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Ben M. Sörensen1,2, Alfons J. H. M. Houben1,2, Tos T. J. M. Berendschot3, Jan S. A.

G. Schouten3, Abraham A. Kroon1,2, Carla J. H. van der Kallen1,2, Ronald M. A. Henry1,2,4,

Annemarie Koster5,6, Pieter C. Dagnelie1,5,7, Nicolaas C. Schaper1,2,5, Miranda

T. Schram1,2,4, Coen D. A. Stehouwer1,2*

1 CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands,

2 Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands,

3 University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands,

4 Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands, 5 CAPHRI

Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands, 6 Department

of Social Medicine, Maastricht University, Maastricht, the Netherlands, 7 Department of Epidemiology,

Maastricht University, Maastricht, the Netherlands

* cda.stehouwer@mumc.nl

Abstract

Objective

Microvascular dysfunction is an important underlying mechanism of microvascular dis-

eases. Determinants (age, sex, hypertension, dyslipidemia, hyperglycemia, obesity, and

smoking) of macrovascular diseases affect large-artery endothelial function. These risk fac-

tors also associate with microvascular diseases. We hypothesized that they are also deter-

minants of microvascular (endothelial) function.

Methods

In The Maastricht Study, a type 2 diabetes-enriched population-based cohort study (n =

1991, 51% men, aged 59.7±8.2 years), we determined microvascular function as flicker

light-induced retinal arteriolar %-dilation and heat-induced skin %-hyperemia. Multiple linear

regression analyses were used to assess the associations of cardiovascular risk factors

(age, sex, waist circumference, total-to-high-density lipoprotein (HDL) cholesterol ratio, fast-

ing plasma glucose (FPG), 24-h systolic blood pressure, and cigarette smoking) with retinal

and skin microvascular function.

Results

In multivariate analyses, age and FPG were inversely associated with retinal and skin micro-

vascular function (regression coefficients per standard deviation (SD) were -0.11SD (95%

CI: -0.15;-0.06) and -0.12SD (-0.17;-0.07) for retinal arteriolar %-dilation and -0.10SD

(-0.16;-0.05) and -0.11SD (-0.17;-0.06) for skin %-hyperemia, respectively. Men and current

smokers had -0.43SD (-0.58;-0.27) and -0.32SD (-0.49;-0.15) lower skin %-hyperemia,
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respectively. 24-h systolic blood pressure, waist circumference, and total-to-HDL choles-

terol ratio were not statistically significantly associated with these microvascular functions.

Conclusions

Associations between cardiovascular risk factors and retinal and skin microvascular function

show a pattern that is partly similar to the associations between cardiovascular risk factors

and macrovascular function. Impairment of microvascular function may constitute a path-

way through which an adverse cardiovascular risk factor pattern may increase risk of dis-

eases that are partly or wholly of microvascular origin.

Introduction

Microvascular dysfunction is an important underlying mechanism in common diseases that

are partly or wholly of microvascular origin such as heart failure [1], (lacunar) stroke [2],

depression [3], cognitive decline [4], retinopathy [5], chronic kidney disease [6], and neuropa-

thy [5].

However, determinants of microvascular dysfunction in the general population are mostly

unknown. Although several studies [7–13] have investigated potential determinants of micro-

vascular function, these studies were conducted in small numbers of highly selected individu-

als [7–13] and were insufficiently adjusted [7–13] for potential confounders, which limits

translation to the general population.

In the general population, age, sex, hypertension, dyslipidemia, hyperglycemia, obesity, and

smoking are major determinants of macrovascular diseases (e.g. stroke, myocardial infarction

and peripheral artery disease) [14], and have been shown to act through inducing large artery

endothelial dysfunction [15, 16]. However, this does not necessarily imply that microvascular

(endothelial) function is affected similarly, as microvascular function is the result of the com-

plex interrelationships among structure and function of vessel wall components (matrix,

smooth muscle cells, and endothelium), which are also closely related to metabolic and neuro-

genic influences [17–21]. In addition, endothelial cells are known to be heterogeneous,

depending on their localization [22]. Nevertheless, many of the risk factors for macrovascular

diseases are also associated with microvascular diseases [23–26]. Thus, we hypothesized that

these risk factors may also be determinants of microvascular (endothelial) function.

Therefore, this study aimed to determine, in a population-based setting, whether cardiovas-

cular risk factors were associated with, and thus potential determinants of, retinal and skin

microvascular (endothelial) function. We chose retina and skin because these are unique sites

enabling direct and reproducible [27, 28] assessment of microvascular function, as measured

by flicker light-induced retinal arteriolar dilation and heat-induced skin hyperemia.

