L [25].

A perceived limitation in the above studies is that growth was the only phenotype mea-

sured, providing little insight into possible modes of activity by microcystin. Two studies have

investigated this question in greater detail. One reported that 2.5 mg/L of MCRR permeabi-

lized the membrane of E. coli in a manner similar to 2.5 mg/L of polymyxin B nonapeptide

and had a rapid and dramatic synergism with five different hydrophobic antibiotics: MCRR

plus the antibiotic reduced the minimum inhibitory concentration of the antibiotic by ~30-

60-fold relative to the same concentration of antibiotic alone [26]. In addition, MCRR caused

release of periplasmic proteins by disrupting the outer membrane, while leaving the cyto-

plasmic membrane unaffected. In a separate study, Yang et al. [27] exposed E. coli to MCRR

concentrations of 1, 5, 10, and 15 mg/L. Superoxide dismutase and catalase activities were

higher, and growth rates lower, in a dose-dependent manner at concentrations� 5 mg/L. Glu-

tathione, reactive oxygen species (ROS), lipid peroxidation, and glutathione reductase activity

increased in a dose-dependent manner at concentrations� 10 mg/L.

While components of these reports are conflicting, they suggest that microcystin has

potential to affect the physiology of heterotrophic bacteria in a congener- and species-depen-

dent manner. Despite clear ecological implications, scant research has focused on this ques-

tion, and none have employed methods that monitor cell-wide responses. The objective of

this study was to evaluate the cellular response of a model heterotrophic bacterium exposed

to ecologically relevant concentrations of microcystin. Towards this objective, E. coli
MG1655 was exposed to 1 mg/L and 10 mg/L MCLR for one hour. During this time, we mea-

sured changes to gene expression, cellular metabolite pools, and lipid composition using

RNA-seq and UPLC/MS. Our results suggest that even very high concentrations of MCLR

have minimal impact on the physiology of E. coli and do not support the findings of several

earlier studies.

Microcystin-LR does not alter transcription or metabolomism in E. coli
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Material and methods

Growth conditions and treatments

E. coli K12 strain MG1655 was grown at 37˚C with shaking at 200 rpm in M9 minimal

medium [28] modified with the addition of 4 g/L glucose and 1 mg/L thiamine HCl. Growth

of cultures was determined by measuring optical density (OD) at 600 nm (Genysis 20, Thermo

Electron Corp.). OD of all cultures was measured at experimental time points 0 and 60 min.

Growth rate μ (hr-1) for each culture was calculated from these two OD readings. Time points

0 and 60 min corresponded to early and mid-exponential growth phase, respectively, as deter-

mined in preliminary experiments.

Microcystin-LR (Cayman Chemical Company, Ann Arbor, MI) dissolved in 100% ethanol

was added to treatment cultures at concentrations of 1 mg/L and 10 mg/L. A solvent only treat-

ment was added as a control. Final concentration of ethanol in all cultures was 1% (v/v). E. coli
was exposed to MCLR for a period of 1 h. Samples for RNA-seq and metabolite and lipid com-

position analysis were taken at time 0 and every 15 min thereafter.

MCLR was used in this study because of its environmental relevance: it is typically the most

common and abundant congener [1, 29]. Microcystin concentrations encountered during

blooms are highly variable, but are typically less than 1 mg/L. However, concentrations as high

as 25 mg/L have been reported in extremely dense blooms [1]. The concentrations used in our

experiments were chosen to represent the high end of an environmentally relevant range (1

mg/L) as well as a high concentration (10 mg/L) that was similar to those used in other studies

[22, 24, 27]. This allowed our results to be more directly comparable to those of previous

works.

All experiments were performed in biologic triplicate. For RNA-sequencing and lipid sam-

ples, an overnight culture was started in M9 medium using a single colony picked from Lysog-

eny Broth (LB) agar plates. A 450-mL master culture in a 2-L flask was started by diluting the

overnight culture 1:299 to allow for a period of rapid growth adequate to relieve the cells of the

generalized stress response induced by their former overnight stationary phase status [30, 31].

To time the start of treatments with the early exponential growth phase, the master culture was

grown to an OD600 ~ 0.30, then divided into three 132-mL treatment cultures grown in

500-mL flasks. At T0, samples were collected then microcystin-LR was immediately added to

the cultures. Samples were collected again at 15, 30, 45, and 60 min. The samples for RNA

extraction were immediately added to 25 mL of ice and centrifuged at 10,000 x g for 7.5 min-

utes at 4˚C. The cell pellet was placed in -80˚C freezer where it was stored until RNA extrac-

tion. Lipid samples were collected on 0.45-μm polycarbonate filters and flash frozen in liquid

nitrogen. They were stored at -80˚C until extraction. For metabolite samples, cultures were

established as described except 120 mL master cultures were grown in 500 mL flasks and were

divided into 30 mL treatment cultures grown in 150 mL flasks. Samples were collected and

handled as described for lipid samples. Data from the six replicates (three RNA-seq lipid

experiments and three metabolite experiments) were used in growth rate calculations.

