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Abstract

A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were

screened for their binding affinity with serotonin transporter (SERT) and dopamine trans-

porter (DAT) by docking molecular. 5-(4methoxyphenyl)-1-(2-(phenylselanyl)phenyl)-1H-

1,2,3-triazole-4-carbonitrile (SeTACN) exhibited the best conformation with SERT even

higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demon-

strated additional affinity to other serotonergic receptors involved in antidepressant effects:

5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reduc-

tions in the immobility time of mice submitted to forced swimming test (FST) in the dose

range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism

of action was investigated using serotonergic and dopaminergic antagonists. The antide-

pressant-like effect of SeTACN (0.1mg/kg i.g.) was prevented by the pretreatment with

WAY100635 (a selective 5HT1a antagonist), ketanserin (a 5HT2a/c antagonist) and ondan-

setron (a selective 5ht3 antagonist), PCPA (an inhibitor of serotonin synthesis) but not with

SCH23390 (dopaminergic D1 antagonist) and sulpiride (D2 antagonist). Sub-effective dose

of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST.

None of the treatments affected locomotor activity in open field test (OFT). These results

together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts,

by serotonergic system.

1. Introduction

Depression is a common, debilitating, life-threatening illness affecting approximately 350 mil-

lion people worldwide. Despite a huge volume of research in understanding the etiology of

depression, the pathophysiological mechanisms involved remain not fully elucidated [1]. Sev-

eral studies revealed that monoaminergic neurotransmitters, including serotonin (5HT), nor-

epinephrine and dopamine (DA) are the mainly responsible in brain circuits implicated in
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mood regulation [2, 3]. For this reason, the serotonergic system is one of the most promising

targets for the treatment of psychological disorders [4, 5].

Among the antidepressant drugs, the selective serotonin re-uptake inhibitors (SSRI) are

most frequently prescribed, due to their higher efficacy, good tolerability and relative safety

[6]. On the other hand, the heterogeneity of clinical responses to these drugs and susceptibility

to adverse effects still being the antidepressants major clinical problems [7, 8]. However, little

progress has been made in decreasing the percentage of resistant cases and improving the anti-

depressant onset of action [9].

Interestingly, 5HT mediates a wide range of pathways involved in depression through inter-

actions with multiple 5HT receptors. In this context, the flexibility of 5HT system provide a

promising opportunity to develop compounds with multiple and complementary modes of

action. As the strategy of the simultaneous blocking or stimulation in specific 5HT receptors

and/or the SERT inhibition, leading to the blockade of 5HT re-uptake [10, 11]. The adjustment

of whole serotonergic transmission via pharmacological agents may provide future alternative

antidepressant treatments [12].

Besides the abnormalities in metabolism of neurotransmitters, oxidative stress has been

suggested to play an important role in depression pathogenesis [13, 14]. In this perspective,

major depressive disorder has been linked to impairments in signaling pathways that regulate

neuroplasticity and cell survival [15–17]. In this way, the neuroprotective role of antioxidant

compounds can be pharmacologically useful for the modulation of depression [18, 19].

Selenium is an essential trace element nutritionally important to mammals, with physiolog-

ical roles, in reason of being a structural component of several antioxidant enzymes involved

in free radicals decomposition [20–22]. Recently, we reported that a class of phenylselanyl-1H-

1,2,3-triazole-4-carbonitriles can induce antioxidant activities in mice cerebral cortex and hip-

pocampus [23].

Several additional studies also demonstrated antidepressant-like activity can be exerted by

organoselenium compounds, i.e. (octylseleno)-xylofuranoside [24], α-(phenylselanyl) aceto-

phenone [25], α-phenylselenocitronellal [26], 3-(4-fluorophenylselenyl)-2,5-diphenylseleno-

phene [27] and m-trifluoromethyl-diphenyl diselenide [28]. In parallel, studies have reported

that insufficient selenium intake may also affect some psychological roles and the supplemen-

tation with selenium was found to be associated with improvements in mood and depression

status [29, 30].

In view of the above considerations, the present study reports antidepressant-like analyses

of a selenium-containing compound belonging to the class of phenylselanyl-1H-1,2,3-triazole-

4-carbonitriles. The interaction of this class with 5HT and DA transporters was explored by

molecular docking. Based on these results, the affinity with 5TH1a, 5HT2a and 5HT3 receptors of

5-(4methoxyphenyl)-1-(2-(phenylselanyl) phenyl)-1H-1,2,3-triazole-4-carbonitrile (SeTACN)

was also investigated. As a preliminary biological evaluation, the antidepressant-like effect of

SeTACN and the possible mechanism of action was evaluated by behavioral assays in mice.