Methods

Study population and design

We used data from The Maastricht Study, an observational prospective population-based

cohort study. The rationale and methodology have been described previously [29]. In brief, the

study focuses on the etiology, pathophysiology, complications and comorbidities of type 2 dia-

betes and is characterized by an extensive phenotyping approach. Eligible for participation

were all individuals aged between 40 and 75 years and living in the southern part of the
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Netherlands. Participants were recruited through mass media campaigns and from the munic-

ipal registries and the regional Diabetes Patient Registry via mailings. Recruitment was strati-

fied according to known type 2 diabetes status, with an oversampling of individuals with type

2 diabetes, for reasons of efficiency. The present report includes cross-sectional data from the

first 3451 participants, who completed the baseline survey between November 2010 and Sep-

tember 2013. The examinations of each participant were performed within a time window of

three months. The study has been approved by the institutional medical ethical committee

(NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit

131088-105234-PG). All participants gave written informed consent.

Assessment of microvascular function

All participants were asked to refrain from smoking and drinking caffeine-containing bever-

ages three hours before the measurement. A light meal (breakfast and (or) lunch), low in fat

content, was allowed if taken at least 90 minutes prior to the start of the measurements.

Retinal arteriolar vasodilation to flicker light exposure was measured by the Dynamic Ves-

sel Analyzer (Imedos, Jena, Germany). Briefly, a baseline recording of 50 seconds was followed

by 40-second flicker light exposure followed by a 60-second recovery period. Baseline diameter

was calculated as the average diameter size of the 20–50 seconds recording and was expressed

in measurement units (MU). Percentage dilation over baseline was based on the average dila-

tion achieved at time points 10 and 40 seconds during the flicker stimulation period.

Heat-induced skin hyperemia was measured by laser-Doppler flowmetry (Perimed, Järfälla,

Sweden). Briefly, skin blood flow, expressed in arbitrary perfusion units (PU), was recorded

unheated for 2 minutes to serve as a baseline. After 2 minutes, the temperature of the laser-

Doppler probe was rapidly and locally increased to 44˚C, and was kept constant until the end

of the registration. The heat-induced skin hyperemic response was expressed as the percentage

increase in average PU during the 23 minutes heating phase over the 2 minutes average base-

line PU. Both measurements have extensively been described previously [30]; more details are

provided in the S1 Appendix.

Definition of cardiovascular risk factors

Cardiovascular risk factors considered were age, sex, waist circumference, fasting plasma glu-

cose (FPG), total-to-high-density lipoprotein (HDL) cholesterol ratio, 24-h systolic blood pres-

sure (SBP), and smoking status. We also considered lipid-modifying and antihypertensive

medication.

Measurement of cardiovascular risk factors

We determined body mass index, waist circumference, glucose levels, glycated hemoglobin

A1c (HbA1c), 24-h ambulatory systolic and diastolic blood pressure (DBP), total and HDL

cholesterol, and triglycerides as described previously [29] and detailed in the S2 Appendix.

Smoking status (never, former, current) and pack-years of smoking were assessed by web-

based questionnaire [29]. Glucose metabolism status was defined according to the World

Health Organization 2006 criteria, based on a standardized 2-h 75 gram oral glucose tolerance

test (S2 Appendix).

Measurement of covariates

The use of lipid-modifying and antihypertensive medication was assessed during a medication

interview where generic name, dose, and frequency were registered [29]. The assessment of a
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history of cardiovascular disease (CVD), 24-h urinary albumin excretion, estimated glomeru-

lar filtration rate (eGFR), and the presence of retinopathy have been described previously [29]

(cf. the S3 Appendix).

Statistical analysis

All analyses were performed with Statistical Package for Social Sciences version 23.0 (IBM

SPSS, Armonk, USA). Variables with a skewed distribution (diabetes duration and pack-years

of smoking) were log10 transformed. A Pearson correlation coefficient was used to assess the

correlation between flicker light-induced retinal arteriolar %-dilation and heat-induced skin

%-hyperemia. Standardized multiple linear regression analyses were used to evaluate the asso-

ciation of cardiovascular risk factors (age, sex, waist circumference, FPG, total-to-HDL choles-

terol ratio, 24-h SBP, and smoking status) with both retinal and skin microvascular function.

To compare regression coefficients between cardiovascular risk factors, continuous measures

of these risk factors were standardized into z-scores before analyses. Associations of cardiovas-

cular risk factors were adjusted for each other and for additional covariates (the use of antihy-

pertensive and lipid-modifying medication, a history of CVD, 24-h urinary albumin excretion,

eGFR, and the presence of retinopathy). In additional analyses, FPG was substituted by

HbA1c, 2-h postload or by type 2 diabetes (T2DM) (yes/no). Waist circumference was substi-

tuted by body mass index, and 24-h SBP by 24-h DBP, 24-h mean arterial pressure or 24-h

pulse pressure.

Data were expressed as standardized regression coefficients and their 95% confidence inter-

val (95%CI). A P-value <0.05 was considered statistically significant. The study, by design,

oversampled individuals with T2DM; we therefore investigated potential interactions between

cardiovascular risk factors and T2DM by adding interaction terms (the product of a cardiovas-

cular risk factor and T2DM) to the regression models. Similarly, interactions between the car-

diovascular risk factors and sex were investigated (the product of a cardiovascular risk factor

and sex). A Pinteraction<0.10 was considered statistically significant. A Pinteraction�0.10 indicates

that the association between a cardiovascular risk factor and retinal or skin microvascular

function does not statistically significantly differ between individuals without and with T2DM,

or between women and men, respectively [31]. A non-significant Pinteraction between a cardio-

vascular risk factor and T2DM therefore indicates that the association between that cardiovas-

cular risk factor and retinal or skin microvascular function was not driven by the

oversampling of individuals with T2DM. This implies that any associations observed in this

T2DM-enriched population can be considered valid for a non-oversampled population, i.e.

the general population [31]. Collinearity diagnostics (i.e. tolerance <0.10 and/or variance

inflation factor >10) were used to detect multicollinearity between the cardiovascular risk fac-

tors and covariates.