RNA extraction and sequencing

Total RNA was extracted from samples using the hot phenol method described in Wen et al.
[32]. Genomic DNA was removed with the Turbo DNA-free Kit (Ambion, Life Technologies)

using a modified protocol. After total RNA extraction, approximately 40 μg of total RNA was

suspended in 85 μL of RNase-free water. 10 μL of 10x buffer and 4 μL of Turbo DNase enzyme

were added. The solution was incubated at 37˚C for 40 min, extracted once each with phenol:

chloroform and chloroform, then ethanol precipitated. Samples were considered DNA-free if
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no bands were visible in an agarose gel after 30 cycles of PCR amplification targeting the 16S

rRNA gene using primers 27F and 1522R. Ribosomal RNA was depleted using the

MICROBExpress Kit (Ambion, Life Technologies) following manufacturer’s instructions.

RNA samples were sent to the Molecular Resource Center, University of Tennessee Health

Science Center (Memphis, TN) for library preparation and sequencing. Forty-five libraries

were prepared (one for each treatment/time point/replicate combination) and sequenced to a

targeted depth of ~50-fold. Barcoded libraries were prepared using the Ion Total RNA-Seq Kit

for AB Library Builder System (Life Technologies). Single-end reads from pooled libraries

were sequenced on the Ion Torrent Proton Sequencer using the Proton I chip (Life Technolo-

gies). Sequence information has been uploaded to the NCBI Sequence Read Archive under

project number PRJNA349165.

Bioinformatic analysis

Sequencing reads were mapped to gene regions of the E. coliMG1655 reference genome

(GenBank U00096.3) using CLC Genomics Workbench (ver 8.5.1) with default parameters

for mismatch, insertion, and deletion costs and custom settings of 0.6 for length fraction and

0.85 for similarity fraction. Expression values for each gene were calculated from unique gene

reads and normalized by library size yielding the expression value of total counts per million

(TCPM). Raw mapped read counts were exported from CLC and used as input for the DESeq2

software program, which were used to identify genes differentially expressed between treat-

ment and control [33, 34]. Default parameters were used in the DESeq2 analysis. P-values of

individual genes were adjusted for false discovery rate (FDR) [35]. Genes with an FDR-

adjusted p-value < 0.1 and whose expression value in the treatment was either 1.5x higher or

lower (fold change) than that in control were considered significantly differentially expressed.

Genes were annotated following EcoGene 3.0 [36] and supplemented with information from

EcoCyc [37].

Metabolite extraction

Metabolite extraction was performed at 4˚C unless otherwise specified. Frozen filters (0.45-μm

pore-size, polycarbonate) were placed in petri dishes and unfolded into 1.3 mL extraction sol-

vent consisting of a 40:40:20 mixture of HPLC grade methanol, acetonitrile, water with 0.1 M

formic acid [38]. Extraction proceeded at -20˚C for 20 min. Filters were then flipped and the

extraction solvent was pipetted over filters to wash the cells free of the filters. Extraction sol-

vent was then transferred to a 1.5 mL microcentrifuge tube. An additional 400 μL of extraction

solvent was used to further wash cells from the filter. The additional solvent was transferred to

the same microcentrifuge tube. The samples were centrifuged at 16,100 x g for 5 min. The

supernatant was transferred to new vials and the cell pellet was resuspended in 200 μL of

extraction solvent. The extraction was allowed to proceed for another 20 min at -20˚C. Sam-

ples were again centrifuged at 16,100 x g for 5 min. The supernatants were transferred to the

same set of vials that were then dried under a stream of N2. Sterile water (300 μL) was added to

resuspend solid residue and transferred to 300 μL autosampler vials.

Lipid extraction

Filters were extracted for 15 min in 800 μL of extraction solvent consisting of a 15:15:5:1:0.18

mixture of 95% ethanol, water, diethylether, pyridine, and 4.2N NH4OH. The solvent was

transferred to ~100 μL of glass beads, vortexed and placed in a 60˚C water bath for 20 minutes.

The beads were centrifuged at 10,000x g for 10 min and the supernatant transferred to a clean

glass vial. A second extraction using 800 μL of fresh solvent was repeated as described. The
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residual glass beads were washed by re-suspending in 300 μL of water-saturated 1-butanol and

150 μL of water, vortexing, then centrifuging at 10,000 x g for 2 min. The top organic layer was

transferred to a glass vial containing the solvent from the two previous extractions. The beads

were washed a second time as described. The samples were dried under a stream of N2 and re-

suspended in 300 μL of a 9:1 mixture of methanol and chloroform.

Metabolite UPLC–MS analysis

Samples were loaded into an Ultimate 3000 autosampler (Dionex, Sunnyvale, CA) kept at 4˚C.

A 10-μL sample was injected through a Synergi 2.5 micron Hydro-RP 100, 100 x 2.00 mm LC

column (Phenomenex, Torrance, CA, USA) with column compartment maintained at 25˚C.

The mass spectrometer was run in fullscan in negative ionization mode using a method

adapted from Lu et al. [39]. Samples were ionized via an electrospray ionization (ESI) source

through a 0.1 mm internal diameter fused silica capillary tube before analysis on an Exactive

Plus orbitrap mass spectrometer (Thermo Scientific, San Jose, CA). A spray voltage of 3 kV

was used with the nitrogen sheath gas set to a flow rate of 10 units and a capillary temperature

of 320˚C. The automated gain control target was set to 3 x 106, with a resolution of 140,000

and a scan window of 85 to 800 m/z for 0 to 9 min and 110 to 1000 m/z from 9 to 25 min. Sol-

vent A consisted of 97:3 HPLC grade water: methanol, 10 mM tributylamine, and 15 mM ace-

tic acid. Solvent B was HPLC grade methanol. The gradient from 0 to 5 min was 0% B, from 5

to 13 minutes was 20% B, from 13 to 15.5 min was 55% B, from 15.5 to 19 min was 95% B, and

from 19 to 25 min was 0% B with a flow rate of 200 μL/min.