2. Materials and methods

2.1 Experimental design

In this study, the affinity with monoamine transporters as SERT and DAT were determined by

molecular docking. It was defined as a modelling strategy for further studies involving antide-

pressant-like potential of the selected compound, since they are the mainly responsible for

monoamine clearance from synaptic cleft. In view of extending our knowledge about the

mechanism of action performed by the resultant compound, molecular docking in serotonin

receptors involved in antidepressant effect: 5TH1a, 5HT2a and 5HT3 was also explored.

SeTACN has antidepressant-like effect
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We evaluated the antidepressant-like effect of resultant compound in mice submitted to

forced swimming test (FST) too. For this purpose, the animals were treated with a dose range

of SeTACN of 0.01mg-20mg/kg and 30 minutes later were submitted to open field test (OFT)

and FST as can be seen in Fig 1A.

In view of investigate our in silico evidences about the compound mechanism of action, the

animals were pretreated with different antagonists of monoaminergic receptors, in another set

of experiments. After latency time for antagonist effect, the animals were treated with SeTACN

(0.1mg/kg) and then submitted to OFT and FST (Fig 1B). The blockade of the SeTACN antide-

pressant-like effect by the administered antagonist is an indication of the involvement of this

pathway.

We also evaluated the synergic effect of a sub-effective dose of clinical antidepressants with

SeTACN, illustrated in Fig 1C. Combined effect of imipramine or fluoxetine and SeTACN in a

synergistic antidepressant-like activity suggests that the antidepressant-like effect of SeTACN

is attributed, at least in part, by a similar mechanism of action.

2.2 Homology modelling and molecular docking

The molecules analysed in this paper were drew using ChemDraw and their geometry opti-

mized using the software Avogadro 0.9.4 following the MMFF94 method [31]. The molecular

docking simulation was performed using software Autodock Vina [32], where all the rotatable

bonds of ligands were allowed to rotate freely and the receptors were considered rigid.

Protein ligand interaction was observed by Autodock Tools [33]. Additionally, this software

was used to minimize the structure of proteins, using the Gasteiger charges with 500 steps of

minimization in all molecular targets.

We used crystallographic structures of molecular targets from Protein Data Bank (PDB)

(http://www.pdb.org/). The CHIMERA 1.5.3 software was used to remove molecules, ions,

and water [34].

Fig 1. Experimental paradigms illustrating the drugs and compound administration followed by

behavioral tests. (A) Antidepressant-like activity of 5-(4methoxyphenyl)-1-(2-(phenylselanyl)phenyl)-1H-

1,2,3-triazole-4-carbonitrile (SeTACN). (B) Evaluation of mechanism of action involved in antidepressant-like

effect of SeTACN. (C) Synergic effect of the combined treatment with sub-effective doses of clinical

antidepressants and SeTACN.

https://doi.org/10.1371/journal.pone.0187445.g001
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Firstly, phenylselanyl-1H-1,2,3-triazole-4-carbonitriles (Fig 2) were docked in LeuBat

(PDB:3GWV), protein LeuT with some mutations, being similar to SERT [35], a homology

model. As positive controls, we used the molecules serotonin and fluoxetine.

Docking in dopamine transporter (DAT) (PDB:4M48) was performed using the same pre-

viously described methodology [36]. As serotonin is the major neurotransmitter involved in

pathology of depression, the molecule with lowest docking score in DAT and highest docking

score in SERT was selected for further investigation [37].

Additional studies were aimed to conduct docking in 5HT receptors 5HT1a, 5HT2a e 5HT3.

To reach this goal, the amino acid sequence of 5HT1a was downloaded from UniProt database

(accession code: P08908, 5HT1A_HUMAN) and the 3D structure of 5-HT1AR was con-

structed using the SWISS-MODEL server according to Zheng et al. (2015) [38]. 5HT2a recep-

tor was similarly built from 5HT2b and the amino acid sequence of 5HT2a Uniprot database

(accession code: P28223) according to Gandhimathi and Sowdhamini, (2015) [39]. The struc-

ture utilized to perform the docking analyses was 5HT3 PDB: 4PIR requiring no homology

studies.

