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Abstract

Camera trapping has become an increasingly widespread tool for wildlife ecologists, with

large numbers of studies relying on photo capture rates or presence/absence information. It

is increasingly clear that camera placement can directly impact this kind of data, yet these

biases are poorly understood. We used a paired camera design to investigate the effect of

small-scale habitat features on species richness estimates, and capture rate and detection

probability of several mammal species in the Shenandoah Valley of Virginia, USA. Cameras

were deployed at either log features or on game trails with a paired camera at a nearby ran-

dom location. Overall capture rates were significantly higher at trail and log cameras com-

pared to their paired random cameras, and some species showed capture rates as much as

9.7 times greater at feature-based cameras. We recorded more species at both log (17) and

trail features (15) than at their paired control cameras (13 and 12 species, respectively), yet

richness estimates were indistinguishable after 659 and 385 camera nights of survey effort,

respectively. We detected significant increases (ranging from 11–33%) in detection proba-

bility for five species resulting from the presence of game trails. For six species detection

probability was also influenced by the presence of a log feature. This bias was most pro-

nounced for the three rodents investigated, where in all cases detection probability was sub-

stantially higher (24.9–38.2%) at log cameras. Our results indicate that small-scale factors,

including the presence of game trails and other features, can have significant impacts on

species detection when camera traps are employed. Significant biases may result if the

presence and quality of these features are not documented and either incorporated into ana-

lytical procedures, or controlled for in study design.

Introduction

Camera trapping has become an increasingly widespread and useful tool for wildlife ecologists,

behavioral ecologists, and wildlife managers [1, 2]. One of the most common applications of

this tool has been the use of capture-recapture methods to estimate the density of species with

individually unique markings (e.g. tiger: [3]; jaguar: [4], ocelot: [5]). However, the vast major-

ity of species in the terrestrial mammal community do not have unique markings, and there is
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great interest in the potential to answer meaningful research and management questions using

camera trap photos of these species [6–9]. In an applied setting, estimates of the system state

(e.g. represented by abundance, occupancy or species richness) are often the most critical for

informing management decisions. In these scenarios where animals cannot be individually

identified, inference about the system state must rely on either photo capture rate (as a poten-

tial index of abundance), or presence/absence information (e.g. for estimation of occupancy or

species richness). A common study design approach is to distribute camera locations ran-

domly or systematically (e.g. regular grid over study area), often at a predetermined trap den-

sity, then select an “optimal” camera placement at or near these planned locations, often

targeting roads, game trails or other concentrations of animal sign [9]. However, it is increas-

ingly clear that these camera placement strategies can have significant consequences for the

reliability and applicability of resulting photo-based information [10], and best practice sug-

gestions on where to place cameras to minimize bias in these cases are poorly developed [9].

The rate of photo captures as well as the probability of obtaining a photograph of a given

species at a given location are a function of two processes, the abundance of a species in a

given location, and its likelihood of being photographed at that location (detection probabil-

ity). While it is clear that a range of biological and behavioral factors like species size [11, 12],

home range size [10], and social rank [13] influence detectability in camera traps, the relation-

ship between detectability and local habitat features is less clear. Yet mounting research indi-

cates that camera placement decisions are a critical consideration and are a potentially large

source of bias in detection rates. Large and medium-sized carnivores have been shown to pre-

fer using roads and human trails as travel routes [10, 14–17], and cameras placed on these fea-

tures resulted in higher capture rates of these species. There is evidence that prey species also

show varying levels of attraction to or avoidance of these larger travel routes [15, 18, 19], and

that these biases may vary based on trail/road width and age [20]. Relative attraction or avoid-

ance may not be consistent even within some species ([19, 20]—tapirs and peccaries), further

complicating the analysis of photo data across studies.

Given what is known about these biases, any study attempting to make robust, unbiased

conclusions based on capture rate or presence/absence data have essentially two options. The

first is to avoid selection of “optimal” camera placements entirely. If camera placements are

truly random in the landscape, then features influencing detection will be included in propor-

tion to their availability. While this does not remove detection biases inherent across or within

species (e.g. size, movement rate, range size, social rank), it is a more statistically defensible

sampling strategy, with truly random sampling allowing inference beyond the specific loca-

tions where cameras are placed. For this reason random camera placement (with respect to

landscape features) is an assumption of a relatively new approach that aims to estimate density

from non-individually identifiable species [7]. There is however a reluctance among research-

ers to use completely random placement due to anticipated reductions in overall photo capture

rate (demonstrated in [10, 21] and others) and so it is remarkably rare in practice [9]. Recently

some authors have suggested a mix of trail and off-trail (“random”) placements for studies

seeking a compromise between bias and reduced capture rate [15, 21, 22]. Yet this stratification

of placement decisions will have unknown consequences on overall detection rates and will

influence capture rates of different species in different ways. Further, it assumes that trail/road

features are the only significant habitat feature influencing detection rates.