Lipid UPLC–MS analysis

Samples were loaded into an Ultimate 3000 autosampler (Dionex, Sunnyvale, CA) kept at 4˚C

and a 10-μL aliquot was injected through a Kinetex HILIC column (150 mm x 2.1 mm, 2.6 μm)

(Phenomenex, Torrance, CA, USA). The eluent was analyzed by an Exactive Plus Orbitrap

mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with an ESI probe. Chro-

matography ran for a total of 35 min with mobile phase A and B consisting of 10 mM aqueous

ammonium formate pH 3 and 10 mM ammonium formate pH 3 in 93% (v/v) ACN, respec-

tively. The beginning of the gradient was 100% B for 1 min; 81% B from 1 to 15 min, 48% B

from 15 to 15.1 min, maintained at 48% B from 15.1 to 25 min, increased to 100% B from 25 to

25.1 min, and finally re-equilibrated at 100% B from 25.1 to 35 min. A flowrate of 0.2 mL/min

was maintained throughout the separation. The column oven temperature was kept at 25˚C.

The spray voltage was set to 4 kV with a heated capillary temperature of 350˚C. The sheath gas

flow was set to 25 units and the auxiliary gas set to 10 units. The MS used a resolution of

140,000 with a scan range of 100–1500 m/z for full-scan mode and a scan range of 100–1500 m/

z for all ion fragmentation scans. The normalized collision energy was 30eV with a stepped colli-

sion energy of 50%. Each sample was run in positive and negative mode. Lipid classes were

identified by their fragments using Xcalibur software (Thermo Fisher Scientific, San Jose, CA).

Metabolite and lipid data analysis

Raw files created by Xcalibur were converted to open source mzML format [40] using the Pro-

teoWizard software [41]. MAVEN software [42] was used to perform nonlinear retention time

correction for each sample and known metabolite and lipids were manually selected based on

retention time and exact mass [42, 43]. Tests for differences of individual metabolites and lip-

ids were performed using ANOVA implemented in the R language. Multivariate analysis was

performed using Primer7 version 7.0.9 [44]. Euclidian distances were used in constructing the

similarity table after the data were 4th root transformed.
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Results

Effects of microcystin-LR on growth rate

Average growth rate in the 1-mg/L and 10-mg/L treatments was μ = 0.46/hr (generation

time = 1.51 hr) and in control was μ = 0.47/hr (generation time = 1.47 hr) and did not statisti-

cally vary (ANOVA p-value = 0.91). Thus, exposure to MCLR at concentrations of 1 mg/L or

10 mg/L had no effect on growth rate. Optical densities of cultures at the beginning and end of

the experiment are illustrated in S1 Fig. A 12-hr growth curve representing conditions of mas-

ter cultures is provided in S2 Fig.

RNA sequencing output and quality control

Sequencing on the Ion Torrent Proton Sequencer generated a total of 95,534,894 single-end

reads from 45 libraries resulting in an average library size of 2,122,998 reads (SE, ± 68,511

reads). Average length of reads was 146 bp and average phred score was 24.2. Reads with a

phred score less than 17 were removed during post-processing and are not included in the

completed libraries and are not reflected in the reported totals.

Reads were mapped to the E. coli reference genome using the RNA-seq Analysis package of

CLC Genomics Workbench. Of the total reads, 77,183,360 (80.8%) mapped to ribosomal RNA

genes and were removed from libraries, leaving 18,351,534 non-ribosomal reads (19.2% of

total) for further analysis. A total of 13,184,412 reads mapped to protein-encoding genes and

126,141 mapped uniquely to tRNA genes. Thus each library had on average 295,790 mapped

reads upon which calculations of gene expression were based. Uniquely mapped reads per

library ranged from a high of 614,653 to a low of 95,653. The average depth of sequencing cal-

culated using total reads was ~67 fold; the average depth of sequencing calculated using reads

mapped to protein-encoding genes was ~9 fold. A summary of reads is provided in S1 Table.

Consistency in gene expression between each pair of biological replicates was quantified by

calculating Pearson’s correlation using genes with non-zero counts in at least one replicate

[45]. The mean correlation between all replicate pairs was r = 0.98. Similar correlations have

been viewed as a mark of reliability in benchmarking RNA-seq studies [45–47].

To empirically determine valid levels of read-number significance, the expression of 10

canonical reference genes (reported in the literature to be stably expressed in E. coli [48, 49])

was examined. Fig 1A illustrates the mean expression in TCPM for each reference gene at each

treatment-time combination. Average TCPM ranged from a low of ~6 to a high of ~2,000.

Seven reference genes (cysG, gyrA, pbpC, dapA, hslV,mrdB, opgG) had a mean TCPM greater

than ~24 and displayed mean coefficients of variation < ~0.5 (Fig 1B). These results further

validate the RNA-seq data and verify reliability of gene expression estimates derived there-

from. Three reference genes (hcaT, idnT, fucU) had a mean TCPM < 15 and had high coeffi-

cients of variation (CV> ~0.7), suggesting that expression estimates at or below these levels

may be unstable. This is a recognized phenomenon and is managed in DESeq2 by shrinking

estimates of fold change for weakly expressed genes [33]. In our study, of the 4,498 annotated

features in the E. coli MG1655 genome, ~310 had no detectable transcripts in any treatment

and ~2,660 had expression > 15 TCPM, providing robust statistical power to detect differen-

tially expressed genes over ~66% of the genome.