2.3 Animals

The experiments were conducted using male Swiss mice (25–35 g, 60–75 days), housed in

groups (3–5 animals per cage) under controlled conditions of light (7:00 to 19:00) and temper-

ature (22–25˚C). All tests were performed on separate groups of animals (n = 5–10) and each

animal was used only once in each test. Before the start of the behavioral tests, the animals

were allowed to acclimate in testing rooms for at least 1 hour. The behavioral analyses were

performed by a blind measurer to the treatment conditions. Procedures of this study were con-

ducted according to the guidelines of the Committee on the Care and Use of Experimental

Animal Resources (NIH Publications No. 8023, revised 1978) and with the approval of the

Fig 2. Chemical structure of class phenylselanyl-1H-1,2,3-triazole-4-carbonitriles compounds.

Compound 1: 5-phenyl-1-(2-(phenylselanyl)phenyl)-1H-1,2,3-triazole-4-carbonitrile; Compound 2: 5-

(4-fluorophenyl)-1-(2-(phenylselanyl)phenyl)-1H- 1,2,3-triazole-4-carbonitrile; Compound 3: 5-

(4-chlorophenyl)-1-(2-(phenylselanyl)phenyl)-1H- 1,2,3-triazole-4-carbonitrile; Compound 4: 5-

(4-methoxyphenyl)-1-(2-(phenylselanyl)phenyl)-1H- 1,2,3-triazole-4-carbonitrile and Compound 5: 1-(2-

(phenylselanyl)phenyl)-5-(p-tolyl)-1H-1,2,3- triazole-4-carbonitrile.

https://doi.org/10.1371/journal.pone.0187445.g002
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Ethical Comission for Animal Use of the Federal University of Pelotas, Brazil (7045–2015, pro-

cess #23110.007045/2015-58). After treatment and behavioral analysis, mice were euthanized

using a continue isoflurane flow. All efforts were made to minimize animals suffering and to

reduce the number of animals used in tests.

2.4 Drugs

Ketanserin, ondansetron, sulpiride, SCH23390, p-chlorophenylalanine methyl ester (PCPA)

and WAY100635 were purchased from Sigma Chemical Co, USA. Fluoxetine hydrochloride

was purchased from Pfizer, Brazil and Imipramine hydrochloride was obtained from Novartis,

Brazil. All these drugs were diluted in saline solution (0.9%) and injected via intraperitoneal (i.

p) route, and WAY 100635 and SCH233390 administered via subcutaneous route (s.c). The

commercial antidepressants were also diluted in saline solution (0.9%) but administered by

intra gastric (i.g) route.

SeTACN was synthesized in our laboratory and characterized as previously described by

Savegnago et al (2016) [23]. The compound was dissolved in canola oil and administered i.g.

by gavage in mice. All the drugs listed were administered in a constant volume of 10 ml/kg

body weight.

2.5 Behavioral tests

Based on the above mentioned in silico modelling, 5-(4methoxyphenyl)-1-(2-(phenylselanyl)

phenyl)-1H-1,2,3-triazole-4-carbonitrile (SeTACN, Fig 1 –compound 4) was chosen for fur-

ther analysis in vivo. This selection was based in SERT/DAT ratio best score, as determined by

the logic created in this research.

In this way, in order to evaluate the antidepressant-like effect of SeTACN, the compound

was administered once in mice (0.01-20mg/kg) and 30 minutes later, the animals were submit-

ted to OFT followed by FST as experimental design 1 (Fig 1A).

2.5.1 Open field test (OFT). Locomotor activity was evaluated in the OFT, as previously

described by Walsh and Cummings (1976) [40], to exclude a possible locomotor interference

in FST. Briefly, animals were individually placed in a wooden square box (40 × 60 × 50 cm

high) with 12 equal squares. The number of crossings were manually counted during a 5 min-

utes session. Crossing was considered only when animal crossed a line with four paws. After

each session, the open field was cleaned with a solution of 70% ethanol to exclude any odor

cues.

2.5.2 Forced swimming test (FST). FST was performed immediately after the OFT and

was analyzed as previously described by Porsolt (1979) [41]. In summary, each mouse was

individually placed in an open cylindrical container (diameter 10 cm, height 25 cm), with 19

cm of water at 25 ± 1˚C, without the possibility of escaping, and was forced to swim. The total

amount of time each animal remained immobile during 6 minutes session was recorded (in

seconds) (only the last four minutes were analyzed). In this test, the immobile posture reflects

a state of behavior despair and helplessness.