Results

Study population

From the initial 3451 participants, retinal arteriolar reactivity data was available in 2290. The

reasons for missing data were logistical (n = 891), insufficient measurement quality (n = 209)

or contraindications (n = 61). Data on cardiovascular risk factors were missing in 299 partici-

pants, particularly on 24-h blood pressure (n = 260), mainly due to device availability. The

population in which retinal arteriolar reactivity data were available thus consisted of 1991 par-

ticipants. Heat-induced skin hyperemia data were available in 1676 of the 3451 participants.

The reasons for missing data were logistical (n = 1662) or insufficient measurement quality

(n = 113). Cardiovascular risk factors were missing in 249 participants, mainly due to missing
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24-h blood pressure values (n = 201). The population in which heat-induced skin hyperemia

data were available thus consisted of 1427 participants (Fig 1 shows the flow chart).

Table 1 shows general characteristics of the retinal arteriolar reactivity study population

stratified into tertiles of retinal arteriolar %-dilation. This study population had a

mean ± standard deviation (SD) age of 59.7±8.2 years, 48.8% were women, 12.1% were current

smokers, and 27.4% had T2DM. In addition, when compared to individuals in the lowest ter-

tile of retinal arteriolar %-dilation, those in the middle and highest tertiles were on average

younger and had lower fasting and 2-h postload glucose levels (Table 1). The skin study popu-

lation overlapped for 73% with the retinal study population, and was comparable with regard

to age, sex, and cardio-metabolic risk profile (Table 1). The Pearson correlation coefficients

between retinal arteriolar %-dilation and skin %-hyperemia was Pearson’s r = 0.05, P = 0.095.

Individuals with missing data on retinal or skin reactivity measurements or measurements of

cardiovascular risk factors were generally comparable to individuals included in the study pop-

ulations with regard to age, sex, and cardiometabolic risk profile (S1 and S2 Tables).

Age, sex and retinal arteriolar dilation and skin hyperemia

Age was inversely associated with retinal arteriolar %-dilation and skin %-hyperemia; per SD

higher age (8.2 years), retinal arteriolar %-dilation was -0.11SD (95%CI: -0.15; -0.06, P<0.001)

lower, and skin %-hyperemia was -0.10SD (-0.16; -0.05, P<0.001) lower. Sex was not associ-

ated with retinal arteriolar %-dilation, whereas men had a -0.43SD (-0.58; -0.27, P<0.001)

lower skin %-hyperemic response as compared to women (Fig 2, and S3 and S4 Tables). More-

over, we observed a sex-by-age interaction in which the inverse association between age and

skin %-hyperemia was stronger in men (-0.21SD (-0.29; -0.13), P<0.001) than in women

(-0.02SD (-0.10; 0.06), P = 0.646) (Pinteraction = 0.002, Fig 3). Additional adjustment for post-

menopausal status and/or hormone replacement therapy in women did not materially change

these associations (data not shown).

Glycemia and retinal arteriolar dilation and skin hyperemia

FPG (as a measure of short-term hyperglycemia) was inversely associated with retinal arterio-

lar %-dilation and skin %-hyperemia; per SD higher FPG (1.7 mmol/l), retinal arteriolar

%-dilation was -0.12SD (95%CI: -0.17; -0.07, P<0.001) lower, and skin %-hyperemia was

-0.11SD (-0.17; -0.06, P<0.001) lower (Fig 2, and S3 and S4 Tables). In addition, HbA1c (as a

measure of long-term hyperglycemia, substituted for FPG) was inversely associated with reti-

nal arteriolar %-dilation and skin %-hyperemia; per SD higher HbA1c (0.9 mmol/l), retinal

arteriolar %-dilation was -0.14SD (95%CI: -0.19; -0.08, P<0.001) lower, and skin %-hyperemia

was -0.12SD (-0.18; -0.06, P<0.001) lower (S5 and S6 Tables).

Smoking and retinal arteriolar dilation and skin hyperemia

Current smoking (versus never smoking) was not associated with retinal arteriolar %-dilation,

whereas it was associated with -0.32SD (-0.49; -0.15, P<0.001) lower skin %-hyperemia (Fig 2,

and S3 and S4 Tables). Former smoking (versus never smoking) was not associated with retinal

arteriolar %-dilation and skin %-hyperemia.