Analysis of differential gene expression

Genes differentially expressed in microcystin treatments relative to control were calculated for

each time point independently. DESeq2 identified a total of only nine genes as significantly dif-

ferentially expressed between both the 1-mg/L and 10-mg/L treatments (Table 1). Two genes
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(hisR, serV) were differentially expressed in both the 1-mg/L and 10-mg/L treatments with the

direction and magnitude of the fold change in close agreement between treatments. The

remaining seven genes were differentially expressed in the 10-mg/L treatment only. Of these,

Fig 1. Expression of reference genes. (A) Mean expression in total counts per million (TCPM) of 10

reference genes for each treatment/time point combination. The X-axis labels indicate the treatment and time

point: “C” = control, “H” = 10 mg/L treatment, and “L” = 1 mg/L treatment. Expression values are the mean of

three replicates. (B) Mean expression vs. coefficient of variation for 10 reference genes. Each point

represents the mean expression of three replicates and the corresponding coefficient of variation for a

treatment/time point combination. Gene abbreviations: cysG (siroheme synthase), gyrA (DNA gyrase, subunit

A), hcaT (3-phenylpropionate transporter), idnT (L-Idonate transporter), pbpC (peptidoglycan

glycosyltransferase), dapA (dihydrodipicolinate synthase), fucU (L-fucose mutarotase), hslV (heat-inducible

protease subunit), mrdB (shape, elongation, division and sporulation family protein B), opgG (osmoregulated

periplasmic glucans biosynthesis protein G).

https://doi.org/10.1371/journal.pone.0189608.g001
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one gene (infC) was up-regulated while all others were down-regulated. A detailed description

of all differentially expressed genes by treatment, time point, and functional category is pro-

vided in Table 1. Surprisingly, 8 out of 9 differentially expressed genes coded for RNAs or pro-

teins involved in RNA processing and all were down regulated: five coded for tRNAs, two

coded for RNAs involved in translation, and one coded for a protein subunit of RNase P

involved in RNA processing. Criteria used to identify significantly differentially expressed

genes (fold change� 1.5, p� 0.1) were deliberately non-stringent to prevent excluding poten-

tially important telltale genes that might fail tighter stringency tests. To confirm the unexpect-

edly low number of significant genes, the data were reprocessed using the edgeR algorithm

[34]. There was no notable difference in results between the two methods.

Expression of oxidative stress and cell envelope stress genes

Previous studies have reported that exposure to MCRR or MCLR produced oxidative stress

and cell envelope stress in bacteria and/or cyanobacteria [27, 50, 51]. In our study, no genes

associated with oxidative or cell envelope stress were differentially expressed due to MCLR

exposure. To examine patterns of stress-related genes in greater detail, mean expression of

genes from well-characterized stress response pathways were compared for each time point.

Genes selected for this comparison have been characterized in at least two independent studies

as being strongly and positively regulated in response to either oxidative or cell envelope stress.

Our rationale was that these criteria would provide the best opportunity for identifying genes

with expression altered due to treatment, but whose shift in expression failed to be detected by

DESeq2 due to statistical cut-off limits.

Fold changes relative to control for 9 key oxidative stress response genes from the 10-mg/L

treatments are shown in Fig 2. Importantly, each of these genes had expression > 24 TCPM at

each time point. Fold-changes are distributed almost symmetrically around and fall near the

“zero-line” for all time points, suggesting that expression of these genes did not vary from con-

trol due to treatment. Taken together, these patterns further suggest that in our study, MCLR

failed to generate detectable oxidative stress in E. coli.
E. coli has five well characterized envelope stress signaling pathways [52, 53]. Fold change

relative to control of genes from two of these pathways, the σE regulon and the Cpx pathway,

are shown in Fig 3A and 3B, respectively, for the 10-mg/L treatment. Fold-changes are distrib-

uted tightly around the zero-line. Genes from the Bae, Psp, and Rcs pathways showed similar

trends with slightly more variation (S3 Fig). Each of the genes included in Fig 3 and S1 Fig had

expression > 24 TCPM. Together, fold-change patterns in these signaling pathways provide

no evidence that cells were experiencing MCLR-induced envelope stress.

Table 1. Description of differentially expressed genes by time point and treatment. FDR–False Discovery Rate corrected.

Treatment Time Fold FDR Functional

Algorithm (mg/L) Point Gene Change p-value Category Protein Description

DESeq2 10 45 ffs -2.1 0.0003 cotranslational export 4.5S RNA component of Signal Recognition Particle (SRP)

DESeq2 10 45 glyT -2.2 0.0001 tRNA glycine tRNA(UCC) 2, UGA suppression

DESeq2 1, 10 45, 45 hisR -1.9, -2.0 0.0003 tRNA histidine tRNA(GUG)

DESeq2 10 45 rnpB -1.9 0.0001 RNA modification subunit of RNase P; involved in tRNA and 4.5S RNA-processing

DESeq2 10 45 selC -1.8 0.0085 tRNA selenocysteyl tRNA(UCA) (converted from serine tRNA)

DESeq2 1, 10 30, 45 serV -1.5, -1.9 0.0012 tRNA serine tRNA(GCU) 3

DESeq2 10 45 ssrA -1.6 0.0003 trans-translation tmRNA; tRNA-Ala and mRNA, tags proteins for degradation