2.5.3 Mechanisms involved in the antidepressant-like effect of SeTACN. The involve-

ment of serotonergic system in the antidepressant-like effect of SeTACN (0.1mg/kg i.g.) was

performed in another set of experiments included in experimental design 2 (Fig 1B). To reach

this goal, mice were pre-treated with ketanserin (1mg/kg i.p.; a 5HT2a receptor antagonist),

ondansetron (1mg/kg i.p.; a 5HT3 receptor antagonist) or WAY100635 (0,1mg/kg s.c.; a 5HT1a

receptor antagonist) and 15 minutes later the animals were treated with a dose of SeTACN

(0.1mg/Kg i.g.). After 30 minutes of compound administration, the animals were immediately

exposed to OFT and FST.

SeTACN has antidepressant-like effect
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With the purpose of verifying the influence of serotonin synthesis in antidepressant-like

effect of SeTACN, animals were treated once a day with PCPA (100mg/kg, i.p., an inhibitor of

serotonin synthesis) or vehicle (saline 0.9%) during 4 days. On the fifth day, animals received

SeTACN (0.1mg/kg, i.g.) or just vehicle and 30 minutes later were submitted to OFT and FST.

The dopaminergic system involvement in antidepressant-like effect of SeTACN was verified

according to experimental design 2 (Fig 1B). In this sense, animals were pre-treated with

SCH23390 (0.05mg/kg, s.c., dopaminergic D1 antagonist receptor), sulpiride (50mg/kg, i.p.,

D2 receptor antagonist) or saline. After the 60 minutes, necessary for the antagonist effect, the

animals were treated with SeTACN (0.1mg/kg) or vehicle. In the same manner as previously,

FST and OFT were performed after 30 minutes of the compound administration. It is worth

mentioning that, these methodologies were based in previous studies from Savegnago et al

(2008) [42]; Martinez et al (2014) [43]; Pesarico et al (2014) [44] and Brod et al (2016) [24].

The effect of the co-administration of sub-effective doses of SeTACN (0.01mg/kg i.g.) and

fluoxetine (5mg/kg, i.g., a selective serotonin reuptake inhibitor) was also investigated as pre-

dicted in experimental design 3 (Fig 1C) [45]. Thus, after 60 minutes of fluoxetine or vehicle

administration the animals were treated with SeTACN or vehicle and after 90 minutes ana-

lyzed in the behavioral tests. The synergic effect of a sub-effective dose of SeTACN (0.01mg/

kg) and imipramine (10mg/kg, i.g., a tricyclic antidepressant) was also evaluated (experimental

design 3- Fig 1C) as mentioned above [46, 47].

2.6 Statistical analyses

The results were analyzed utilizing the software GraphPad Prism 5.0 and are given as the

mean ± standard error of the mean (S.E.M.). Comparisons between experimental and control

groups were performed by one-way or two-way analysis of variance (ANOVA) followed by

Newman-Keuls test for post-hoc comparison when appropriate. Probability values less than

0.05 (P< 0.05) were considered as statistically significant.

3. Results and discussion

The molecular docking results in SERT and DAT are presented in Table 1. Based on this, the

compound SeTACN (number 4) was chosen due to its higher score in SERT (-9,9kcal/mol)

and lowest score in DAT (-9,0 kcal/mol). This rationale was developed based on studies which

demonstrated that although SSRI have affinity for noradrenaline transporter (NET) and DAT,

the SERT affinity is even higher [48, 49].

As positive controls in SERT, we utilized the molecules of 5-HT and fluoxetine, with a

docking score of -7.1 and -8.7 respectively. In this way, the SeTACN affinity with SERT seems

to be stronger, when its compared to 5-HT score, this data may indicate a preference in com-

petitive binding to 5-HT transporter. This pattern is also observed when SeTACN score is

Table 1. Scores (kcal/mol) of docking results of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles class

of compounds in serotonin transporter (SERT) and dopamine transporter (DAT).

Compound Docking in SERT (kcal/mol) Docking in DAT (kcal/mol)

1 -8.3 -9.3

2 -9.8 -10.1

3 -10.0 -10.1

4 -9.9 -9.0

5 -10.1 -10.3

https://doi.org/10.1371/journal.pone.0187445.t001
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compared to fluoxetine score, which might suggest a SeTACN stronger affinity to SERT,

although more depth studies are required to affirm this hypothesis.