The second option is to account for detection parameters analytically, regardless of place-

ment strategy. This approach has been well developed in an occupancy modeling framework

[23]. Occupancy models, which often seek to describe the factors influencing patch (site-level)

occupancy or use of a species, separate the process of detection from presence, allowing

researchers to explicitly model factors that influence detection. In camera studies, individual
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or blocks of days are considered repeated sampling events at a given site, and allow direct esti-

mation of detectability. Use of this approach has allowed researchers to investigate ecological

questions using camera traps while explicitly accounting for many of the biases inherent in

photo capture rate (e.g., [24–27]). While this approach is largely restricted to presence/absence

data, model expansions allow additional information related to abundance to be utilized [28].

Importantly, this approach still relies on accurate knowledge about the factors that can influ-

ence detection probability so they can be recorded in the field and included in modeling

efforts.

Although we continue to understand more and more about the potential biases involved in

camera placement, most studies on this topic to date have focused on the new world tropics,

and on the influence of “roads” of various sizes (i.e. travel routes of human origin). Much less

is known about detection bias along smaller travel paths (e.g. game trails), which are frequently

targeted for camera placement in a range of scenarios, or how these various biases may change

under different habitat conditions. It has been suggested that travel routes and other features

may be more attractive to various species in thicker vegetation (e.g. [21]), but this has not been

adequately investigated, and the suggestion was generally not supported in the single study

where this pattern was investigated [15]. Finally, we know nothing about the potential influ-

ence of other small scale habitat features on animal detection.

Given that estimates of system state parameters of interest such as occupancy probability

and species richness are heavily reliant on the detection process, our objective in this study was

to clarify the extent to which the detectability of species may vary based on small-scale habitat

features at camera locations. We focused on two factors of probable importance in our study

system, game trails (no human use) and downed logs. We hypothesized that game trails would

be used preferentially for travel and that downed logs would be used for foraging or travel by

several species [29]. We utilized paired cameras, to date rarely employed on a large scale for

this question (but see [30]), to control for any larger-scale confounding factors (e.g. site occu-

pancy, site use, animal abundance) that may influence detectability of species presence at a

location. We also recorded a suite of vegetation-based habitat variables in the immediate vicin-

ity of camera pairs to account for their influence on local species occupancy, and to investigate

the extent to which local habitat structure may also influence detection rates. Our study was

based in the broadleaf deciduous forests of the Shenandoah Valley, Virginia, USA, a system

where relatively little camera trap methodology research has been conducted (but see [31]).

We investigated the influence of random vs. feature-based camera placement on estimates of

species richness and the probability of detection of a suite of species in this forest mammal

community.

Materials and methods

Study area

Our study was conducted in forested habitats of varying ages on the grounds of the Smithso-

nian Conservation Biology Institute (SCBI) in Front Royal, Virginia, USA (38.887090˚ N,

78.164652˚ W). The 1295 ha campus is near the border of the Shenandoah National Park. For-

est canopies are dominated by Tulip Poplar (Liriodendron tulipifera), Ash (Fraxinus spp.) and

a suite of Oak (Quercus spp.) and Hickory (Carya spp.) species. Forest understories varied from

very open, to those with relatively dense growths of Coralberry (Symphoricarpos orbiculatus),
Japanese Barberry (Berberis thunbergii), and various members of the Rubus genus, as well as

the occasional monoculture understory of Spicebush (Lindera benzoin). Forests of varying ages

cover approximately 66% of the entire property. The most common terrestrial large mammal

is the white-tailed deer (Odocoileus virginianus), and black bear (Ursus americanus) are more
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abundant here than in other areas of their North American range. Common large rodents

include eastern gray squirrels (Sciurus carolinensis), eastern fox squirrels (Sciurus niger), and

the eastern chipmunk (Tamias striatus). Other abundant small and mid-sized mammals are

the Virginia opossum (Didelphis virginiana), northern raccoon (Procyon lotor), and eastern

cottontail rabbit (Sylvilagus floridanus). The predator community also includes bobcats (Lynx
rufus), gray fox (Urocyon cinereoargenteus), red fox (Vulpes vulpes), and coyote (Canis latrans).
Approximately 3.3% of the property is allocated for care and breeding of captive non-domesti-

cated species that reside in large barns and fenced enclosures, and an additional 11.3% is avail-

able as fenced pasture for the captive animals at various times. Captive animals do not interact

with native mammals, and all captive ungulates are kept within a larger fenced area that is kept

free of all native deer. The property is contiguous with the nearly 81,000 ha forest of Shenan-

doah National Park, and although the property is fenced, the perimeter fences are permeable

to all local wildlife species. The climate is classified as humid subtropical, with hot humid sum-

mers and mild cool winters. Snowfall is irregular but common after January.

Study design

The entire SCBI property was overlaid with a systematic grid (500m x 500m) with a random

starting point, and with grid center points designated as target locations for a paired camera

station. All points that fell within the central developed campus or the captive animal areas

were removed from consideration. No cameras were located less than 100m from any animal

enclosure. Center points that were> 200m from forest habitat were also removed from con-

sideration, either based on satellite images or after traveling to the location, leaving 42 poten-

tial station locations. We traveled to these remaining locations in random order and searched

for either of our feature types (game trail or log) occurring in forested habitat. Although a min-

imum log diameter threshold was not designated, no logs below a diameter of 19.5 cm were

selected. Log length was assumed to correlate closely with diameter and so was not recorded,

yet all logs were significant habitat features and were at least 3m long. We considered a game

trail for inclusion in the study if signs of animal movement appeared to be repeated as opposed

to single use, and if the ground was at least partially bare on the trail due to use by wildlife. Old

roads and fencelines were never used as trail features and all cameras were restricted to be at

least 50m from an actively used road or human use trail.

