
RESEARCH ARTICLE

A causal mediation model of ischemia

reperfusion injury in the retina

Maha Soliman1¤a, Kalina Andreeva1¤a, Olfa Nasraoui2¤b, Nigel G. F. Cooper1¤a*

1 Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United

States of America, 2 Department of Computer Engineering and Computer Science, University of Louisville,

Louisville, KY, United States of America

¤a Current address: 511 South Floyd, Louisville, KY, United States of America

¤b Current address: 132 Eastern Pkwy, Louisville, KY, United States of America

* nigel.cooper@louisville.edu

Abstract

The goal of this study is to develop a model that explains the relationship between micro-

RNAs, transcription factors, and their co-target genes. This relationship was previously

reported in gene regulatory loops associated with 24 hour (24h) and 7 day (7d) time periods

following ischemia-reperfusion injury in a rat’s retina. Using a model system of retinal ische-

mia-reperfusion injury, we propose that microRNAs first influence transcription factors,

which in turn act as mediators to influence transcription of genes via triadic regulatory loops.

Analysis of the relative contributions of direct and indirect regulatory influences on genes

revealed that a substantial fraction of the regulatory loops (69% for 24 hours and 77% for 7

days) could be explained by causal mediation. Over 40% of the mediated loops in both time

points were regulated by transcription factors only, while about 20% of the loops were regu-

lated entirely by microRNAs. The remaining fractions of the mediated regulatory loops were

cooperatively mediated by both microRNAs and transcription factors. The results from

these analyses were supported by the patterns of expression of the genes, transcription fac-

tors, and microRNAs involved in the mediated loops in both post-ischemic time points. Addi-

tionally, network motif detection for the mediated loops showed a handful of time specific

motifs related to ischemia-reperfusion injury in a rat’s retina. In summary, the effects of

microRNAs on genes are mediated, in large part, via transcription factors.

Introduction

The proper function of the retina is associated with gene regulation, which is accomplished, in

part, by activation or suppression of genes not only in a time specific manner but also in coor-

dination with the expression of many other genes. Studying the coordinated gene expression

requires an in-depth understanding of the interactions between genes and their regulators at

the molecular level. In recent years, many models of gene regulatory networks combining tran-

scription factors (TFs) and microRNAs (miRNAs) have been investigated [1–25]. The core of

constructing these models revolves around three basic steps [1– 4]. The first step is to construct

a miRNA-mediated gene or TF-mediated gene regulatory network that reflects the interactions
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between its entities via some experimental data. Depending on the mediated regulatory

network, interactions can either occur between miRNAs-mRNAs, miRNAs-TFs, and TFs-

mRNAs in a miRNA-mediated gene network or TFs-mRNAs, TFs-miRNAs, and miRNAs-

mRNAs in a TF-mediated gene network. However, sometimes the limited knowledge of

TFs-miRNAs in literature makes the miRNA-mediated gene network a prevailing approach.

The second step is to translate the constructed network into a coherent analytical framework

(mathematical or statistical) that can explain the interactions between the network entities.

The third step is to characterize the model parameters by simulation or by supporting infor-

mation from an existing database, or from the literature.

Statistical modeling has had a considerable share in modeling the regulatory network informa-

tion for TFs and miRNAs and their target genes in many conditions and/or diseases, but largely

in studies related to cancer [5–7]. A wide spectrum of approaches with different levels of complex-

ity that dealt with various types of cancer was reported. For example, [8–11] used relatively simple

statistical approaches based on correlation to address miRNA-mRNA networks associated with

colorectal and pancreatic cancer respectively. In the context of prostate cancer [12], a classifier

was used for exploiting almost every aspect of extractable information from mRNA/miRNA

expression data of prostate tumor and normal samples. The classifier was used to detect numerous

known and novel miRNA-mediated deregulated loops and networks in the disease. In glioma

[13], a network-based method was used to construct an miRNA-mRNA regulatory network from

combining paired expression profiles of 160 Chinese glioma patients. In glioblastoma [14],

miRNA-mRNA was integrated with TF-mRNA regulatory information to generate one regulatory

network for the disease. Statistical modeling was also used in drug identification such as experi-

ments [15–17], in which the goal from constructing feed-forward loops of miRNA-TF-mRNA

was to identify drug repurposing candidates in the context of Cystic Fibrosis (CF).

Mathematical modeling of the tertiary relations between miRNA-TF-mRNA has proven its

usefulness in unraveling the role of miRNA-mediated network motifs in fine-tuning gene

expression [18]. For example, mathematical modeling revealed that intercellular networks are

particularly enriched with miRNA-TF-mRNA motifs that enable regulatory features such as

homeostasis, oscillatory behavior, and all-or-nothing gene expression patterns [19]. In another

model, these motifs were hypothesized to control gene expression programs at a temporal

scale [20]. Additionally, these motifs were found to be vital for cell fate, including cell prolifera-

tion and apoptosis [21]. Recently, an increasing number of TF-miRNA circuits have been

identified as having the structure of feed-backward loops (FBLs). These loops were found to

give rise to bi-stability in gene expression, a sophisticated regulatory condition in which the

network switches to a new state upon a transient perturbation, and to confer robustness to bio-

logical processes [22–24]. In this context, we recall the remarkable case of multiple TF-miRNA

FBLs, which appear in the regulation of the E2F family and are involved in the regulation of

cancer-associated phenotypes [25].