DESeq2 10 45 tyrU -1.8 0.0018 tRNA tyrosine tRNA(GUA) 2

DESeq2 10 60 infC 1.5 0.0773 translation translation initiation factor IF-3; unusual AUU start codon

https://doi.org/10.1371/journal.pone.0189608.t001
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Ethanol was used as a solvent to reduce loss of microcystin due to adsorption onto plastic sur-

faces during preparation and handling [54]. Addition of microcystin to treatment cultures

resulted in a final ethanol concentration of 1% (v/v); an equivalent amount of ethanol was added

to control. The possibility exists that induction of genes in stress pathways due to ethanol could

mask responses due to microcystin, reducing our ability to detect real responses. To address this

concern, we analyzed 30 genes for differential expression at time 15 min vs. time 0 and at time 30

min vs. time 0 in the control treatment. Samples at time 0 min were taken immediately prior to

addition of ethanol as solvent control, so this analysis gives an indication of the effects of ethanol.

We used the same oxidative stress (9 genes) and envelope stress (21) marker genes featured in

Figs 2 and 3 and S1 Fig. Five genes out of these 30 were differentially expressed, but only three

had increased expression relative to 0 min. cpxPwas up-regulated ~2.5 fold at 15 and 30 min,

pspAwas up-regulated 2.2 fold at 15 min, and degPwas up-regulated 1.5 fold at 30 min.

Analysis of metabolite pools and lipids

Samples to analyze small molecules were taken from cultures distinct from those from which

RNA/lipid samples were taken: the experimental design and sampling methods were identical

to those used for the RNA/lipid cultures. A total of 87 metabolites were detected from a

Fig 2. Fold change in oxidative stress gene expression for 10-mg/L MCLR treatment. Each point

represents the log2 fold change relative to control at a given time point. The horizontal line at 0 represents

equal expression in treatment and control. Gene abbreviations: acrA (multidrug efflux pump membrane fusion

protein), ahpC (alkyl hydroperoxide reductase), gor (glutathione reductase), gstA (glutathione S-transferase),

katG (catalase), nfsA (Nitroreductase A), sodA (Mn-containing superoxide dismutase), sodB (Fe-containing

superoxide dismutase), sodC (Cu-Zn-containing superoxide dismutase).

https://doi.org/10.1371/journal.pone.0189608.g002
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standard screening panel of ~ 270 compounds. Each metabolite was analyzed independently at

each time point to test for differences due to treatment. No individual metabolite was found to

be significantly different at any time point after FDR adjustment for multiple comparisons.

Several metabolites have been identified in benchmarking studies as useful biomarkers of

bona fide oxidative stress [55, 56]. Within 20 min of stress-inducing treatments, relative con-

centrations of alanine and asparagine increase, while that of methionine decreases [56]. This is

accompanied by pronounced decreases in glucose-6-phosphate, 3-phosphoglycerate, malic

acid, and 2-oxoglutarate, metabolites associated with glycolysis and the TCA cycle [56]. Addi-

tionally, detectable shifts of glutathione (GSH) and glutathione disulfide (GSSG) occur within

30 min of induced stress [55]. To screen for the possible effects of microcystin-induced oxida-

tive stress, we examined the pattern of these metabolites over the time series. Though variable,

alanine, asparagine, and methionine increased relative to control at 30 min in the 10-mg/L

treatment (S4 Fig). The pattern of alanine and asparagine were consistent with oxidative stress,

but that of methionine was not. None of these changes were significant. Glucose-6-phosphate,

3-phosphoglycerate, malic acid, 2-oxogluatrate, GSH, and GSSG showed patterns similar to

those of the control (S5 Fig and S6 Fig). Overall, MCLR appeared to cause little change in

metabolite pools. No significant differences in lipid composition were found between treat-

ments. Metabolite and lipid data normalized to optical density is provided in S1 and S2 Files.

Discussion

The effect of microcystin on eukaryotic cells has been studied extensively (reviewed in [3] and

[57]). However, its effect on heterotrophic bacteria, which are the numerically dominant

Fig 3. Fold change in envelope stress gene expression for 10-mg/L MCLR treatment. (A) Genes of the σE regulon. (B) Genes of the Cpx regulon. Each

point represents the log2 fold change relative to control at a given time point. The horizontal line at 0 represents equal expression in treatment and control.

Gene abbreviations: degP (periplasmic serine endoprotease), dsbC (disulfide bond isomerase), fkpA (peptidyl-prolyl cis-trans isomerase), rpoD (RNA

polymerase subunit, sigma 70), rpoE (RNA polymerase, sigma E), rpoH (RNA polymerase, sigma H), rseA (anti-RpoE sigma factor), rseP (intramembrane

zinc metalloprotease), surA (peptidyl-prolyl cis-trans isomerase), yggN (DUF2884 family periplasmic protein), cpxA (sensory histidine kinase), cpxP

(periplasmic adaptor protein), cpxR (DNA-binding transcriptional dual regulator), dsbA (protein disulfide oxidoreductase), spy (ATP-independent periplasmic

chaperone), yebE (DUF533 family inner membrane protein), yiaF (DUF3053 domain-containing protein).