All camera sets were established as pairs, with one camera (“feature camera”) focused on

the microhabitat feature of interest, and the other (“control camera”) placed as close as possi-

ble to the first camera (goal of within 15m), yet not including the feature of interest. We used

the paired design to control for detection biases inherent in our different camera models, as

well as to remove the influence of the landscape location and surrounding habitat on species

presence between paired cameras. That is, paired cameras were close enough to assume that

overall site occupancy for any species was equivalent at both cameras. For trail feature pairs,

the goal was to have the two cameras as close as possible but with the control camera not in

direct sight of the trail to avoid animals leaving the trail to investigate the control camera.

We placed control cameras such that animals using the “feature” would never set off the con-

trol camera. In all pairs, we ensured that even if the distance between cameras exceeded our

goal of <15m, the general microhabitat features surrounding the feature camera were the

same at the control camera, particularly with respect to the density and type of understory

vegetation, and the ground cover characteristics. We collected data for this study during the

months of June through December (though only four camera deployments extended into

December) in both 2013 and 2014. Our goal was to have camera pairs in position for a mini-

mum of three weeks before being moved to a different grid location or feature type; enough
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time to at least have a non-zero probability of capture for all photographable mammal species

in this ecosystem [29].

Two camera brands were used in the study: SpyPoint (BF-7; Swanton, Vermont, USA) and

Reconyx (RC-60 Covert IR and HyperFire HO Covert IR, Holmen, Wisconsin, USA). All

three models employ a low-glow infrared flash and in all cases pairs were composed of only

one camera model. Reconyx cameras comprised 37.5% of the trail feature deployments and

43.3% of log feature deployments. All cameras were set to maximize the number of photos

taken. Reconyx cameras were set to Rapidfire (no delay between photos) setting, three pictures

per trigger, maximum sensitivity, with no quiet period and had a 1/5 second trigger speed.

Spypoint cameras were set to take 4 photos at each trigger (maximum setting) at maximum

sensitivity distance, with no delay between photos and 1 minute between triggers (minimum

setting), with an estimated 1.5 second trigger speed. To maximize detection of the largest

range of animal sizes, cameras were set at or below knee height (~ 40cm), except when modi-

fied heights were required to photograph animals traveling along the log in the camera view at

log experiment stations. Generally we attempted to maximize the detection distance of the

cameras at each placement (using each camera’s test mode) while minimizing camera height.

At each paired camera station we collected a suite of measurements representing vegetation

and habitat structure to investigate the influence of local habitat structure on detection proba-

bility and to account for its potential influence on probability of local occupancy (Table 1).

Table 1. Covariates used in multi-method occupancy modeling of camera trap detections.

Covariate Modeled

on

Collection Protocol

Overall vegetative cover

(CovAll)

θ Average percent of a 2-m high cover pole (located at midway point

between the two cameras) obscured by vegetation from 10 m away

in each cardinal direction. Coverpole was divided in 20 1-dm

sections. Data were recorded as the percentage of 1-dm sections

obscured (>50%) by vegetative or structural cover.

Low vegetative cover

(CovLow)

θ, p Average percent of lower portion (<0.5 m) of cover pole obscured

by vegetation

Understory stem density

(UndStD)

θ, p Number of woody stems >1.5 m in height and <7.5 cm dbh counted

on three transects. Transect were parallel, 20-m transects

extending perpendicular to the aspect of the location. Transects

were placed both through the midway point between the two

cameras, as well as 10 m up and down slope of this location.

Transect width was determined by the extent of the surveyor’s

outstretched arms.

Overstory stem density

(OverStD)

θ Number of woody stems >7.5 cm dbh counted on transects (as

described for UndStD)

Camera Type

(CamType)

p Camera used at each paired station. Reconyx (coded as “1”) and

Spypoint (coded as “0”).

Season p Dominant season of each sampling session, based on the mid-date

of the full session. Mid-dates past October 15th, were coded as Fall

(“0”) as opposed to Summer (“1”).

Log Diameter (LogD) p Diameter of the primary log in view of the camera, in centimeters,

measured in the center of the camera’s view.

Trail Quality (TrailQ) p Subjective assessment of trail quality designed to represent

amount of trail use by wildlife. Ranged from average (“3”) to good

(“2”) to excellent (“1”) based on presence of animal tracks, amount

of bare ground exposed, and trail width.

Vegetation measurements were centered on the midway point between the two cameras at each station.

The θ parameter in the modeled column represents local occupancy, or the probability that a species is

present in the immediate vicinity of the cameras. The parameter p represents detection probability.

https://doi.org/10.1371/journal.pone.0186679.t001
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The midway point between the two cameras was used as the center of vegetation surveys. At

each station we also recorded log diameter (cm; at the center of the view of the camera), trail

quality (average, good, excellent, Table 1) and the distance between the control and feature

cameras. Because sampling extended from summer into fall, each deployment was categorized

by season based on the mid-date of the session (past Oct 15 = Fall).