Ischemic injury has been thought of as a type of common pathological pathway associated

with many retinal diseases, such as retinopathy of prematurity, diabetic retinopathy, acute

glaucoma, and vein occlusion. Normally, ischemic injury results in neuronal cell degeneration,

particularly in retinal ganglion cells, a contributing factor for visual impairment and blindness

[26–29]. In previously described model of ischemia-reperfusion (IR) induced injury of the ret-

ina, degeneration of retinal ganglion cells occurred in two phases. The first phase occurred

within 24 hours (24 h) following injury, and the second phase occurred over the course of sev-

eral days [30]. We had constructed miRNA-mediated mRNA regulatory networks associated

with early and late points following IR-injury of the neuronal retina [31]. In this study, we

were reporting a mediation model to examine the roles played by miRNA and TF on gene reg-

ulation to complement our previously reported studies [32]. To the best of our knowledge, this
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study is the first to model miRNA-TF-mRNA interactions in the context of an IR-injury in the

retina with mediation analysis. Our goal is to develop a novel approach to characterize the reg-

ulatory events in ischemic injury.

Materials and methods

An extensive miRNA profiling and mRNA profiling of two public datasets, GSE43671 and

GSE61072 from the Gene Expression Omnibus (GEO) data repository were used for this

study. The two datasets were drawn from a rat model whose intra-ocular eye pressure was

increased to reduce blood flow for 60 minutes and then allowed to re-perfuse, for 24h or 7d

respectively. The mRNAs array-data were collected at time points of 0h, 24h and 7 days post

IR-injury; miRNA-arrays were collected at five time points: 0h, 2h, 24h, 48h and 7d post IR-

injury. The mRNA expression data at 2h and at 48h were imputed using a simple least square

method [33–35] and paired with equivalent-timed miRNA array data. Agilent single color

microarrays were used to quantify the paired transcriptional profiles of miRNA and mRNA

expression. Raw data of mRNA and miRNA were imported to GeneSpring (GX 11.1) and nor-

malized. Normalization was performed using a per-chip 75 percentile method that normalizes

each chip on its 75 percentile, allowing comparison among chips. Then a per-gene on median

normalization was performed, which normalized the expression of every gene on its median

among the samples. The miRNA-mRNA expression data whose expressions were altered two

or more times (absolute fold-change�2, and corrected P-value calculated by Benjamini-Hoch-

berg procedure of�0.05) in injured versus sham control animals were used as differentially

expressed miRNA-mRNA at 0h, 24h, and 7d only as these time points mark the start, apex,

and end of the ischemic condition between miRNA and mRNA. Genes with multiple probe

ids, had their expression value of the first listed probe id used. Differentially expressed mRNAs

and microRNAs were determined as an altered expression at an absolute fold change� 2 and

corrected p-value� 0.05 compared to control samples.

The predicted targets of miRNA were obtained from four major public databases, including

MiRanda prediction database (August 2010 release) for conserved miRNAs with good mirSVR

and the non-conserved miRNAs with good mirSVRs [36,37]. The mirSVR score is a real num-

ber computed by machine learning method for ranking microRNA target sites by a down-reg-

ulation score. It utilizes prediction rules such as seed-site pairing, site context, free-energy, and

conservation. The lower (negative) is the mirSVR score, the better is the prediction. Other

microRNAs target sources were TargetScan prediction database (release 6.2) [38], miRWALK

prediction database (March 2011 release) [39], and miRTarBase (release 4.5) and its validated

target gene database [40]. The latter is an experimentally validated microRNA-target interac-

tions database. Predicted target genes of known transcription factors in rats were collected

from several online databases, including ITFP [41], PAZAR [42–43], and TRED [44–45].

Additionally, experimentally validated and predicted TF-mRNA pairs were collected from the

commercial database TRANSFAC (professional release 2014) [46] using the Match analysis

tool [47], The Match analysis tool was set to investigate the promoter regions of mRNA data

(5 kb upstream). To minimize false positives as well as false negatives, only pairs of transcrip-

tion factors and genes with the highest matrix score (0.8) were collected. Genes unknown to

TRANSFAC were re-analyzed with the aid of Match, using either different aliases (gene sym-

bol or RefSeq ID), or using the promoter sequence of the gene as found at the UCSC table

browser [48]. We compiled a comprehensive set of all transcription factors with their target

genes as reported in those databases and used it to identify TFs in the IR related mRNA data at

0h, 24h, 7d, respectively (Fig 1-I). Querying our mRNA, and microRNA databases, we identi-

fied 4218, and 919 regulatory loops at 24h and 7d, respectively.