https://doi.org/10.1371/journal.pone.0189608.g003
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members of environments inhabited by microcystin producers, has received surprisingly little

attention. Previous studies have reported that microcystin-RR generates oxidative and cell

envelope stress in E. coli [26, 27, 58]. Based on these reports, we hypothesized that exposure to

microcystin would trigger differential expression in genes that respond to oxidative and cell

envelope stress and that metabolite concentrations would alter as cells respond to induced

stress. To test our hypotheses, we exposed E. coli to 1 and 10 mg/L microcystin-LR and moni-

tored cellular responses via gene expression and shifts in metabolite pools. E. coli was selected

for its position as a model heterotrophic bacterium and for the wealth of tools and data avail-

able on this species for comparative study. It was used in previous studies demonstrating a

stress phenotype and thus allowed us to test reproducibility while using different experimental

methods in monitoring responses. Additionally, E. coli has some ecologic relevance as it is

widely distributed in freshwater systems [59] and strains of non-fecal origin have been found

associated with largeMicrocystis blooms in highly eutrophic freshwater lakes [60]. Overall, it

was hoped that responses of E. coli could serve as a model from which responses in related het-

erotrophs might be better understood and predicted.

Exposure to either 1 or 10 mg/L MCLR had no effect on growth of E. coli over the course of

1 h. On this topic, reports in the literature are inconsistent. We found no studies in the litera-

ture that tested MCLR and used methods similar enough to ours to allow direct comparisons.

However, two studies investigated effects of MCLR on E. coli grown on agar and reported con-

flicting results. In the first, there was no inhibition of growth from either MCLR or MCRR at

concentrations of up to 8 mg/L when grown on Merck Test agar [22]. In the second, Valdor

et al. [24] found that growth on pancreatic peptone agar was inhibited by MCLR at concentra-

tions greater than 5 mg/L and by MCRR at concentrations greater than 12.5 mg/L [24]. Thus,

in the Valdor study, a direct comparison of MCLR and MCRR showed that MCLR was more

inhibitory. However, in a comparison of our work vs. that of Yang et al. [27], MCRR seemed

to be more inhibitory. Yang et al. reported that in nutrient broth,� 10 mg/L MCRR produced

a significant growth reduction in E. coli. In our study, 10 mg/L of MCLR had no effect on E.

coli growth in minimal media + glucose. It is possible that the difference in results between

Yang et al. and our study could be explained by use of different media. Additionally, it seems

that the effect may be congener specific and sensitive to growth conditions.

RNA-seq has been used to monitor the response of oxidative-stress-induced E. coli in a

number of studies, with detectable shifts in expression of key oxidative stress genes occurring

within 20–30 minutes of inducing conditions [61, 62]. In our study, gene expression data mon-

itored for a period of one hour post-induction provide no evidence that exposure to MCLR at

1 or 10 mg/L triggered oxidative stress in E. coli. Here again, our results stand in contrast to

previously published research. A key study showed that E. coli exposed to 10 or 15 mg/L of

MCRR produced dose-dependent increases in intracellular ROS and glutathione concentra-

tions and increased activities of catalase, superoxide dismutase, and glutathione reductase, all

within 30 min of exposure [27]. At 60 min in 10 mg/L MCRR, ROS concentrations had

increased ~3 fold over control and responses of other parameters increased between ~2–3.5

fold. Peak concentration or activity occurred at 60 min post-exposure for all measured param-

eters. Even the reduced concentration of 5 mg/L MCRR produced significant increases in ROS

concentration and superoxide dismutase and catalase activities at the same time scale.

At first glance, the different results between our experiment and prior studies are explain-

able by the use of different congeners. However, work investigating the effects of microcystin

on cyanobacterial species complicates this interpretation. Using Synechococcus elongatus, Hu

et al. [50] showed that exposure to 0.1 mg/L of MCRR produced a 3-fold increase in ROS con-

centrations and increases in glutathione S transferase and glutathione peroxidase activity. In a

separate study using Synechocystis PCC6803, exposure to exposure to 1 and 5 mg/L MCRR
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triggered increases in the oxidative stress genes gpx1 (glutathione peroxidase, ~12-fold), katG
(catalase, ~4-fold), and sodB (Fe superoxide dismutase, ~5-fold) [63]. These studies along with

Yang et al. [27], suggest that MCRR generates oxidative stress in diverse bacterial cells. Addi-

tionally, a study by Vassilakaki and Pflugmacher [51], also using Synechocystis PCC6803

showed that the congener MCLR at concentrations as low as 1 μg/L produced 2-fold increases

in intracellular hydrogen peroxide concentration and increases in activities of superoxide dis-

mutase (~2-fold), catalase (~5-fold), glutathione S transferase (~4-fold), and glutathione

reductase (~3.5-fold). Thus it has been shown that in cyanobacteria, both MCLR and MCRR

produce oxidative stress, and that in E. coli, MCRR produces oxidative stress.

No mechanism for microcystin-induced generation of oxidative stress in bacterial cells has

been proposed. But if the mechanism is the same in cyanobacterial and heterotrophic cells,

then based on previous findings, we expected that MCLR would produce oxidative stress in E.

coli. It is possible that the mechanism at work in cyanobacterial cells is different from that in

heterotrophic cells, leaving the LR congener inactive in E. coli. Another explanation for appar-

ent lack of oxidative stress in our study is that the response was not strong enough to reveal

itself in the form of induced gene expression. However, in Synechocystis PCC6803, MCLR pro-

duced 2–5 fold increases in either peroxide concentrations or oxidative stress enzyme activities

[51]. The oxidative stress response in E. coli is well characterized [64], and it seems unlikely

that a stress of similar magnitude would go undetected in the expression of regulatory path-

ways. Moreover, the sequencing depth of our RNA-seq data was adequate to establish reliable

gene expression estimates, as shown by reference gene patterns, and to detect significant shifts

in gene expression [47]. Thus it would seem that congeners do not explain the differences

observed, or that a different mechanism is at work in E. coli vs. cyanobacteria. The effects of

different media and experimental conditions might also contribute.