Blood pressure and retinal arteriolar dilation and skin hyperemia

24-h SBP was not associated with retinal arteriolar %-dilation or skin %-hyperemia (Fig 2, and

S3 and S4 Tables). However, 24-h DBP (substituted for 24-h SBP) was associated with retinal

arteriolar %-dilation; per SD higher 24-h DBP (7.2 mmHg), retinal arteriolar %-dilation was
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0.05SD (0.00; 0.10, P = 0.040) greater. 24-h DBP was not associated with skin %-hyperemia. In

addition, 24-h pulse pressure (substituted for 24-h SBP and additionally corrected for 24-h

mean arterial pressure) was not associated with retinal arteriolar %-dilation, but was inversely

associated with skin %-hyperemia. Per SD higher 24-h pulse pressure (8.9 mmHg), skin

%-hyperemia was -0.08SD (-0.14; -0.01, P = 0.017) lower. In addition, use of antihypertensive

medication was associated with numerically lower retinal arteriolar %-dilation (-0.09SD

(-0.20; 0.02), P = 0.099) and skin %-hyperemia (-0.05SD (-0.17; 0.07), P = 0.396).

Waist, total-to-HDL cholesterol, and lipid-modifying medication use and

retinal arteriolar dilation and skin hyperemia

No significant associations were observed between waist circumference and total-to-HDL cho-

lesterol ratio with retinal arteriolar %-dilation or skin %-hyperemia. The use of lipid-modify-

ing medication was associated with numerically lower retinal arteriolar %-dilation (-0.11SD

(-0.22; 0.01), P = 0.072)(Fig 2 and S3 Table).

Additional analyses

Qualitatively similar associations of cardiovascular risk factors with retinal arteriolar %-dila-

tion and skin %-hyperemia were observed in a range of additional analyses. First, when flicker

light-induced increase (in MU) in retinal arteriolar diameter from baseline or heat-induced

increase in skin blood flow (in PU) from skin baseline were used rather than their percentages

(data not shown). Second, when waist circumference was replaced by body mass index. Third,

when FPG was substituted by 2-h postload glucose or by type 2 diabetes (yes/no). Fourth,

when smoking status (never/former/current) was replaced by pack-years of smoking (for reti-

nal and skin analyses, data on pack-years of smoking were available in 1672 and 1231 individu-

als, respectively); pack-years of smoking was inversely associated with skin %-hyperemia -0.07

SD (-0.12; -0.01, P = 0.020). No association was found between pack-years of smoking and reti-

nal arteriolar %-dilation (data not shown). Fifth, after additional adjustment for glucose-low-

ering medication (although this may be an overadjustment as the use of glucose-lowering

Fig 1. Retinal and skin study population selection. * = Logistical reasons: no Dynamic Vessel Analyzer equipment available

(n = 536), no trained researcher available (n = 232), no eye drops given for traffic safety reasons (n = 123); † = Contraindicated:

history of epilepsy (n = 14), allergy to eye drops (n = 33), glaucoma or lens implants (n = 14); ‡ = Logistical reasons: no laser-Doppler

equipment available (n = 354), no trained researcher available (n = 271), technical failure (n = 1037). § = Missing values on

cardiovascular risk factors were not mutually exclusive.

https://doi.org/10.1371/journal.pone.0187324.g001

Determinants of microvascular function

PLOS ONE | https://doi.org/10.1371/journal.pone.0187324 October 27, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0187324.g001
https://doi.org/10.1371/journal.pone.0187324


Table 1. General characteristics of the retinal and skin study populations according to tertiles of retinal arteriolar %-dilation and skin

%-hyperemia.

Retinal study population Skin study population

Characteristic Tertile 1 of

retinal arteriolar

dilation (lowest)

n = 662

Tertile 2 of

retinal

arteriolar

dilation n = 665

Tertile 3 of

retinal arteriolar

dilation (highest)

n = 664

P for

trend

Tertile 1 of skin

hyperemia

(lowest) n = 475

Tertile 2 of skin

hyperemia

n = 476

Tertile 3 of skin

hyperemia

(highest) n = 476

P for

trend

Range of retinal

arteriolar %-dilation

-4.8 to 1.3 1.3 to 4.0 4.0 to 15.2 - - - -

Range of skin

%-hyperemia

- - - - 20.8 to 725.8 725.9 to 1286.6 1286.6 to 6763.6

Age (years) 61.5±7.6 59.4±8.3 58.3±8.4 <0.001 61.3±7.7 60.8±7.9 58.5±8.4 <0.001

Women 289 (43.7) 345 (51.9) 337 (50.8) 0.005 164 (34.5) 212 (44.5) 298 (62.6) <0.001

- Postmenopausal 234 (84.5) 256 (79.0) 236 (72.0) <0.001 126 (84.0) 154 (79.4) 198 (72.5) <0.001

- Hormone

replacement

therapy

6 (0.9) 6 (0.9) 5 (0.8) 0.942 2 (0.4) 4 (0.8) 9 (1.9) 0.073

Glucose

metabolism status

<0.001 <0.001

- Normal glucose

metabolism

305 (46.1) 388 (58.3) 438 (66.0) 216 (45.5) 249 (52.3) 298 (62.6)

- Prediabetes 102 (15.4) 92 (13.8) 98 (14.8) 74 (15.6) 70 (14.7) 78 (16.4)