Causality in retinal ischemia injury
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Fig 1. The workflow for inference of the IR- injury mediated regulatory loops. Step I: IR-related miRNAs, TFs, and mRNAs were collected from the

experimental mRNA- and miRNA-arrays produced in our laboratory. These represent the altered expression values of the three elements detected at five

different time points during ischemia-reperfusion injury. TF-mRNA pairs, miRNA-mRNA pairs, and miRNA-TF pairs were constructed with the aid of external

databases and/or software. Step II: The paired constructs were used to build three closed loop-motifs interconnected by three edges. Step III: The closed

loops were subjected to mediation analysis resulting in three classes of mediated loops. Step IV: Mediated loops were subjected to motif detection analysis to

identify significant regulatory motifs.

https://doi.org/10.1371/journal.pone.0187426.g001
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Inference of closed regulatory loop motifs

Throughout this study, we have used the terms loop and motif interchangeably to indicate reg-

ulatory loop motifs. Different patterns of loops can be inferred from these datasets. For sim-

plicity, we restricted our inference to loops where the miRNA targeted a TF and both co-

regulated the expression of a co-targeted gene, hence forming a closed triangular loop (Fig

1-II). According to this setting, closed regulatory loops were identified by querying our com-

prehensive database (Fig 2). The resulting set of loops was mapped to edges and nodes, where

each loop was represented by three edges (miRNA-TF, miRNA-mRNA, and TF-mRNA) and

three nodes,(miRNA, TF, and mRNA) without regard to direction of interaction. A total of

4,218 and 957 regulatory loops was inferred at 24 h and 7d post-IR period time points respec-

tively. Statistical assessment of individual loops was done by examining the linear and nonlin-

ear correlation between each loop’s three edges, using both Pearson correlation (ρ) [49] and

distance correlation (DC) [50]. A nonlinear dependency between some molecules was recently

reported [51], which motivated us to consider nonlinear correlation. Only loops with all three

significantly correlated edges (p-value�0.05) were considered for further analyses. Correlation

of edges is calculated by the distance correlation method using R package (Energy). The signif-

icance of correlation was assessed using function dcor.ttest in the same package. This function

applies a nonparametric t-test of multivariate independence with a distribution that is approxi-

mately Student t with n (n−3)/2−1 degrees of freedom, and for n� 10 the statistic is approxi-

mately distributed as standard normal. The correlation test reduced our number of loops to

2,681 and 699 closed loops at 24 h and 7d post-IR, respectively.

Unraveling the mediation mechanism

Mediation analysis aims to uncover causal pathways transmitted from causes to effects [52]. It

is a model applied [to] systems in which the effect of an independent variable (X) on a depen-

dent variable (Y) is transmitted through a third intervening or mediating variable (M) [53].

This model coincides perfectly with our inferred closed loops (Fig 1-III). The simplest media-

tion is manifested by a single mediator variable as opposed to multiple mediator variables. The

total effect is the entire effect of variable X on Y in the presence of M. When M exists between

X and Y, then the effect that is delegated by X to Y through M is called a mediated effect. In a

single mediator model (Fig 3), the upper diagram represents the effect of X on Y, and the

lower diagram represents the mediated effect of X on Y through M. Mathematically, we can

represent these two path diagrams using the regression Eqs in (1), (2), and (3):

Y ¼ b1 þ cX þ e1 ð1Þ

M ¼ b2 þ aX þ e2 ð2Þ

Y ¼ b3 þ c0X þ bM þ e3 ð3Þ

Where:

Eq (1) is the effect of X on Y in the absence of M, represented by c;

Eq (2) is the effect of X on M, represented by a;

Eq (3) is the effect of X on Y in the presence of M, and it is composed of the effect of X on Y

adjusted for M and represented by c0, and the effect of M on Y, adjusted for X and repre-

sented by b;

β1, β2, and β3 are the intercepts, and e1, e2, and e3 are error terms.

Causality in retinal ischemia injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0187426 November 9, 2017 5 / 25

https://doi.org/10.1371/journal.pone.0187426


Causality in retinal ischemia injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0187426 November 9, 2017 6 / 25

https://doi.org/10.1371/journal.pone.0187426


The mediated effect is equal to a�b. The effect of X on Y that does not pass through M is the

direct effect of c0. Models where c0 is zero are called completely-mediated models, and models

where c0 is not zero are called partially mediated models. In ordinary-least-squares regression,

Fig 2. The Pseudo code for inference of closed regulatory loops. Three tables are given as inputs for the

algorithm, a transcription factors table TF, a microRNA table miRNAs, and a mRNA table mRNA. If a gene in the

mRNA table is a common target by an miRNA and a TF in the miRNA and the TF table respectively, and

synchronously the TF is a target for the miRNA, then the triple of miRNA, TF, mRNA is marked as a potential loop

and inserted in the Loops_Database repository. Otherwise another gene in the mRNA table should be considered.

Previous steps continue until consuming all genes in mRNA table.

https://doi.org/10.1371/journal.pone.0187426.g002

Fig 3. The single variable mediator model. A simple mediation model composed of two variables, X and Y, where Y is dependent

on X. The upper diagram illustrates the effect c from X to variable Y in the absence of any additional variables. The lower diagram

illustrates how c is split into a, b when a mediator variable is introduced between X, and Y. In this case, effect a is along the X-M path,

and effect b is along M-Y path. The split effect will in turn change c into an updated effect c0 along the X-Y path.

https://doi.org/10.1371/journal.pone.0187426.g003
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the total effect is given by Eq 4 while the mediation effect confidence limit and standard error

are given by Eqs 5 and 6, respectively.

c ¼ ab þ c0 ð4Þ

âb̂ � z1� w=2 � sâ b̂ ð5Þ

sâ b̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
â b̂2 þ s2

b̂
â2

q

ð6Þ

We fit the linear regression Eqs (1),(2),(3) then followed them by estimating the mediation

effects from these models using the standard procedure for analyzing causal mechanisms. A

variety of parametric and semi-parametric models can be used to estimate the average causal

mediation effect. The core of these modeling approaches is the sequential ignorability assump-

tion for point identification [54], which simply means that the effects of the unobserved factors

and missing data can be ignored. According to Imai et al. [55], this assumption provides a gen-

eral purpose algorithm for estimating the mediation effect. Using the model-based approach

(Fig 4) [56–57], we estimated the causal mediation effect in the closed loops in two steps. First,

we specified two statistical models, the mediator model M (transcription factor) under treat-

ment T (microRNA) and the outcome model Y (gene) under mediator M and treatment T.