To contend with a possible masking effect due to use of ethanol as a microcystin solvent,

gene expression data were analyzed to determine if there was differential expression of oxida-

tive stress genes in the control at time 15 min vs. time 0 and in the control at time 30 min vs.

time 0. Results of this analysis must be interpreted with some caution, because it is not possible

to identify whether potentially differentially expressed genes are due to effects of ethanol or to

the passage of time during batch culture. But, the analysis does give a solid indication of

whether these genes were in fact differentially expressed relative to time 0. sodB, which is typi-

cally up-regulated during oxidative stress, was the only gene identified in this analysis, and it

was down-regulated at time 30 min, suggesting an effect due to ethanol, if any, was negligible.

Monitoring of metabolites that are altered by oxidative stress provided no clear evidence

that such stress was induced. While alanine and asparagine accumulated in the 10-mg/L treat-

ment, consistent with oxidative stress, other biomarkers, including GSH, GSSG, and metabo-

lites from glycolysis and the TCA cycle were consistent with the control. In the case of alanine

and asparagine, the departures from control were not significant, forcing us to conclude that

metabolomics profiles were not altered due to treatment. Thus, the collective data are consis-

tent with the interpretations that generation of oxidative stress in E. coli by microcystin is con-

gener specific and that MCLR fails to generate oxidative stress under the conditions tested. A

corollary is that MCRR apparently generates oxidative stress in E. coli by a mechanism not acti-

vated by MCLR.

E. coli has five characterized signaling pathways whose functions are to sense various per-

turbations to the cell envelope and respond by up-regulating expression of genes that encode

proteins needed to repair damage [53, 65]. A frequent inducing cue for the pathways are mis-

folded periplasmic or outer membrane proteins. However, the pathways respond to diverse sti-

muli including the integrity of the outer membrane [66–68]. An earlier study reported that

MCRR permeabilized the outer membrane of E. coli and caused leakage of periplasmic
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proteins, as measured using a chromogenic β-lactamase assay [26]. We predicted that if MCLR

functioned in a manner similar to MCRR, increased expression in genes from one or more of

the response pathway regulons would be observed. However, we observed no evidence from

gene expression suggesting MCLR triggered envelope stress in E. coli. MCRR is structurally

similar to polymyxin B nonapeptide (PMBN), and it is proposed that MCRR generates enve-

lope stress in Gram-negative bacteria by a mechanism similar to that of PMBN [26, 69, 70].

The five positively charged free amino groups of PMBN interact with the anionic groups of

LPS, disrupting the quasicrystalline structure of the outer leaflet of the outer membrane, pro-

ducing the observed increased permeability [69]. MCRR has two positively charged amino

groups and a net charge of 0, while MCLR has one positively charged amino group and a net

charge of -1. These differences offer a possible explanation for their differing ability to generate

outer membrane stress.

A possible masking effect of ethanol was of greater concern in monitoring cell envelope

stress than in oxidative stress. This concern was addressed in the same manner as for oxidative

stress. Differential expression analyses in the control identified three genes (cpxP, pspA, degP)

that were significantly up-regulated among the 21 envelope stress marker genes monitored.

However, the response in our study was weak and incomplete. In comparison, Bury-Moné

et al. [52] observed ~3.5 fold and>5 fold induction of cpxP in treatments of 3% and 5% (v/v)

ethanol, respectively. cpxP is reported as the most sensitive and highly induced gene of the reg-

ulon, with expression increasing ~15 fold upon induced membrane stress [71]. pspA is strongly

induced upon treatment with ethanol in a dose-dependent manner [72, 73]. In our experi-

ment, cpxP and pspA were weakly induced. degP was very weakly induced and just cleared the

criterion (1.5x fold change) used to designate differentially expressed genes. Thus, while the

masking effect can’t be entirely ruled out, any effect appears slight and incomplete and not

enough to obscure a response to envelope damage. Although this makes us more cautious, it

doesn’t alter our conclusion that MCLR does not generate significant envelope stress under

our experimental conditions.

A total of 9 genes were differentially expressed as determined by DESeq2. Products of these

genes show a high degree of association in function: five are tRNAs and four are involved in

RNA processing/stabilization. All but one were down-regulated. The biological meaning of

this isn’t clear, although tRNAs and their fragments have recently been shown to play regula-

tory roles in both eukaryotes and prokaryotes (reviewed in [74]). tRNA gene regulation is

growth rate dependent and under stringent control, yet growth rate among treatments was

nearly identical, and only 5 tRNAs of 86 total in the E. coli genome [75] were differentially

expressed. Thus, an explanation of this pattern is puzzling. In other studies, interpretation of

tRNA expression has been inconclusive and sometimes without significance [74].