SeTACN best score position is close to ASP 24 and TYR 21, which are target of paroxetine,

sertraline and fluoxetine (Fig 3A). The residues PHE 259, VAL104, SER356 and TYR108

interaction of fluoxetine and sertraline is the same with SeTACN and leuBAT [50]. It is worth

mentioning that the interaction of SeTACN with PHE253 an ASP404 might represent charac-

teristic of specificity, similar to others SSRI [51].

The affinity of SeTACN with the serotonin receptor 5HT1a is -8.8kcal/mol as shown in Fig

3B. The possible interaction with ILE113, PHE112, ASP116, ASN386, PHE361 and ALA365

are in agreement with some well-known 5HT1a drugs as buspirone, 8-OH-DPAT and

WAY100635 [52].

SeTACN docking score (-8.8 kcal/mol) in 5HT2a and the nearest residues of the complex

are illustrated in Fig 3C. The position of SeTACN in 5HT2a receptors seems to be similar to

antagonists of 5HT2a such as espiperone, sharing the same residues interaction as TRP151,

ILE152, LEU228, VAL156, ASP231 and PHE339 [37].

The result depicted in Fig 3D pointed out the docking scores of SeTACN in receptor 5HT3:

-8.1kcal/mol. Although the score is lower when compared to other evaluated receptors, this

interaction is considered significant. The best conformation of the compound is close to resi-

dues THR154 and TRP156, which inhibit this receptor by molecule VHH15 [53]. Moreover,

the residue TRP156 is among those responsible for the opening and closing of 5HT3 ionic

channels [53]. On the other hand, these residues interaction are not the same as antagonists

like ondasetron and granisetron, which may suggest another way of 5HT3 inhibition [54].

Fig 3. Docking results of compound 4 (5-(4methoxyphenyl)-1-(2- (phenylselanyl)phenyl)-1H-1,2,3-triazole-

4-carbonitrile (SeTACN) in (A) serotonin transporter (SERT) with a score of -9.9kcal/mol (B) in 5HT1a receptor

with a score of -8.8kcal/mol (C) in 5HT2a receptor with a score of -8.8kcal/mol (D) and in 5HT3 receptor with a

score of -8.1kcal/mol.

https://doi.org/10.1371/journal.pone.0187445.g003
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The SeTACN interaction with serotonergic system, explored by docking analyses suggests a

possible antidepressant-like effect, which was explored under in vivo tests by FST. Results from

Fig 4A indicate the effect of SeTACN on immobility time was statistically significant from 0.1–

20mg/kg with respect to the control group (P< 0.05; P<0.01; P< 0.001). SeTACN given by i.g

route and at all tested doses did not change the number of crossings in OFT when compared

to the control group (Fig 4B). These findings pointed to a decrease in immobility time in FST

not caused by any locomotor alteration.

Fig 5A shows that pre-treatment with WAY100635 (a 5HT1a receptor antagonist) was able

to prevent the reduction of immobility time caused by SeTACN treatment (0.1mg/kg i.g).

Two-way ANOVA analysis revealed a statistically significant effect of the treatment with

SeTACN alone [F(1,23) = 16.64; P = 0.0005], WAY100635 alone [F(1,23) = 11.82; P = 0.0022],

and treatment with WAY100635 x SeTACN [F(1,23) = 17.17; P = 0.0004]. No significant effect

was observed for SeTACN treatment [F(1,23) = 0.04; P = 0.8523], WAY100635 treatment

[F(1.23) = 0.05; P = 0.8284] or SeTACN × WAY100635 interaction [F(1,23) = 3.01; P = 0.961]

on the number of crossings. These findings together with docking study 5HT1a indicate the

possible involvement of this receptor in the antidepressant-like effect of SeTACN.

The pre-treatment of mice with ketanserin (a 5HT2a antagonist receptor) blocked the anti-

immobility effect of SeTACN (0.1mg/kg) as demonstrated in Fig 5B, suggesting the involve-

ment of 5HT2a. Two-way ANOVA tests revealed a statically significant effect of the treatment

with SeTACN alone [F(1,27 = 13.95; P = 0.0009], ketanserin alone [F(1,27) = 13.84; P =

0.0009], and treatment with ketanserin x SeTACN [F(1,27) = 9.04; P = 0.0009]. No significant

effect in OFT could be observed for SeTACN treatment [F(1,26) = 1.41; P = 0.2455], ketanserin

treatment [F(1,26) = 0.85; P = 0.3639] or SeTACN × ketanserin interaction [F(1,26) = 0.01;

P = 0.9321].