- Type 2 diabetes 242 (36.6) 178 (26.8) 125 (18.8) 178 (37.5) 146 (30.7) 96 (20.2)

- Other types of

diabetes

13 (2.0) 7 (1.1) 3 (0.5) 7 (1.5) 11 (2.3) 4 (0.8)

Type 2 diabetes

duration (years)

6.0 [3.0–13.0] 5.0 [3.0–10.0] 6.0 [3.0–13.0] 0.223 5.5 [3.0–10.5] 7.0 [3.0–13.0] 6.0 [3.0–10.0] 0.518

Body mass index

(kg/m2)

27.4±4.4 26.7±4.7 26.5±4.2 0.001 26.9±4.1 27.2±4.4 26.7±4.6 0.220

Weight (kg) 80.1±15.5 78.4±16.2 78.2±15.4 0.047 79.7±14.7 80.3±15.4 77.2±14.7 0.003

Height (cm) 170.8±8.7 171.0±9.0 171.4±8.8 0.399 171.9±8.5 171.5±8.7 169.9±8.7 0.001

Waist

circumference (cm)

- Men 102.6±12.3 100.6±12.2 99.9±10.8 0.007 101.4±11.9 101.7±11.7 99.2±11.1 0.063

- Women 89.9±12.2 89.2±13.1 88.0±12.2 0.162 88.8±12.2 90.6±12.6 90.4±13.3 0.329

History of

cardiovascular

disease

132 (20.2) 101 (15.4) 73 (11.1) <0.001 91 (19.4) 86 (18.4) 72 (15.3) 0.227

Office SBP (mmHg) 136.7±18.0 134.0±18.4 134.3±17.5 0.013 136.6±17.4 136.0±18.6 134.6±18.4 0.210

Office DBP (mmHg) 75.7±9.8 76.2±10.3 76.9±9.6 0.070 76.3±9.4 76.4±9.8 76.7±9.8 0.770

Ambulatory 24-h

SBP (mmHg)

119.6±11.5 119.0±12.4 118.9±10.9 0.477 121.8±11.9 120.0±11.9 117.5±10.8 <0.001

Ambulatory 24-h

DBP (mmHg)

72.8±7.1 73.6±7.5 74.1±6.8 0.002 74.0±7.1 73.5±7.0 73.4±6.5 0.375

Ambulatory 24-h PP

(mmHg)

46.8±8.9 45.4±8.8 44.7±7.7 <0.001 47.8±9.1 46.6±9.0 44.1±8.1 <0.001

Ambulatory 24-h

MAP (mmHg)

88.4±7.8 88.8±8.5 89.0±7.5 0.305 89.9±7.9 89.0±7.9 88.1±7.2 0.002

Smoking

- Never / former /

current

198/386/78 248/328/89 253/337/74 0.005 152/244/79 137/286/53 180/251/45 <0.001

- % (never / former /

current)

29.9/58.3/11.8 37.3/49.3/13.4 38.1/50.8/11.1 0.005 32.0/51.4/16.6 28.8/60.1/11.1 37.8/52.7/9.5 <0.001

Pack-years of

smoking

4.6 [0.0–20.0] 1.0 [0.0–17.2] 0.7 [0.0–13.0] 0.001 4.6 [0.0–22.2] 6.0 [0.0–22.5] 1.3 [0.0–14.0] <0.001

(Continued )
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Table 1. (Continued)

Retinal study population Skin study population

Characteristic Tertile 1 of

retinal arteriolar

dilation (lowest)

n = 662

Tertile 2 of

retinal

arteriolar

dilation n = 665

Tertile 3 of

retinal arteriolar

dilation (highest)

n = 664

P for

trend

Tertile 1 of skin

hyperemia

(lowest) n = 475

Tertile 2 of skin

hyperemia

n = 476

Tertile 3 of skin

hyperemia

(highest) n = 476

P for

trend

Fasting glucose

(mmol/l)

6.4±2.0 6.0±1.6 5.8±1.3 <0.001 6.4±1.9 6.1±1.6 5.8±1.3 <0.001

2-h postload

glucose (mmol/l)

8.6±4.6 7.9±4.2 7.3±3.8 <0.001 8.8±4.7 8.2±4.2 7.3±4.0 <0.001

HbA1c (%) 6.1±1.1 5.8±0.9 5.7±0.7 <0.001 6.1±1.1 6.0±0.9 5.8±0.8 <0.001

HbA1c (mmol/mol) 43.3±11.8 40.3±9.5 38.8±7.9 <0.001 43.7±11.7 41.8±9.5 39.9±8.7 <0.001

Total-to-HDL

cholesterol ratio

3.5±1.1 3.6±1.2 3.6±1.2 0.168 3.8±1.1 3.7±1.2 3.6±1.1 0.181

Total cholesterol

(mmol/l)

5.0±1.2 5.3±1.2 5.4±1.1 <0.001 5.1±1.1 5.2±1.2 5.4±1.2 <0.001

HDL cholesterol

(mmol/l)