Next, the two models were fitted separately and considered as inputs to the mediation algo-

rithm. Since our loops bear linear and nonlinear correlations, we used a linear regression

model for linear correlations and a multivariate nonlinear regression model represented by a

series of successive cubic regression splines basis defined by three sized sets of knots spread

evenly through the covariate values for nonlinear correlations. To calculate the uncertainty

estimates associated with the mediation effect, we adjusted the mediation function to use non-

parametric bootstrap simulation with a default number of 1000 simulations for the linear cor-

relations and 1000 for the nonlinear correlations. The main outputs from the mediation

function were total effect (TE), average causal mediation effect (ACME), and average direct

effect (ADE), where TE, ACME, ADE are formulated as:

TE ¼ a � bþ c0;

ACME ¼ c � c0 ¼ a � b;

ADE ¼ c0

An evaluation of the confidence of the mediation model was achieved by sensitivity analysis

for the output. This analysis was necessary to answer questions such as whether the dependent

variable expression level -mRNA- deviated from expectations. If so, what would the mediated

effect be. The complete results from applying the mediate function for the 24h and 7d post

ischemic loops with their associated P-values and confidence intervals are listed in the sup-

porting information S1 File.

Results

The mediation analysis identified three classes of loops: mediated loops by TFs, mediated

loops by miRNAs, and co-mediated loops by both TFs and miRNAs. For simplicity, we will

refer to these as class MT, MM, and MTM loops (Fig 5). The main concern of this study is char-

acterizing these three types of loops, namely, the fraction of loops mediated by TFs alone, the

Causality in retinal ischemia injury
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fraction of loops mediated by miRNAs alone, and the fraction of loops mediated by both TFs,

and miRNAs at 24h, and 7d IR respectively.

At 24h, the numbers of loops in classes MT, MM and MTM were 899, 463, and 472, respec-

tively. In contrast to 24h, the 7d had 216 loops of MT, 99 loops of MM, and 220 loops of MTM.

In total, the mediation analysis explains 1,834 (69%) loops from the 2,681 significant loops at

24h, and 553 (76%) loops from the 699 significant loops at 7d respectively (Table 1). Since

transcription factors can work as inhibitors or activators, at 24h class MT loops were further

Fig 4. The model-based approach of the causal mediation analysis. At the beginning, two regression models were constructed and fitted

separately: model.m and model.y, where model.m modeled the influence dictated by miRNA on TF and model.y modeld the influence dictated by

both miRNA and TF on mRNA. The two models were then processed by the causal mediation function. A sensitivity analysis was followed to

measure the significance of the model and to plot its summary results.

https://doi.org/10.1371/journal.pone.0187426.g004
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classified into loops with upregulated TFs and genes versus loops with downregulated TFs and

genes respectively (Table 2).

Unlike TFs, miRNAs normally downregulate genes, and hence class MM loops were further

classified into loops with upregulated genes and downregulated miRNAs versus loops with

downregulated genes and upregulated miRNAs (Table 3). Class MTM involved an influence

from miRNAs as well as an influence from TFs, and it is possible for both influences to agree

or to differ (Table 4). Therefore, class TTM contained two interesting patterns. The first pattern

corresponded to loops with similar ADE and ACME signs, and hence were supporting each

other in influencing the gene (Table 4). The second pattern corresponded to loops with differ-

ent ADE and ACME signs and hence were opposing each other in influencing the gene.

These two patterns were further classified into loops where the target gene regulation fol-

lowed either ADE or ACME or ADE and ACME together (Table 5, Table 6).

Fig 5. Classification of the closed regulatory loops by mediation analysis. Closed regulatory loops are classified into three main classes: A) The

mediated loops by TFs, where all influence on mRNA originates from miRNA delegating its entire influence to the TFs and is represented by MT in the study;

B) The mediated loops by miRNAs, where all influence on mRNA originates directly from miRNAs and is represented by MM in the study; C) The mediated

loops by TFs and miRNAs together, where all influence on mRNA originates from both miRNAs and TFs and is represented by MTM in the study.

https://doi.org/10.1371/journal.pone.0187426.g005

Table 1. Number of mediated loops per time point per loop class.

Post-IR

time point

Loops mediated by

TFs only (ACME)

Loops mediated by

miRNAs only (ADE)

Loops mediated by

both miRNA+TF (ADE+ACME)

Total

24h 899 463 472 1834

7d 216 99 220 553

Number of significant mediated loops (p value� 0.05) with Average Causal Mediation Effect (ACME), Average Direct Effect (ADE), and both (ADE and

ACME) in early (24h) and late (7d) post-ischemic time points.

https://doi.org/10.1371/journal.pone.0187426.t001
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The highest ACME and ADE values associated with each class of loops at 24h and 7d

post ischemic are listed in Table 7. For the MM class at 24h, miR-532-5p and miR-338� were

associated with the highest and lowest ADE while at 7d, miR-495 was the sole miRNA associ-

ated with both the highest and lowest ADE. In the MT class, Gnb2, Stat1 were the TFs associ-

ated with highest and lowest ACME at 24h, while Stat1 was the only TF involved with the

highest as well as the lowest ACME at 7d. In the MTM class at 24h, the pair miR-758, Stat1 was

associated with highest and lowest ADE while the pairs miR-185, Jun, and miR-297, Maf were

associated with the highest and lowest ACME respectively. On the other hand, at 7d, the pair

miR-483, Stat1 and miR-223, Lef1 was associated with highest and lowest ADE respectively

while the pair miR-483, Stat1 and miR-346, Bcl6 appeared with the highest and lowest ACME

respectively.