Data analysis

To compare the rate at which new species were accumulated using the various tested camera

placements, we generated sample-based rarefaction/extrapolation curves for species richness

for feature and control cameras of our log and trail experiments and compared them using

95% confidence intervals drawn from 500 randomizations performed with replacement and

based on the unconditional variance [32]. In addition, we calculated species richness for each

feature and control camera and compared average richness values within groups using a Wil-

coxon signed-rank test.

Photo series at the same camera for the same species were considered independent if 10

minutes passed with no captures of the respective species. Photo capture rates, both within

and across species, were calculated as: (number of independent events divided by the number

of camera nights) multiplied by 100. Comparisons of capture rates were performed using a

Wilcoxon signed-rank test, treating each camera at each deployment as a sample. Survey effort

was always controlled within pairs, such that data was only utilized as long as both cameras

were functioning; any data recorded after one camera stopped functioning was ignored.

We modeled detection probability within a multi-method occupancy modeling framework

[33]. This modeling framework is uniquely suited to investigate the effect of method (in this

case, camera placement) on detection in a paired design, as it incorporates a local occupancy

parameter (θ) in addition to the traditional site occupancy parameter (ψ). In this model local

occupancy (θ) describes the probability that the region in the immediate vicinity of the two

cameras is occupied, while the site occupancy (ψ) parameter represents the probability that the

broader sampling location, here defined by our grid cells, is occupied. With this additional θ
parameter these models explicitly address the lack of independence among detections by the

two paired cameras at the same sampling occasion induced by animal(s) presence in the

immediate vicinity of the cameras. This multi-method modeling approach also effectively uti-

lizes the data inherent in the two camera setups to estimate both occupancy and method-spe-

cific detection, as opposed to treating the two cameras as separate, independent sites. This

approach allows direct estimation and modeling of occupancy parameters at a local and sam-

pling grid scale. In our case, all of the modeled species are known to be present throughout our

study area, so the ψ parameter was not of interest in this context. In addition, the paired design

controls for any potential station to station variation in species presence and abundance. How-

ever the addition of the θ parameter allows a framework where the probability that a species is

locally available for photographic capture, which is of much more interest in this study, is

directly estimated and taken into account. This approach also allows for testing of method-spe-

cific hypotheses in a model selection framework.

Detection histories were created for each camera and each species, with each sampling

occasion representing two days. To minimize the amount of missing data in the detection

matrix caused by some cameras that remained in deployment for longer periods, we excluded

data collected after day 24, resulting in 12 occasions. In the multi-method occupancy frame-

work [33], three parameters are estimated: standard site occupancy (ψ), detection probability

(p), which can be estimated separately for each method, and the additional parameter of local

occupancy (θ), which represents the probability that the species is in the immediate area of the
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traps. In our case, we treated our trail experiment and log experiment as separate analyses,

with the feature (log or trail) and control camera placements representing our two “methods”

of capture. As site occupancy was not a focus of this study, occupancy was held constant for all

models. Local occupancy (θ) was modeled with four potential covariates (Table 1; Overall Veg-

etative Cover, Low Vegetative Cover, Understory Stem Density and Overstory Stem Density).

Detection probability was modeled with the following suite of predictor variables: Camera

Type; Season; Understory Stem Density; Low Vegetative Cover, and either Trail Quality or

Log Diameter (Table 1). The latter two covariates were always modeled as an interaction effect

with placement, given that these covariates would presumably have varying effects on control

and feature cameras. We note that there was collinearity between Low Vegetative Cover and

Overall Vegetative Cover (Pearson’s r = 0.66, p<0.05) and between Overall Vegetative Cover

and Understory Stem Density (Pearson’s r = 0.76, p <0.05). However these variables were

selected a priori to represent specific habitat components that we suspected may be important

in different ways to different species. Given that no step-wise selection methods were

employed, and all model combinations were investigated, collinearity was not a serious con-

cern and we elected to maintain all our pre-selected variables in our analyses.

Model comparisons were performed separately for log and trail experiments and for each

species. Model creation proceeded as follows, with the site occupancy parameter (ψ) held con-

stant in all cases: 1) All possible subsets of our four covariates on θ (including a constant θ)

were tested, using a global model for p including all covariates, and the best model using AICc

(Akaike’s Information Criterion corrected for small sample sizes) values was selected. 2) With

the best θmodel, we investigated the importance of camera placement on detection probability

by comparing our global model for p (CamType, Season, CovLow, UndStD, Placement) to the

same model with p held constant across the two camera placements (feature and control). This

comparison allowed us to clearly address whether detection probability was influenced by the

trail or log placement relative to control cameras. Note that TrailQ and LogD were ignored

here as they can only be included in models with placement-specific p estimates; 3) To investi-

gate the relative importance of other covariates on p, we proceeded to test all subsets of our

five covariates (CamType, Season, CovLow, UndStD, TrailQ or LogD), using the best model

for θ, and holding p constant across placement methods only if detection probability was not

found to be influenced by camera placement in #2. The cumulative AICc weights (given that

the model sets were balanced) were used to compare relative variable importance. These are

calculated by summing the individual model weights for all models that include the variable of

interest, and higher cumulative weights indicate stronger influence on model fit. Although

there is no generally agreed-upon threshold for cumulative AICc weight values that would

indicate a variable had a “strong” or “important” impact on the response variable, we focus

our discussion on those variables with cumulative AICc weights above 0.60. AICc values used

an effective sample size represented by the number of successful paired deployments.