Heterotrophic bacteria co-occur with microcystin-producing cyanobacteria and are thus

potentially exposed to microcystin for extensive periods. Our experiment tested the effects of

exposure to MCLR over a 1-hr period during exponential growth and found little to no evi-

dence of effect. The question then arises about whether our experimental methods could cap-

ture the full response of E. coli to exposure to microcystin. Our design was based, in part, on

the fact that regulatory pathways that respond to oxidative and envelope stress are well charac-

terized in E. coli [64, 68] and are known to respond rapidly to bona fide stress stimuli. In com-

prehensive benchmarking studies using E. coli, measurable responses to oxidative stress

occurred within 10 min of stress induction [56]. In fact, over a time series, the largest number

of changes in both gene expression and metabolite concentrations occurred within 10 min,

with ~200 genes being differentially expressed. Key oxidative response genes, like katG, were

up-regulated ~40-fold [56]. A number of studies have shown that response to oxidative stress

is rapid with measurable responses occurring within 20–30 min [55, 61, 62]. Likewise, the
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envelope stress response systems are known to respond rapidly. Measureable responses in the

σE system can occur within 3 min of initiating envelope stress [76], while changes greater than

50-fold have been measured in genes of the Rcs system within 40 min of initiating stress [66].

Our experimental design was based in part on previous reports of microcystin-induced

stress in E. coli. Yang et al. [27] reported significant increases in oxidative-stress-enzyme activi-

ties in E. coli within 30 min post-exposure to MCRR. In similar time frame, Dixon et al. [26]

reported measurable amounts of periplasmic proteins being spilled from E. coli within 20 min

post-exposure to MCRR due to permeabilisation of the outer membrane. In these latter exam-

ples, a congener of microcystin produced measurable effects in a time frame consistent with

our experimental design and consistent with the idea that response to stress occurs within

minutes. It is possible in our case that longer exposure to MCLR might have produced a mea-

surable effect. But in batch culture, longer exposure times would have meant measuring the

response of cells in late exponential phase or early stationary phase when cells are known to be

more resistant to a variety of stresses, especially oxidative stress [77]. Thus it is unlikely that

longer exposure times would have produced different results. Given our experimental design,

we cannot draw conclusions about longer exposure times. However, we can conclude that we

saw no evidence of a stress response to MCLR within a time frame used by other researchers

to show responses to the congener MCRR.

Conclusions

A goal of this study was to improve understanding of how microcystin affects the physiology

of heterotrophic bacteria within the context of a confounding body of research. The literature

addressing this topic is small and contradictory, but suggest that the effect is species, congener,

and growth-condition-dependent. Data presented here test the most abundant microcystin

congener using methods that monitor global cellular responses. Our results show that MCLR

has little effect on the physiology of E. coliMG1655 under the tested conditions. Given previ-

ous work, our findings point to a potential difference in mechanism through which MCLR

interacts with heterotrophic bacteria vs. cyanobacteria such as Synechocystis spp. This work

suggests that even very high concentrations of MCLR have little influence on the physiology of

E. coli. Limited by the extent to which results from E. coli are transferable to a broader group of

bacteria, our findings suggest MCLR has limited potential to alter the physiology or ecology of

a segment of heterotrophic bacteria that co-occur with toxic cyanobacterial blooms. This pro-

vides additional support for the growing consensus that microcystin is produced by cyanobac-

teria to influence one or more internal metabolic or physiological process. Ultimately,

understanding the reason cells produce these compounds is an important step towards our

ability to constrain their production in natural systems.

Supporting information

S1 Table. Summary of RNA sequencing libraries.

(DOCX)

S1 Fig. O.D.600 of treatment and control cultures. O.D.600 measurements of cultures at the

start (time = 0) and end (time = 60 min) of treatments. Symbols represent actual data points of

biological replicates. The horizontal bars represent the mean.

(TIF)

S2 Fig. Example growth curve of E. coli. Growth curves of E. coli in M9 minimal medium

with addition of 4 g L-1 glucose and 1 mg L-1 thiamine HCl. These curves were generated in

preliminary experiments and represent conditions identical to those of the master cultures
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described in Methods. Treatments were imposed on cultures approximately 8 hr after inocula-

tion when O.D.600 was ~0.3. Error bars represent 1 S.E., but are smaller than symbol size.

Growth rates calculated from these curves were identical (μ = 0.47 hr-1) to those calculated

from the control cultures during the experiment. n = 2.

(TIF)

S3 Fig. Fold change in Bae, Psp, and Rcs regulon gene expression for 10-mg/L MCLR treat-

ment. Each point represents the log2 fold change relative to control at a given time point. The

horizontal line at 0 represents equal expression in treatment and control. Gene abbreviations:

Bae regulon:mdtB (multidrug efflux pump RND permease subunit). Psp regulon: pspA (phage

shock protein A). Rcs regulon: osmB (osmotically and stress inducible lipoprotein), osmY
(osmotically inducible periplasmic chaperone), surA (periplasmic OM porin chaperone).

(TIF)

S4 Fig. Relative concentration of amino acids responsive to oxidative stress. Error bars rep-

resent 1 S.E.

(TIF)

S5 Fig. Relative concentration of glycolysis and TCA cycle metabolites responsive to oxida-

tive stress. Error bars represent 1 S.E.

(TIF)

S6 Fig. Relative concentration of glutathione and glutathione disulfide. Error bars represent

1 S.E.

(TIF)

S1 File. Excel spreadsheet containing metabolite data normalized to optical density of cul-

tures.

(XLSX)

S2 File. Excel spreadsheet containing lipid data normalized to optical density of cultures.

(XLSX)
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