Discussion

Two important outputs of the mediation analysis were the values of the ACME and the ADE.

According to [58], the ACME is identified by comparing the ADE before and after introducing

the mediator variable to the system. If the ADE disappears or weakens in value after the media-

tor variable has been introduced, this alteration indicates that the mediator variable has a role

and the ACME is to be estimated. If the ADE does not disappear or weaken, then a partial

mediation occurs, where the independent and the mediator variables share control of the

dependent variable. In a certain model, when no mediation is found, the independent variable

could have full control over the dependent variable. The ACME and the ADE for some exem-

plary loops at 24h are shown (Fig 6).

Both ACME and ADE can have negative or positive values. If ACME and ADE disagree in

their signs, this indicates that the mediator variable has an opposite influence to that of the

independent variable. If both ACME and ADE agree in their signs, then the mediator variable

supports the independent variable. The supporting S2 File lists all the miRNAs and TFs that

regulate target genes in both supportive and opposite manners at 24h, and 7d respectively.

Table 2. Classification of mediated loops by TFs per time point.

MT: Loops mediated by TF (ACME)

Post-IR time point Loops with upregulated

TF and TG

Loops with downregulated TF and TG Total

24h 138 348 486

7d 185 0 185

Number of loops mediated by TFs MT(ACME p value� 0.05) in early and late post-ischemic time points. Listed are the numbers of loops, where the

expression of the TFs and their target genes (TG) change in the same direction (either both upregulated or both downregulated).

https://doi.org/10.1371/journal.pone.0187426.t002

Table 3. Classification of mediated loops by miRNAs per time point.

MM:Loops mediated by miRNAs (ADE)

Post-IR

time point

Loops with downregulated miRNA and upregulated TG Loops with

upregulated miRNA and downregulated TG

Total

24h 94 146 240

7d 23 11 34

Number of loops mediated by miRNAs MM(ADE p value� 0.05) in early and late post-ischemic time points. Listed are the numbers of loops where the

expression of the miRNAs and their target genes (TG) changed in opposite directions (miRNA was upregulated and TG was downregulated or miRNA was

downregulated and TG was upregulated).

https://doi.org/10.1371/journal.pone.0187426.t003
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Some of these regulators have been already associated with different forms of ischemia (e.g.

Creb[58], Stat1[59], Bcl6[60], miR-122[61], miR-21[62], miR-214[63], miR-493[64]) while oth-

ers have not (e.g. Maf, Nptx1, Lef1, miR-290, miR-297, miR-466). An interesting observation is

that in some regulatory loops, an miRNA-TF combination has an opposing effect on one target

gene but a supporting effect on another gene. (Stat1 and miR-493 have an opposing effect on

Scfd2, but a supporting effect on Dhcr24.) This phenomenon has been described in the litera-

ture for the transcription factor ATF3 (Activating Transcription Factor 3). Most studies report

ATF3 as a transcriptional repressor. For example, the transcription of tumor suppressor gene

p53 was down-regulated in the ATF3-overexpressing cells [65]. Other studies report ATF3 it as

an activator. For example ATF3 increased the expression of human IFNGv [66] as well as of

CD44 and Bak [67]. It is thought that ATF3 combined with different interactive partners can

activate genes in-trans [68]. In a manner analogous to system biology, the supporting and

opposing regulatory effects on genes are the coherent and incoherent feed backward loops

[69]. In coherent loops the regulatory paths have the same overall effect (either activation or

repression of the target) similar to the aforementioned supporting effect, while in incoherent

loops, the regulatory paths have opposite effects. Therefore, coherent backward loops are sug-

gested in literature to have a bi-stable expression of the miRNAs and TFs involved in the

loops. For example, it was reported in the human hematopoietic cells that mir-233 and NFI-A
function in a coherent feedback loop to control granulocytic differentiation [69]. In undiffer-

entiated cells, mir-233 levels are low and NFI-A levels are high; however, upon retinoic acid

signaling, mir-233 levels increase and NFI-A is repressed, which facilitates differentiation

to the myeloid lineage. Therefore, this feedback loop confirms the mutually exclusive expres-

sion of mir-233 and NFI-A, thereby generating a bi-stable system (undifferentiated versus

Table 4. Classification of mediated loops by both miRNAs and TFs MTM based on signs of ACME and

ADME per time point.

MTM:Loops mediated by miRNAs (ADE) and TFs(ACME)

Post-IR time point Loops with opposing

ADE and ACME

Loops with supporting ADE and ACME Total

24h 216 256 472

7d 142 78 220

Number of loops mediated by miRNAs and TFs MTM (ADE and ACME, p-Value� 0.05) for early and late

post-ischemic time points. Listed are the numbers of loops where ADE opposed ACME as well as the

numbers of loops where ADE supported ACME.

https://doi.org/10.1371/journal.pone.0187426.t004

Table 5. Classification of mediated loops by both miRNAs and TFs based on target gene regulation

per time point.