Occupancy models were generated using the software package Presence [34]. All other

analyses were performed in R version 3.2.4 [35]. Species accumulation curves were generated

and plotted (with some modification for visualization purposes) using the package iNEXT

[36]. Detection histories were generated using the package camtrapR [37].

Results

We successfully recorded data from a total of 54 pairs of cameras at 27 different grids in the

study area (30 log sets at 23 different grids, 24 trail sets at 21 different grids). A number of

deployments were cut short due to damage from black bears (U. americanus), yet in some cases

both cameras functioned for multiple weeks. We decided to include all stations where both
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cameras functioned for at least 10 camera-nights, and in all cases we removed photos taken

from both paired cameras after the date when one camera was damaged. Only 14 of the 54 sets

included data from less than 21 camera-nights. The average number of camera-nights for a

camera pair across the study was 25 (range: 11–50) and the study accumulated a total of 1371

camera-nights, per pair, across two sampling years (total camera nights by camera = 2742).

The average log diameter at the 30 log feature cameras was 37.2 cm (range: 19–190 cm).

The log at 190 cm was an outlier and with it removed the average diameter was 32 cm. At log

experiment stations, cameras were on average 15.1 m apart (range 0–35 m) and ran for an

average of 25.4 camera-nights for a total of 792 paired camera nights. At trail experiment sta-

tions, cameras were on average 23.5 m apart (range 2.6 m-95.3 m) and ran for an average of

25.6 camera-nights for a total of 579 paired camera nights. The station with cameras spread

over 95.3 m was an outlier and resulted from the highly linear and dense nature of the forest

patch. The next largest camera distance for trail experiment stations was 53 m.

Across all stations we recorded photos of 19 different species of mammals, including the

domestic cat (Felis catus; Table 2). Overall capture rates (often referred to as a relative abun-

dance index) were significantly higher at trail and log cameras compared to their correspond-

ing paired random cameras (Table 2). Across species for which there was at least 20 detections

across random and feature setups, three of eight species showed significant capture rate differ-

ences in the log experiment (O. virginianus, S. carolinensis, and S. niger), and two of seven in

the trail experiment (O. virginianus, D. virginiana; Table 2). Across these five significantly dif-

fering pairings, changes in capture rate ranged from 1.7 to 9.67 times. The most dramatic

change in capture rate was seen for the combined “mouse” category (most likely all Peromyscus
sp.), where 65 capture events occurred at log features compared to only a single capture event

at random locations, although statistical comparison was not possible.

Species richness

Excluding the domestic cat events, a total of 17 species were recorded at cameras with log fea-

tures compared to a total of 13 species at their paired control cameras. Mean counts of species

were higher at log features (5.17) compared with paired control cameras (4.27; V = 73.5,

p = 0.03). Four species were photographed at log features that were never photographed at

their paired random locations (long-tailed weasel—Mustela frenata, least weasel—Mustela
nivalis, southern flying squirrel—Glaucomys volans, groundhog—Marmota monax) over the

792 paired camera nights. Two of these species were not photographed at any other camera

placement type (M. nivalis, G. volans) over the 2742 overall camera nights (when each individ-

ual camera is considered). A total of 15 species were recorded at cameras on trails, compared

to 12 species at their paired control cameras. Mean counts of species were higher on trails

(5.00) compared with paired control cameras (3.71; V = 26, p = 0.005). Four species were pho-

tographed at game trails that were never photographed at corresponding control cameras (M.

frenata, M.monax, striped skunk—Mephitis mephitis, V. vulpes) after 579 paired camera nights

of effort. Only one species (U. cinereoargenteus) was photographed at trail control cameras and

not at the trail cameras themselves.

Species accumulation curves indicated that cameras with log features in view accumulated

unique species more quickly than at paired control cameras (Fig 1). However, confidence

intervals for richness estimates began to overlap after approximately 659 camera nights. Simi-

larly, for our trail experiment, unique species were accumulated more quickly at cameras

placed on game trails, compared with nearby control cameras, yet here richness values began

to overlap, based on confidence intervals, after approximately 385 camera nights of effort

(Fig 2).
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Occupancy modeling

Sample sizes for occupancy models were 29 paired stations for the log experiment (one of the

30 sampled log stations was removed due to errors in photo date assignment in the camera

metadata that made occasion assignments impossible) and 24 for the trail experiment. Setting

a camera trap on a game trail, compared to a random location, had a significant effect on

detection probability for five of the seven species for which models could be constructed

(Table 3). Detection probability was higher on game trails than control cameras for O. virginia-
nus, D. virginiana, T. striatus, S. carolinensis and S. floridanus, and there was no influence of

camera placement on detection probability for P. lotor or U. americanus. The effect of trail was

particularly dramatic for O. virginianus, and this was the only species for which trail quality

influenced detection as well, with trails of higher quality resulting in higher detectability

(cumulative AICc weight 0.61; S1 Table). Increases in detection probability for these species

Table 2. Mean (not overall) capture rates (CR) and events (Evts.) for all 19 species photographed across 54 paired camera stations.