1.5±0.5 1.6±0.5 1.6±0.5 0.019 1.4±0.5 1.5±0.5 1.6±0.5 <0.001

LDL cholesterol

(mmol/l)

2.9±1.0 3.1±1.0 3.2±1.0 <0.001 2.9±1.0 3.1±1.1 3.3±1.1 <0.001

Triglycerides (mmol/

l)

1.5±0.8 1.5±0.9 1.3±0.7 0.001 1.5±0.8 1.5±1.0 1.3±0.8 <0.001

Antihypertensive

medication use

305 (46.1) 257 (38.6) 198 (29.8) <0.001 219 (46.1) 211 (44.3) 163 (34.2) <0.001

Lipid-modifying

medication use

309 (46.7) 221 (33.2) 176 (26.5) <0.001 209 (44.0) 202 (42.4) 146 (30.7) <0.001

Diabetes

medication use

- Any type 205 (31.0) 143 (21.5) 98 (14.8) <0.001 147 (30.9) 127 (26.7) 77 (16.2) <0.001

- Insulin 71 (10.7) 37 (5.6) 24 (3.6) <0.001 42 (8.8) 41 (8.6) 22 (4.6) 0.020

- Oral glucose-

lowering medication

180 (27.2) 131 (19.7) 87 (13.1) <0.001 132 (27.8) 112 (23.5) 67 (14.1) <0.001

eGFR (ml/min/

1.73m2)

86.7±15.8 88.5±14.4 89.5±13.5 0.001 87.4±14.7 88.0±14.8 89.7±13.8 0.044

eGFR<60 ml/min/

1.73m2
45 (6.8) 25 (3.8) 15 (2.3) <0.001 15 (3.2) 19 (4.0) 17 (3.6) 0.780

(Micro)albuminuria* 78 (11.8) 42 (6.4) 43 (6.5) <0.001 50 (10.6) 42 (8.9) 25 (5.3) 0.011

Retinopathy 20 (3.1) 10 (1.6) 2 (0.3) <0.001 7 (1.6) 11 (2.6) 3 (0.7) 0.099

Baseline arteriolar

diameter (MU)

119.4±15.0 115.3±15.5 111.6±15.2 <0.001 - - - -

Arteriolar average

dilation (%)

- Mean±SD 0.2±0.9 2.6±0.8 6.3±1.8 <0.001 - - - -

- Median

(interquartile range)

0.4 [-0.2–0.8] 2.6 [1.9–3.3] 5.9 [4.9–7.2] <0.001 - - - -

Baseline skin blood

flow (PU)

- - - - 15.5±8.5 9.9±4.0 7.7±2.6 <0.001

Skin hyperemic

response (%)

- Mean±SD - - - - 418.2±191.3 992.2±158.9 1976.8±715.6 <0.001

(Continued )
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medication was part of the definition of type 2 diabetes (78% of individuals with type 2 diabe-

tes used glucose-lowering medication)). Sixth, after additional adjustment for a history of

CVD, eGFR, urinary albumin excretion, and the presence of retinopathy (data not shown, for

retinal and skin analyses, data on these additional covariates were available in 1884 and 1254

individuals respectively). Seventh, when antihypertensive medication was further specified

into renin-angiotensin-aldosterone system (RAAS)-inhibiting (with or without other types of

antihypertensives) and non-RAAS-inhibiting antihypertensives only (data not shown). RAAS-

inhibiting antihypertensives included angiotensin-converting-enzyme, angiotensin receptor

blockers and renin blockers. Eight, when individuals with other types of diabetes than type 2

diabetes were excluded (for retinal and skin analyses, 23 and 22 individuals with other types of

diabetes were excluded, respectively). Next, associations of cardiovascular risk factors with ret-

inal arteriolar %-dilation and skin %-hyperemia did not differ between individuals with and

without type 2 diabetes, or between women and men (all Pinteractions>0.10), except as noted

above, for the significant interaction, with sex, of the association between age and heat-

induced skin hyperemia (Fig 3). Last, collinearity diagnostics revealed no multicollinearity in

any of the analyses (i.e. all tolerance values�0.10 and variance inflation factors�10).

Discussion

To our knowledge this is the first population-based study which demonstrated that associa-

tions between cardiovascular risk factors and retinal and skin microvascular (endothelial)

function show a pattern that is in part similar to the associations between cardiovascular risk

factors and macrovascular function [14, 16]. Thus, older age and measures of hyperglycemia

were associated with an impaired retinal and skin microvascular vasodilation response, inde-

pendent of other cardiovascular risk factors. In addition, male sex and cigarette smoking were

associated with impaired heat-induced skin hyperemia. In contrast to associations of obesity,

blood pressure and lipid profile with macrovascular endothelial function [16], we could not

confirm waist circumference, body mass index, 24-h SBP, and total-to-HDL cholesterol ratio

as determinants of microvascular function. However, (inverse) associations of antihypertensive

and lipid-modifying medication use with retinal and skin microvascular function could not be

excluded (Fig 2). Such associations may imply that previous exposure to elevated blood pres-

sure and dyslipidemia may affect microvascular function more than actual blood pressure and

lipid profile. This would also explain why no associations of 24-h SBP and total-to-HDL cho-

lesterol ratio with microvascular function were found.