Loops with opposing ADE and ACME

Post-IR time point Loops where TG

follows miRNA(ADE)

Loops where TG

follows TF(ACME)

Total

24h 56 160 216

7d 66 76 142

Number of loops mediated by miRNAs and TFs (ADE and ACME, p-Value� 0.05) for early and late post-

ischemic time points, where ADE and ACME values changed in different directions (loops with opposing

ADE and ACME). The mediated loops are divided to two categories: 1) Loops in which the fold change (FC)

of the target gene (TG) followed the direction of the FC of the miRNAs and 2) Loops in which the FC of the

TG followed the direction of the FC of the TFs. The numbers of loops in each category are listed.

https://doi.org/10.1371/journal.pone.0187426.t005
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differentiated hematopoietic cells). A quite intriguing observation from Table 4 suggests that

the opposite sign of ACME and ADE in class MTM loops reveals that the miRNAs and TFs are

competing to regulate the target gene in opposite manners [70–71]. The factors that decide the

winner are not known, but it is noticeable that more loops with competing miRNAs and TFs

occur at 7d than at 24h. The top five positive and negative ADE and ACMEs at each class of

loops at 24h and 7d are listed in supporting information S3 File. Generally, ADE had a narrow

range intervals at 24h and 7d compared to ACME at the two time points. For example, the

ADE values had a range of [-20.18, 17.32] and [-7.25, 9.69] at 24h and 7d respectively. To the

contrary of ADE, ACME ranges were [-139.50, 89.91] and [-8.75, 80.57] at 24h, and 7d. This

observation reflects the dominant role played by TFs at the two time points. This is consistent

with our current understanding of cell death at 24h, which most likely causes an active interac-

tion state between TFs in mediating their target gene. Hence the wide range of ACME at 24h,

while at 7d, a dormant interactions trend marked the recession of cell death, and hence the

narrow range of ACME [72–73]. Since partial mediated loops imply significant ADE and

ACME influence, we therefore list the loops associated with top ADE, as well as top ACME, in

S3 File to show both perspectives and ranges of values.

The fact that several loops from S3 File are mediated loops targeting Hmox1 raises several

questions about this gene. However, since we know that Hmox1 was investigated by many

ischemia injury studies and was recently reported to mitigate intestinal ischemic injury reper-

fusion in rat livers [74–75], we can comprehend why it is a top targeted gene. Hmox1 may

Table 6. Classification of mediated loops by both miRNAs and TFs based on agreement of ACME,

ADE, with target gene regulation per time point.

Loops with supporting ADE and ACME

Post-IR time

point

Loops where TG follows miRNA and TF

(ADE, ACME)

Loops where TG

opposes miRNA and TF(ADE,

ACME)

Total

24h 80 176 256

7d 65 13 78

Number of loops mediated by miRNAs and TFs (ADE and ACME, p-Value� 0.05) for early and late post-

ischemic time points, where ADE and ACME values changed in the same direction (loops with supporting

ADE and ACME). These mediated loops are divided in two categories: 1) Loops in which the fold change

(FC) of the target gene (TG) followed the direction of the FC of the miRNA and TF 2) Loops, in which the FC

of the TG opposed the direction of the FC of the miRNA and TF. The number of loops in each category is

listed.

https://doi.org/10.1371/journal.pone.0187426.t006

Table 7. The highest and lowest ACME and ADE per time point per loop class.

Loops with top ACME and ADE values

Post-IR time point Loop Type Highest ACME Lowest ACME Highest ADE Lowest ADE

24h MT 89.91 -139.51 17.23 -12.57

MM 3.81 -8.96 17.32 -20.18

MTM 108.23 -35.5 11.93 -18.86

7d MT 80.57 -18.09 9.6 -6.97

MM 6.78 -2.02 9.69 -7.25

MTM 195.62 -31.84 10.92 -25.5

The highest and lowest ACME and ADE values associated with each class of loops at both post-ischemic time points: MT: Loops mediated by TFs, MM:

Loops mediated by miRNAs, and MTM: Loops co-mediated by miRNAs and TFs.

https://doi.org/10.1371/journal.pone.0187426.t007
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offer new insights about a possible protective function in the context of IR. A more complete

understanding of Hmox1 modifications and the properties that they impart is necessary.

Delineating these parameters will provide a clearer picture of the opportunities to modulate

Hmox1 in IR. To validate and to provide a rigorous proof for the mediation results, we used

miRWALK database [39] for experimentally validated miRNA targets and TRANSFAC data-

base [46] for experimentally validated TF targets. A complete loop validation requires that the

three edges comprising the loop be experimentally tested and validated, which is not found in

those databases. However, some partial validations at 24h, 7d respectively are listed in support-

ing information in the supporting information S4 File.