Species All Cameras (n = 54

pairs)

Logs (n = 30 pairs) Trails (n = 24 pairs)

Feature Control Feature Control

# (%) of 108 cameras CR (SE) Evts. CR (SE) Evts. Total

Evts.

CR (SE) Evts. CR (SE) Evts. Total

Evts.

All Species - 157.9

(19.6)

1028 111.2

(11.1)

871 1899 161.5

(22.3)

863 88.2

(13.8)

464 1327

Odocoileus virginianus 105 (97.2) 30.44

(8.77)

224 53.51

(9.80)

442 666 60.76

(8.63)

340 35.64

(5.25)

196 536

Procyon lotor 96 (88.9) 29.45

(5.06)

205 24.63

(5.48)

190 395 27.42 (5.69 143 22.28

(4.74)

126 269

Ursus americanus 72 (66.7) 8.20 (1.70) 58 6.95

(1.81)

52 110 9.31 (2.13) 51 7.72

(1.86)

37 88

Sciurus carolinensis 69 (63.9) 47.51

(10.50)

318 14.00

(4.66)

113 431 35.18

(13.08)

191 16.10

(7.25)

74 265

Didelphis virginiana 43 (39.8) 3.35 (1.88) 21 4.49

(1.27)

31 52 11.55

(4.16)

60 2.57

(0.83)

15 75

All Mouse 13 (12.0) 9.36 (5.88) 65 0.15

(0.15)

1 66 2.48 14 0.60 3 17

Urocyon

cinereoargenteus

15 (13.9) 2.51 (1.26) 19 2.51

(1.03)

20 39 0.00 0 0.17 1 1

Sciurus niger 15 (13.9) 8.63 (3.61) 78 1.12

(0.66)

8 86 0.22 1 0.36 2 3

Vulpes vulpes 14 (13.0) 0.98 8 0.45 4 12 0.94 5 0.00 0 5

Sylvilagus floridanus 13 (12.0) 0.16 1 0.22 2 3 3.61 (1.44) 21 0.74

(0.43)

6 27

Canis latrans 10 (9.3) 0.41 3 0.54 4 7 0.34 2 0.20 2 4

Lynx rufus 10 (9.3) 0.44 3 0.40 3 6 0.80 5 0.17 1 6

Tamias striatus 9 (8.3) 1.26 8 0.08 1 9 4.79 (3.95) 24 0.20

(0.20)

1 25

Felis catus 3 (2.8) 0.24 2 0.29 2 4 0.00 0 0.00 0 0

Mustela frenata 3 (2.8) 0.39 5 0.00 0 5 0.44 3 0.00 0 3

Marmota monax 2 (1.9) 0.22 1 0.00 0 1 0.44 2 0.00 0 2

Mustela nivalis 1 (0.9) 0.14 1 0.00 0 1 0.00 0 0.00 0 0

Glaucomys volans 1 (0.9) 1.08 10 0.00 0 10 0.00 0 0.00 0 0

Mephitis mephitis 1 (0.9) 0.00 0 0.00 0 0 0.11 1 0.00 0 1

Standard errors are shown when more than 20 events were recorded across cameras in each experiment. In these cases, Wilcoxon Rank Sum tests were

performed and significant differences (p < 0.05) are in bold.

https://doi.org/10.1371/journal.pone.0186679.t002
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ranged from 11–33% at median covariate values in the summer season, with Reconyx cameras

(Table 4).

Based on cumulative AICc model weight across balanced model sets, additional microhabi-

tat variables also influenced detectability of certain species in the trail experiment. Detectability

was higher at stations with lower understory stem densities for both O. virginianus and S. caro-
linensis (S1 Table). For S. carolinensis this same pattern held for low vegetative cover as well

(S1 Table). Season influenced detectability for three species, with detectability higher in the

summer season for U. americanus and S. carolinensis, and lower in the summer season for P.

lotor (S1 Table), yet only three pairings occurred in the Fall for trail experiments. Camera type

was generally not important for detectability with the exception of P. lotor, where Reconyx

cameras had lower detectability than Spypoint (S1 Table).

Setting a camera trap facing a log had a strong influence on detectability for six of the eight

species which could be modeled, and both positive (S. carolinensis, S. niger, Mouse, P. lotor)

Fig 1. Sample-based species accumulation curve from 30 paired cameras, run for an average of 25.4 camera nights, with one camera

in each pair oriented toward a log feature, and the other at a nearby (mean = 15.1 m) random location. Shaded areas represent the 95%

confidence intervals, with darker shaded areas representing confidence interval overlap between the two scenarios. Black dots indicate the

actual sampling effort of this study. The vertical line with label indicates the point at which the confidence intervals of the feature and control

groups overlap.

https://doi.org/10.1371/journal.pone.0186679.g001
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and negative (O. virginianus, D. virginiana) effects were demonstrated (Table 3). The impact of

the log placement on detectability was most pronounced for the three rodents investigated,

where in all cases detection probability was substantially higher (24.9–38.2%) at log cameras

(Table 4). Log diameter was not an important covariate for detection probability at log-based

cameras for any species.