Results in Fig 5C demonstrate that pre-treatment with ondansetron (a 5HT3 receptor

antagonist) could prevent the antidepressant-like effect of SeTACN (0.1mg/kg). Two-way

ANOVA tests revealed significant differences in SeTACN treatment [F(1,16) = 8.41; P =

0.0105] and ondansetron × SeTACN treatment interaction [F(1,16) = 7.36; P = 0.0153] but not

ondansetron treatment. No significant effect for SeTACN treatment [F(1,16) = 0.07; P =

0.8007], ondansetron treatment [F(1,16) = 0.01; P = 0.9329] or SeTACN × ondasentron inter-

action [F(1,16) = 0.47; P = 0.5935] was detected on the number of crossings.

This anti-immobility effect of SeTACN (0.1 mg/kg, p.o.) was blocked by the pre-treatment

of mice with the inhibitor of serotonin synthesis, PCPA (Fig 5D). Two-way ANOVA showed

main effect for SeTACN treatment [F(1,18) = 22.12, P = 0.0002] and PCPA × SeTACN treat-

ment interaction [F(1,18) = 12.34, P = 0.0025] and also revealed significant differences for flu-

oxetine treatment [F(1,18) = 19.05; P = 0.0004], and PCPA × fluoxetine treatment interaction

Fig 4. Effect of acute administration of SeTACN (0.01–20 mg/kg, i.g) in mice 30 min before (A) the forced

swimming test (FST), and open field test (B). Values are expressed as mean S.E.M (one-way ANOVA

followed by Newman Keuls) (*) P < 0.05, (**) P < 0.01, (***) P < 0.001 when compared to control group.

https://doi.org/10.1371/journal.pone.0187445.g004
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[F(1,18) = 16.15; P = 0.0008]. The two way ANOVA revealed no significant effect of SeTACN

treatment [F(1,20) = 0.50; P = 0.4884], PCPA treatment [F(1.20) = 1.09; P = 0.3082] and

SeTACN × PCPA treatment interaction [F(1,20) = 0.13; P = 0.7182] in number of crossings.

No significant mobility effect for fluoxetine treatment [F(1,20) = 0.77; P = 0.3919] or

fluoxetine × PCPA interaction either [F(1,20) = 0.73; P = 0.4041].

Interestingly, the pretreatment with SCH23390 (Fig 6A) or sulpiride (Fig 6B) did not block

the antidepressant-like effect of SeTACN. Two-way ANOVA tests for immobility time

revealed a main effect of SeTACN [F(1,29) = 85.32; P = 0.0001] and [F(1,18) = 395.10;

Fig 5. Effect of pretreatment of mice with (A) WAY100635 (0.1 mg/kg, s.c. a selective 5-HT1A receptor antagonist); (B) ketanserin (1

mg/kg, i.p. a 5-HT2A receptor antagonist); (C) ondansetron (1 mg/kg, i.p. a 5-HT3 receptor antagonist); and (D) PCPA (100 mg/kg, i.

p., for 4 consecutive days, tryptophan hydroxylase inhibitor) on the anti-immobility effect of SeTACN (0.1mg/kg, i.g) in the FST. Data

are presented as the mean ± S.E.M. (**) P < 0.01 and (***) P < 0.001 in comparison to the vehicle treated group (control); (#)

P < 0.05 (###) P< 0.001 when compared to SeTACN pretreated with vehicle.

https://doi.org/10.1371/journal.pone.0187445.g005

Fig 6. Effect of pretreatment of mice with (A) SCH233390 (0.05 mg/kg, s.c., a dopaminergic D1 receptor antagonist) and (B)

sulpiride (50 mg/kg, i.p., a dopaminergic D2 receptor antagonist) on the anti-immobility effect of SeTACN (0.1mg/kg, i.g) in the FST.