An important property of networks is so-called network motifs, which are statistically sig-

nificant recurring subgraphs or patterns. They are significant because they repeat themselves,

and their recurring nature indicates that a particular pattern of interactions between vertices

may reflect a framework in which particular functions are achieved efficiently. Identifying dif-

ferent network motif types associated with each class of networks is necessary to better under-

stand network biology at each time point. Therefore, the MT, MM, and MTM class loops at 24h

and 7d were searched for statistically significant functional network motifs via the motif detec-

tion tools FANMOD [76]. While the computational problem of finding three and four node

motifs is tractable, exhaustive enumeration becomes problematic for larger values of nodes,

making such analysis impossible [77]. Therefore, FANMOD was adjusted to output significant

4 node motifs, using an exact enumeration algorithm with z-value� 2, p-value� 0.05, and

motif frequency occurrence� 5. The output of FANMOD for each class of loops is listed (Fig

7) with a red frame surrounding the unique motifs of each class. Although most of the detected

motifs were previously reported in the literature as shown in Table 8, it is important to notice

that network motifs do not perform biological functions independently. Instead motifs are

Fig 6. ACME and ADE graphical plots for some exemplary regulatory loops at 24h IR. A dashboard showing graphical plots associated with two types of

loops at 24h of IR, partial mediation and complete mediation loop respectively. Each row displays three plots. The left plot shows the average causal

mediation effect ACME, average direct effect ADE, and total effect for the particular type of loop on right margin of the plots. The dashed horizontal line

represents the estimated mediation effect under the sequential ignorability assumption. The middle and right plots are the sensitivity analysis plots as a

function of the standard deviation of the ACME ρ and the mean square error R2 respectively. ~R2
M is the square of the correlation between independent

variables(M!X), while ~R2
Y is the square of the correlation between dependent and independent variables(Y!X,M).

https://doi.org/10.1371/journal.pone.0187426.g006
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interconnected, leading to motif-motif interaction (MMI) pairs [78]. Therefore, it is possible

for these motifs to exist in superimposed blocks of the same motif or different motifs.

To get a sense of how these motifs are organized in the networks, we ran FANMOD for six

node motifs but with sampling enumeration rather than the exact enumeration. Unlike the

exact enumeration, sampling enumeration assigns probabilities for network nodes, and hence

it outputs approximate significant network motifs. In spite of the approximation, it does pro-

vide insight on possible motif arrangements in the underlying networks. One possible arrange-

ment (Fig 8) from six-node motifs can be composed of the unique four-node motifs in

Table 8.

The motifs were mapped back to the loops in the 24h,7d periods, leading to the loops

shown (Fig 9). We argue here that these compound motifs are IR regulatory loops signature

that bear important information in deciphering the interplay between miRNAs, TFs, and

mRNA in the IR context. We introduce these results for the research community for further

consideration with wet lab experiments.

A particular question raised here is whether these results are expected in other conditions,

or whether they are ischemic-injury specific results or indeed tissue (retina) specific. Several

transcription factors induced in the ischemic brain such as STAT1, MAF were found to modu-

late gene expression in the post-ischemic inflammation in humans [83–86]. Additionally,

accumulating evidence demonstrates how FOXO activation is involved in the mechanisms of

ischemic cell death [87–88]. FOXO has also been reported in myocardial ischemic injury as

well as in ischemic brain [89–90]. Interestingly enough, all three of these TFs were involved in

the mediation loops described above.

A complete picture of the ischemic condition requires investigating the cases where the TF

is the activator/repressor of both microRNA and target gene. We performed such analysis but

did not get a sufficient number of regulatory loops. A database that provides TF-miRNA pairs

for the rat’s genome is yet to be developed. We attempted to identify such pairs, however, we

were limited to using intragenic miRNAs only. Transcription factors are thought to regulate

the transcription of microRNA genes in a manner similar to that of protein-coding genes, that

is, by binding to a conventional transcription factor binding site DNA sequences located in or

near promoter regions that lie upstream of the microRNA genes [91]. We therefore used the

Open Regulatory Annotation database ORegAnno [92] (January 2016 release) for knowledge

Fig 7. Significant four-node motifs detected by FANMOD exact enumeration algorithm per time point. Four-node significant motifs

detected by FANMOD for each class of loops at 24h, and 7d IR. Significance of motifs is determined based on z score� 2 and P-value� 0.05.

Unique motifs are surrounded with a red frame in each class.

https://doi.org/10.1371/journal.pone.0187426.g007

Table 8. Significant network motifs per time point per loop class.

Motif ID Time Point Class Remark Reference

392 24h MM _ _

2116 24h MM,MTM _ _

2252 24h|7d MT|MT,MM Bi-Feed Forward Loop [79],[80]

2190 24h|7d MT,MTM|MT,MM Double Y Motif [79],[80]

206 24h|7d MT,MM,MTM Double Output Motif [80]

14 24h|7d MT,MM,MTM SIM motif [81],[82]

Significant network motifs in each class of network at 24h and 7d respectively. MT: Loops mediated by TFs, MM: Loops mediated by miRNAs, and MTM:

Loops co-mediated by miRNAs and TFs. The motif identification number is displayed under the motif ID. The motif name as found in literature is displayed

under Remark. Reference for some of the detected motifs is listed under Reference.

https://doi.org/10.1371/journal.pone.0187426.t008
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Fig 8. Construction of six-node significant motifs from-four node significant motifs. Two four-node significant motifs at 24h, 7d -IR are assembled to

form six-node significant motifs (far right) similar to the six-node significant motifs discovered by FANMOD sampling algorithm. All motifs have z score� 2 and

P-value� 0.05.

https://doi.org/10.1371/journal.pone.0187426.g008

Causality in retinal ischemia injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0187426 November 9, 2017 17 / 25

https://doi.org/10.1371/journal.pone.0187426.g008
https://doi.org/10.1371/journal.pone.0187426