As with the trail stations, additional microhabitat variables were important in determining

detection probabilities at log stations. The amount of low vegetative cover had a strong nega-

tive influence on detection probability of S. carolinensis, which was opposite to that of the trail

experiment where increasing low vegetative cover was associated with an increase in detection

probability (S2 Table). Greater amounts of low vegetative cover also increased the detection

probability of U. cinereoargenteus (S2 Table). Understory stem density had a strong positive

effect on detection probability for both P. lotor and S. carolinensis, but strong negative effects

Fig 2. Sample-based species accumulation curve from 24 paired cameras, run for an average of 25.6 camera nights, with one camera in

each pair oriented toward a trail feature, and the other at a nearby (mean = 23.5 m) random location. Shaded areas represent the 95%

confidence intervals, with darker shaded areas representing confidence interval overlap between the two scenarios. Black dots indicate the actual

sampling effort of this study. The vertical line with label indicates the point at which the confidence intervals of the feature and control groups

overlap.

https://doi.org/10.1371/journal.pone.0186679.g002
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on detection for O. virginianus and U. cinereoargenteus (S2 Table). O. virginianus, P. lotor, and

U. cinereoargenteus detection probabilities were all higher in the Summer season compared

with Fall. Camera type in log experiments was an important influence on detection probabili-

ties for only two species (O. virginianus and U. cinereoargenteus) and in both cases detection

probability was higher at pairings with Reconyx cameras (S2 Table).

Best models for θ(local occupancy) largely included none of our four possible habitat

covariates, with a few exceptions. At trail experiment stations, local occupancy of S. caroli-
nensis was higher at stations where overall amount of vegetative cover (CovAll) was higher.

At log experiment stations, this pattern also held, with S. carolinensis local occupancy higher

at locations where overall vegetative cover was higher (CovAll). However, for the same spe-

cies, increases in overstem density (OverStem), understory stem density (UnderStem) and

low vegetative cover (LowCov) all reduced the probability of local occupancy. Also at log

experiment stations, O. virginianus local occupancy increased with decreasing overall vegeta-

tive cover.

Table 3. Model results showing the effect of setting a camera on a feature (game trail or log) based on

paired comparisons with nearby random locations.

Species Trail Feature

(ΔAICc)

Log Feature

(ΔAICc)

Odocoileus virginianus +

(20.44)

-

(37.77)§

Didelphis virginiana +

(8.09)

-

(2.17)

Tamias striatus* +

(7.56)

NA

Sciurus carolinensis +

(2.28)☩
+

(49.04)¶

Sylvilagus floridanus* +

(1.95)

NA

Procyon lotor No effect

(2.21)

+

(3.82)

Ursus americanus No effect

(3.66)

No effect

(4.11)

Mouse (Peromyscus sp.)✝ NA +

(37.78)

Sciurus niger✝ NA +

(23.24)

Urocyon cinereoargenteus NA No effect

(3.69)

The data columns show the effect of feature presence on detection; the direction of this difference (positive

[+] or negative [–]), and the ΔAICc value between the global detection model (all covariates) with and without

feature type. An NA value indicates that there were insufficient detections for a given species in the camera

pairs for a certain feature to allow investigation. All detection models were run with the top model for local

occupancy (θ) of the species. The null model for theta (θ (.)) was the top model for almost all species; three

exceptions are noted in the table.

* Trail data only sufficient to support basic models. Covariates on θ and p not investigated.
✝ Log data only sufficient to support basic models. Covariates on θ and p not investigated.
§The model used for calculating detection differences was ψ(.) θ (CovAll)
☩The model used for calculating detection differences was ψ(.) θ (CovAll)
¶The model used for calculating detection differences was ψ(.) θ (global)

https://doi.org/10.1371/journal.pone.0186679.t003
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Discussion

Placement of remote cameras impacted the rate that animals were detected by camera traps,

the total number of species detected, and detection probability across a suite of species. Biases

identified were dramatic in some cases, with detection probability increases up to 38% and up

to a 9.7 times increase in capture rate when cameras were set on certain features. Our results

clearly indicate that additional small-scale habitat features besides game trails can have impacts

on the ability to document unique species and the probability of species detection when cam-

era traps are employed.