Data are presented as the mean ± S.E.M. (***) P < 0.001 in comparison to the vehicle treated group.

https://doi.org/10.1371/journal.pone.0187445.g006
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P = 0.0001] respectively. The pretreatment of SCH23390 [F(1,29) = 4.06; P = 0.0533] and sul-

piride [F(1,18) = 0.38; P = 0.5449] did not eliminate the antidepressant-like effect elicited by

SeTACN. Two-way ANOVA of OFT showed that SeTACN treatment did not produce any sig-

nificant effect in mice locomotor activity [F(1,29) = 1.65; P = 0.2092], SCH23390 treatment

[F(1,29) = 2.08; P = 0.1595] and SeTACN × SCH23390 treatment interaction [F(1,29 = 1.33;

P = 0.2583] with respect to number of crossings. In the same way, no significant effect was

observed for SeTACN treatment [F(1,16) = 0.13; P = 0.7258], sulpiride treatment [F(1,16) =

0.08; P = 0.7755] or SeTACN × sulpiride interaction [F(1,16) = 0.51; P = 0,4855]. These results

suggest that the antidepressant-like effect of SeTACN may not be influenced by the D1 or D2

receptors, but more studies in relation to dopaminergic system and SeTACN are necessary.

Fig 7A summarizes the synergetic effect between immobility time of animals treated with a

sub-effective dose of fluoxetine (5mg/kg; selective serotonin reuptake inhibitor) in combina-

tion with a sub-effective dose of SeTACN (0.01mg/kg). Two-way ANOVA tests revealed no

effect of the treatment with SeTACN alone [F(1,12) = 26.30; P = 0.0002], fluoxetine alone

[F(1,12) = 21.45; P = 0.0006], and treatment with fluoxetine x SeTACN [F(1,12) = 23.13

P = 0.0004]. No significant effect for SeTACN treatment [F(1,12) = 0.12; P = 0.7398], fluoxe-

tine treatment [F(1,12) = 0.68, P = 0.4252] or SeTACN × fluoxetine interaction [F(1,12) = 0.01,

P = 0.9117] was observed with respect to the number of crossings. These findings imply that

fluoxetine and SeTACN may have a similar mechanism of action.

However, the effect between a sub-effective dose of imipramine (10mg/kg; a tricyclic anti-

depressant) and SeTACN (0.01mg/Kg) was not significant in immobility time (Fig 7B).

Two-way ANOVA tests revealed the SeTACN effect alone [F(1,19) = 3.80; P = 0.0660], imipra-

mine effect alone [F(1,19) = 0.28; P = 0.6039] and the combination of SeTACN × imipramine

treatment interaction [F(1,19) = 0.78; P = 0.3878]. Either, in open field test of SeTACN treat-

ment [F(1,19) = 0.03; P = 0.8718], imipramine treatment [F(1,19) = 0.01; P = 0.9441] or

SeTACN × imipramine interaction [F(1,19) = 0.04; P = 0.8479] did not change the mice loco-

motor activity.

Taken together, the results in the present study, both computational and behavioral, suggest

that the antidepressant-like effect of SeTACN in FST depends on the interaction of serotoner-

gic neurotransmission. Probably, firstly due the inhibition of SERT and as a complementary

action, the modulation of 5HT-receptors as 5HT1a, 5HT2a and 5HT3. Besides, SeTACN is capa-

ble of restoring the despair behavior induced by PCPA which lead to a serotonin depletion,

this data may infer the modulation of 5HT synthesis. Furthermore, based in this preliminary

evaluation, is important to highlight the hyphothetical feature of this mechanism of action

exerted by SeTACN and more studies are required to support these evidences.

Fig 7. Co-administration of sub-effective doses of (A) fluoxetine (5 mg/kg, i.g) or (B) imipramine (10 mg/kg, i.g) and (SeTACN 0.01

mg/kg, i.g) in the immobility time FST. Values are expressed as mean ± S.E.M. (***) P < 0.001 in comparison to the vehicle treated

group.

https://doi.org/10.1371/journal.pone.0187445.g007
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The suggested complementary SERT mechanism of action, trough the modulation of 5HT

receptors could be benefic in depression pathogenesis. Since, 5HT1a autoreceptors are respon-

sible in the self-inhibition control of 5HT neurons [55]. Most antidepressant drugs increase

the concentration of 5HT in the extracellular brain space only by preventing its reuptake

trough the blockade of SERT [56]. Indeed, this increase is offset by a negative feedback operat-

ing at the 5HT1a autoreceptors. This mechanism is thought to be responsible for the delay in

onset of the therapeutic action, often by several weeks, of antidepressants [6]. In this sense,

compounds which interact in 5HT1a receptors can accelerate the antidepressant response to

SSRIs, acting by potentiating 5HT neurotransmission [57–59].