Causality in retinal ischemia injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0187426 November 9, 2017 18 / 25

https://doi.org/10.1371/journal.pone.0187426


about Rattus norvegicus transcription factors binding sites. For knowledge about the promoter

regions of the microRNA genes, we used both Ensembl [93] (version 69) genome browser and

UCSC [94] Rat Jul. 2014 (RGSC 6.0/rn6) genome browser to investigate the promoter regions

of all microRNAs genes at 24h and 7d. Both browsers were configured to use Rat genome

(Rno 6) and miRBase database (Release 21) for the most updated microRNAs names. The

analysis discovered one closed loop of the form of TF-miR-gene at 24h, namely, Rnf138!rno-
miR-207!Creld2. Applying the mediation analysis on this loop generated a significant direct

effect by the TF and an insignificant mediation effect by miRNA. This result confirms the out-

put values from the reverse loop rno-miR-207!Rnf138!Creld2, which produced a significant

mediation effect by TF and an insignificant direct effect by miRNA. Table 9 lists the ACME

and ADE values obtained for both loops.

In this study, we modeled the tertiary relationship between miRNA-TF-mRNA with a

mediation model under the ignorabilty assumption, which overlooks the effect of confounders,

i.e. other factors influencing gene regulation. A possible confounder could be an undiscovered

higher regulator that contributes to regulating mRNA and interacts with miRNA and TF

respectively. Finding such higher regulators may be possible by considering a deep sequencing

experiment to capture other small RNAs regulators. Such direction may shed some light on

the unverified portion of loops by the mediation model (23% and 21% on 24h, 7d respectively).

Lastly, although the type of regulation of target gene is unpredictable by this analysis, the cases

where transcription factor[s] intervened between microRNA and gene were revealed.

Conclusions

In this study, a causal mediation analysis was carried out against ischemic-injury associated

regulatory loops derived from rat retinal tissue. The analysis identified three classes of loops at

each time point: mediated by TFs only calss, mediated by miRNAs only class, and co-mediated

by both TFs and miRNAs class. The latter class is further classified into a subclass where regu-

lators TFs and miRNAs are supporting each other in regulating their co-targeted gene, and

another subclass where regulators TFs and miRNAs are opposing each other in regulating

their co-targeted gene. Some regulators that have been associated with ischemia and the medi-

ation analysis revealed how they support each other in some cases but oppose each other in

other cases include miR-122, Creb1 and miR-493, Stat1. Other regulators like miR-297, Maf,
and miR-297, Nptx1 have not been associated with ischemia yet. In general, the closed loops

were mostly mediated by transcription factors but mediated loops at 7d were very modest next

to mediated loops at 24h of IR. Network motif analysis on exemplary loops of each class sug-

gests that these motifs are time point specific IR signatures. A wet laboratory study is needed

to confirm these findings.

Fig 9. Six-node motifs per time point. Possible six-node motifs arrangements obtained from mapping

combined four-node significant motifs at 24h, 7d of IR-injury to the six-node significant motifs in Fig 8. All

motifs have z score� 2 and P-value� 0.05.

https://doi.org/10.1371/journal.pone.0187426.g009

Table 9. ACME and ADE values for the loops: Rno-miR-207->Rnf138->Creld2 and Rnf138->Rno-miR-207->Creld2.

Loop ADE Pval_ADE ACME Pval_ACME

miR-207!Rnf138!Creld2 -0.08 0.48 -1.58 0.0

Rnf138!miR-207!Creld2 -0.4 0.0 -0.01 0.45

The upper loop has a significant mediation effect by Rnf138 (P-value < 0.05) and insignificant direct effect by miR-207 (P-value > 0.05). Lower loop has an

insignificant mediation effect by miR-207(P-value > 0.05) and a significant direct effect by Rnf138(P-value < 0.05).

https://doi.org/10.1371/journal.pone.0187426.t009
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Supporting information

S1 File. Mediation result and classification of closed regulatory loops at 24h and 7d. A total

of eight sheets included. Sheet names are suffixed with “24h” or “7d” to indicate the IR time

point and prefixed with “MT”, “MM”, or “MTM” to indicate Mediation by TFs, mediation by

miRNAs, and mediation by both TFs, and miRNAs respectively. Sheets “24h”, and “7d” are the

full mediation analysis results for all closed regulatory loops at “24h” and “7d” respectively.

(XLSX)

S2 File. Supporting and opposing loops at 24h and 7d. A total of four sheets included. Sheet

names are suffixed with “24h” or “7d” to indicate the IR time point and prefixed with “support-

ing”, “opposing” to indicate pairs of miRNAs-TFs that are working together or against each

other respectively.

(XLSX)

S3 File. Top mediated loops for each class of loops at 24h and 7d. A total of two sheets

included for 24h, and 7d respectively. Each sheet contains four additional tables listing the top

five mediated loops in each class of mediated loops.

(XLSX)

S4 File. Validated mediated loops 24h and 7d. Partial validation from miRWALK db. A total

of six sheets included. Sheet names are suffixed with “24h” or “7d” to indicate the IR time

point and prefixed with “MT”, “MM”, or “MTM” to indicate Mediation by TFs, mediation by

miRNAs, and mediation by both TFs, and miRNAs respectively.

(XLSX)
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