Table 1. (Continued)

Retinal study population Skin study population

Characteristic Tertile 1 of

retinal arteriolar

dilation (lowest)

n = 662

Tertile 2 of

retinal

arteriolar

dilation n = 665

Tertile 3 of

retinal arteriolar

dilation (highest)

n = 664

P for

trend

Tertile 1 of skin

hyperemia

(lowest) n = 475

Tertile 2 of skin

hyperemia

n = 476

Tertile 3 of skin

hyperemia

(highest) n = 476

P for

trend

- Median

(interquartile range)

- - - - 423.5 [256.1–

586.2]

1002.0 [852.4–

1119.0]

1757.7 [1508.7–

2196.2]

<0.001

Data are reported as mean±SD, median [interquartile range], or number (percentages %) as appropriate. SBP, systolic blood pressure; DBP, diastolic blood

pressure; MAP, mean arterial pressure; PP, pulse pressure; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein;

eGFR, estimated glomerular filtration rate; MU, measurement units; PU, perfusion units; SD, standard deviation. P for trend as determined with use of one-

way ANOVA for continuous variables and χ2-test for categorical variables.

* = (Micro)albuminuria was defined as a urinary albumin excretion of >30 mg per 24 hours.

https://doi.org/10.1371/journal.pone.0187324.t001
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An important mechanism by which cardiovascular risk factors affect large artery endothe-

lial vasodilation is by impairing nitric oxide bioavailability [32], possibly in conjunction with

adverse effects on other endothelium-dependent vasodilators (e.g. endothelium-derived

hyperpolarizing factors) [33]. Similar mechanisms may apply to microvascular function, as

microvascular vasodilation also relies on availability of endothelium-dependent vasodilators

[19, 34]. Therefore, risk factor-associated impairments in flicker light-induced retinal arterio-

lar dilation and heat-induced skin hyperemia are both likely to be a reflection of microvascular

endothelial dysfunction [19, 34], presumably in conjunction with vascular smooth muscle cell

dysfunction [20, 21], and/or neuronal dysfunction [18, 35]. The correlation between these

measures was weak and not statistically significant, which was likely to be explained by 1) dif-

ferent vessel types (relatively large arterioles in the retina vs small arterioles, capillaries, and

venules in skin); 2) different outcomes (a direct stimulus-induced increase in diameter in the

retina vs, an indirect estimate of vasodilation by measuring stimulus-induced increase in

Fig 2. Associations of cardiovascular risk factors with retinal arteriolar %-dilation and skin %-hyperemia. Point estimates

(standardized beta) and 95%CIs represent the difference (in SD) in retinal arteriolar %-dilation (black dots) and skin %-hyperemia

(grey diamonds) per SD increase in the cardiovascular risk factor, men versus women, current smoker versus never smoker, or the

use of antihypertensive or lipid-modifying medication versus no use. All associations were adjusted for the other risk factors, except

for HbA1c, with multivariate regression. Associations of HbA1c were based on a fully adjusted regression model in which fasting

plasma glucose was replaced by HbA1c. Associations of sex were additionally adjusted for height. *P<0.05, SD, standard deviation;

CI, confidence interval; HDL, high-density lipoprotein; HbA1c, glycated hemoglobin A1c.

https://doi.org/10.1371/journal.pone.0187324.g002
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perfusion in skin); and 3) different stimuli used to elicit the responses (flicker light vs heat)

[18, 19, 34, 35]. In addition, both measures of microvascular function have good reproducibil-

ity with intra-individual coefficients of variation of 0.91% for flicker light-induced retinal arte-

riolar dilation [28] and 8.7% for heat-induced skin hyperemia [27].

Associations between risk factors and microvascular responses were generally similar

regardless of whether the microvascular response was obtained in retina or skin, with two

exceptions. First, no difference was found between men and women in retinal arteriolar dila-

tion, whereas heat-induced skin hyperemia was less in men than in women. This is in line with

an earlier study which showed that sex differences in retinal arteriolar dilation (i.e. greater in

men) were present in young individuals, but diminished after the age of 30 years [36]. This

may explain why, in our study with an age span of 40–75 years, no difference was found.

Greater retinal arteriolar dilation in younger men, as compared to age-matched women [36],

contrasts with the beneficial effect of female sex hormones on ocular and skin blood flow [13,

37]. However, the retinal arteriolar dilation response depends on neurovascular coupling [38],

and sex differences thus may also be influenced by the effects of sex hormones on neurons and

astrocytes in the neurovascular coupling unit [39]. Second, retinal arteriolar dilation decreased

with age in both men and women, whereas heat-induced skin hyperemia decreased with age

only in men (Fig 3), which is consistent with an earlier report on macrovascular endothelial

function [40]. Thus, heat-induced skin hyperemia, as compared to retinal arteriolar dilation,

may be protected more by the higher levels of estrogens in women than in men [36, 41, 42].