In addition, preclinical studies indicate that 5HT2a receptor subtype represent a promising

target in SSRIs-resistant depressive patients, potentiating the behavioral effects of SSRIs [60].

Besides, the stimulation of 5HT2a receptors is related direct and indirectly to the modulation

of adult neurogenesis in the hippocampus and antidepressants exert their therapeutic activity,

at least in part, by stimulating this pathway [61].

5HT3 receptors also have a critical influence on behavioral and neurocircuitry processes in

brain that control mood and emotional behavior [9]. It is well known that the mechanism of

action of fluoxetine and other antidepressants, are related to the non-competitive antagonism

of the 5HT3 receptor [62]. Moreover, another interesting characteristic of 5HT3 receptors is

the presence of chemoreceptor trigger zone in brainstem and in the gastrointestinal tract,

which mediate nausea/vomiting motility, which may protect against the gastrointestinal side

effects that often accompany SSRIs antidepressants [12].

Interesting, triazole is the core structural motif exhibits a broad range of biological proper-

ties, including antidepressant-like activity as previously reported [63–65]. This nucleus is also

present in antidepressant drug Nefazodone, which generates its therapeutics effects primarily

as potent 5HT2a inhibitor. Besides, has moderate effects as 5HT1a inhibitor and serotonin-nor-

epinephrine-dopamine reuptake inhibitor (SNDRI) through the interaction with monoamin-

ergic transporters [66; 67].

The computational tools, such as molecular docking has contributing to drug design, in the

discovery of new molecules with therapeutic effects and contributing to suggest its mechanism

of action as well [68]. In this way, this study shows for the first time a selenium compound

binding affinity with serotonin transporters and the serotonin receptors: 5HT1a, 5HT2a and

5HT3 which might be useful to unravel the mechanism of action antidepressant-like effect

exerted by several selenium compounds, as cited previously. Moreover, similar studies already

demonstrated the antidepressant-like effect using this docking methodology in mice submitted

to FST [69–71].

FST is one of the most used tools for antidepressants screening, in this sense, a reduction in

immobility time is considered indicative of an antidepressant-like effect [72; 73]. Although, we

can just suggest a possible antidepressant-like activity of SeTACN, because a current limitation

of this study is the absence of an induced depressive-like behavior in mice. Considering, future

studies are needed to conclude the mechanism of action and determine the antidepressant

clinical efficacy of SeTACN.

Another interesting characteristic of SeTACN is the antioxidant effect in mice cerebral cor-

tex and hippocampus, already demonstrated by our research group [23]. Studies demonstrated

that depressed patients present a reduction in volume and function of these areas [74, 75].

These structural changes happen due the atrophy of several dysregulated signaling pathways,

including oxidative stress [76, 77]. In this sense, the antioxidant effect of SeTACN could at least

in part diminishes the negative impact of the redox dysregulation in neuronal homeostasis.

In this context, some antidepressants already demonstrated antioxidant effects and other

antioxidants have been reported to exert antidepressant-like effect [78; 79]. So, the antioxidant
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potential of SeTACN could contribute to its antidepressant-like effect. Despite, it is just a

hypothesis and to more concrete conclusions further studies are needed regarding the antioxi-

dant role in antidepressant-like effect of SeTACN.

Behavioral findings and molecular studies have shown that different subtypes of 5HT recep-

tors might relate to the effectiveness of the antidepressant compounds [80]. Taking all these

data, we can suggest that SeTACN might be a antidepressant-like compound with an interest

hypothetical mechanism of action, blocking the SERT and with affinity to 5HT1a, 5HT2a and

5HT3. This mechanism could accelerate the onset of action and diminishes others side effects

of the current prescribed antidepressants. Although more studies are needed to affirm

SeTACN pharmacological antidepressant efficacy.

4. Conclusion

In conclusion, based on computational and behavioral evidence, SeTACN exerted antidepres-

sant-like activity in mice, through the possible modulation of serotonergic pathway. Neverthe-

less, further studies are needed to elucidate the mechanism of action and the contribution of

other neurotransmission systems, signaling pathways using others depressive models and

experimental techniques.

Supporting information
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