Age was inversely associated with retinal arteriolar and skin microvascular dysfunction,

which is in line with earlier smaller studies [8, 13], and is likely caused by reduced nitric oxide

availability [43]. In turn, hyperglycemia may impair microvascular function through intraen-

dothelial accumulation of glucose, increased oxidative stress and formation of advanced

Fig 3. Association between age and skin %-hyperemia according to sex. Regression coefficients (B)

indicate the adjusted mean difference and 95% confidence interval (95%CI) in skin %-hyperemia per 1 year

increase in age for men (blue line) and women (red line) (Pinteraction = 0.002).

https://doi.org/10.1371/journal.pone.0187324.g003
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glycation end products [44]. In addition, microvascular dysfunction can cause hyperglycemia

by impairing the timely access of glucose and insulin to their target tissue [45] and by impair-

ing insulin secretion [46].

We hypothesized, but did not find, higher blood pressures to be consistently associated with

impaired microvascular function [8, 11, 13], especially in the retina, which is known to be sen-

sitive to greater flow pulsatility associated with higher blood pressure and arterial stiffening

[47]. A potential explanation is that, in this relatively healthy and well-treated population, the

blood pressure range was insufficiently broad for such associations to appear, except that 24-h

pulse pressure was inversely associated with heat-induced skin hyperemia. Interestingly, use of

antihypertensive medication was associated with numerically lower microvascular function,

suggesting that prior exposure to high blood pressure may be important.

Current, but not former smoking was associated with impaired heat-induced skin hyper-

emia, which suggests that effects of smoking may be reversible. These findings are in line with

an earlier report on the detrimental effect of smoking on acetylcholine-induced skin hyper-

emia [10]. Mechanistically, smoking may induce microvascular dysfunction via increased for-

mation of reactive oxygen species and/or inhibition of nitric oxide synthase activity [48]. As

demonstrated previously [49], we also did not observe a clear association of smoking with

impaired retinal arteriolar dilation. Possibly, smoking affects smaller arterioles and capillaries

(such as those involved in heat-induced skin hyperemia) more than the relatively large retinal

arterioles we assessed [49].

We hypothesized [7, 45], but did not find, higher waist circumference and body mass index

to be associated with impaired microvascular function as assessed here. Importantly, these

findings do not imply that other functions of the microcirculation are normal in overweight or

obese individuals. Indeed, earlier reports have shown waist and body mass index to be

inversely associated with microvascular vasomotion [50], post-occlusive reactive hyperemia

[51], and insulin-mediated vasodilation [45], mediated presumably by changes in visceral and

perivascular [52] adipose tissue-derived factors, such as increased tumor necrosis factor-α and

free fatty acids, and decreased adiponectin [45].

We expected [9, 53], but did not find, inverse associations between total-to-HDL choles-

terol ratio and retinal and skin microvascular function as assessed here. Mechanistically, dysli-

pidemia may impair microvascular vasodilation via oxidative modifications of low-density

lipoprotein cholesterol, which may cause reduced nitric oxide availability, possibly in conjunc-

tion with increased expression of endothelin-1 [53]. Interestingly, use of lipid-modifying med-

ication was associated with numerically lower retinal arteriolar dilation, suggesting that prior

exposure to dyslipidemia may be important.

Strengths of our study include its size and population-based design; the extensive assess-

ment of potential determinants, including 24-h ambulatory blood pressure; the use of two

independent methods to directly assess microvascular function in different microvascular

beds; and the broad array of additional analyses, which all gave consistent results.

Our study also had limitations. First, the data were cross-sectional. Reverse causality obvi-

ously is not an issue for associations with age and sex, but may be especially relevant for hyper-

glycemia and blood pressure [54]. Therefore, longitudinal studies are needed. Second, we

mainly focused on major cardiovascular risk factors as potential determinants; however, we do

not claim to have identified all determinants, as there may be others not included in these anal-

yses (e.g. dietary habits and physical activity). Last, the associations observed do not imply that

other estimates of microvascular function, or retinal and skin microvascular responses elicited

via different stimuli, such as exercise, insulin or ischemia, relate similarly to cardiovascular

risk factors, as compared to flicker light-induced retinal arteriolar dilation and heat-induced

skin hyperemia.
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This population-based study demonstrated that associations between cardiovascular risk

factors and retinal and skin microvascular (endothelial) function show a pattern that is in part

similar to the associations between cardiovascular risk factors and macrovascular endothelial

function. Thus, age and measures of hyperglycemia were inversely associated with retinal and

skin microvascular vasodilation. In addition, male sex and cigarette smoking were associated

with impaired heat-induced skin hyperemia. All associations were independent of the other

cardiovascular risk factors. We could not confirm waist circumference, body mass index, 24-h

SBP, and total-to-HDL cholesterol ratio as determinants of these microvascular functions. Pos-

sibly, prior exposure to high blood pressure and/or dyslipidemia is important as use of antihy-

pertensive and/or lipid-modifying medication was associated with numerically lower

microvascular function. We conclude that impairment of microvascular function may consti-

tute a pathway through which an adverse cardiovascular risk factor pattern may increase risk

of diseases, such as heart failure, stroke, and cognitive decline, that in part have a microvascu-

lar origin.
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