Species richness

Most of the research concerning camera trap detection patterns and biases has focused on the

impact of small roads and large human-use trails on the detectability of carnivores and their

prey (e.g. [15, 16] [10, 17]), yet few have investigated potential biases when broad species rich-

ness is the information of interest (but see [30]). Our data indicate that relatively small trails

unused by humans as well as other small features like downed logs can influence the total

number of species photographed and the rate at which unique species are accumulated. Cam-

eras set on log features resulted in the highest number of species (17) of all four camera groups,

and showed a larger discrepancy between feature and control cameras than did the trail experi-

ment. In terms of estimates of species richness, more than 650 camera nights are estimated to

be necessary to remove this bias, which is a relatively large amount of effort for camera trap

studies (e.g. 20 stations run for 30 days), and differences in richness values were most pro-

nounced at low amounts of effort, as reported elsewhere where bias of small trails was investi-

gated in a large community of 41 species of mammals in Tanzania [30]. Based on more than 6

years of camera trapping efforts on this property, and the known terrestrial mammals species

that occur in our study location, there are no species missing from our list of 18 wild

Table 4. Percent increase or reduction in detection probability due to camera placement (trail or log).

% Change in Detection Probability

Species Trail vs. Random Log vs. Random

Odocoileus virginianus +24.0% -24.2%

Procyon lotor no effect +11.5%

Ursus americanus no effect no effect

Sciurus carolinensis +17.3% +27.4%

Didelphis virginiana +11.7% -9.3%

Urocyon cinereoargenteus n/a no effect

Sciurus niger n/a +24.9%*

Sylvilagus floridanus +24.6%* n/a

Mouse (Peromyscus sp.) n/a +38.2%*

Tamias striatus +33.2%* n/a

Detection probability was estimated based on the best model for θ, and the global (fully parameterized)

model for a placement-specific p. Only values for species where camera placement was an important factor

are shown. Median values for covariates on p, in the Summer, with a Reconyx camera were used to

estimate p for feature vs. control setups. Refer to Tables 2 and 3 for model details. Those cases where data

was not sufficient for modeling are indicated with an “n/a”.

* sample sizes did not allow for testing of all covariates. Effect of camera placement was tested in isolation,

with no additional covariates.

https://doi.org/10.1371/journal.pone.0186679.t004
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photographed species that would otherwise be expected to be captured with terrestrial, forest-

based camera traps.

Capture rates and relative abundance

Camera trapping studies that focus on multiple species typically report capture rates of photo-

graphed species, and this is often referred to as relative abundance or as a relative abundance

index [9]. Yet, as noted previously [10] interpretation of this index is challenging as the poten-

tial biases affecting detection across species, and within species across study areas, are ignored.

Although we did not have information on true abundance for our study species, we showed

clear impacts of the presence of logs, and the presence and quality of trails within the camera

view on capture rates, in a design that controlled for the impact of abundance. For relatively

uncommon or low density species, these biases can result in a total lack of captures, thereby

strongly influencing not only relative abundance, but richness estimates as well. Across the

study, randomly placed (control) cameras did not photograph a single individual of southern

flying squirrel (G. volans), least weasel (M. nivalis) or long-tailed weasel (M. frenata). Anec-

dotal observations from 687 deployments across four eastern US states and more than 14,000

camera nights support this finding, where the only detections of long-tailed weasels, least wea-

sels, and southern flying squirrels were on opportunistically present log features [29]. These

three species’ particular behavior and size combine to make them difficult to document on

camera traps, regardless of their local densities. Although we recorded only a few events for

these species, there is strong evidence that cameras focused on log features will increase photo-

graphic captures of these species in the eastern US. Rare or hard to detect species in other

areas likely have features that are important to them; focusing on these features will increase

detection rates and documenting the presence of these habitat features will be essential for

accurately modeling detection of these species in community studies.

Biases in capture rates due to trails and logs were however apparent in even the most com-

mon species. Three of the five most commonly detected animals showed significant differences

in capture rate between random cameras and cameras set on one of the feature types (Table 2),

with increases in capture rates as high as 9.7 times. These differences could lead researchers to

erroneous conclusions when comparing different areas or time periods if the relevant habitat

features are not controlled for or otherwise accounted for in analytical approaches. The dan-

gers of making conclusions based solely on capture rates, particularly across study areas, or

where camera placements vary, have been demonstrated previously (e.g. [8]), and our data

here support recommendations against this practice. Further, it seems the reluctance of many

researchers to not place cameras in truly random locations for fear of large reductions in detec-

tion events is strongly supported. In this study randomly-placed cameras showed a 15.2% and

46.2% reduction in total detection events for log and trail pairs, respectively, with impacts of

placement varying widely across different species.

Detection probability

When investigated in an occupancy modeling framework, clear impacts of game trails and

logs on the detection probabilities of a range of species were apparent. Positioning a camera

trap on a game trail resulted in substantially higher detection probabilities for five of the seven

species investigated compared to nearby random locations. While this was expected for O. vir-
ginianus, which were likely the creators of nearly all the game trails used in this study and

which were detected more on larger game trails, other patterns were more surprising. While it

is feasible to imagine that D. virginiana may utilize trails for travel to some degree, the remain-

ing three species found to be more detectable on trails are smaller rodents and lagomorphs, all
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of which are unlikely to utilize trails for travel. It is therefore likely that the higher detectability

on trail features may relate to higher visibility of these species in areas where the vegetation

may otherwise make it challenging for cameras to detect small species. This is further sup-

ported by the fact that at trail stations, S. carolinensis detection was substantially reduced when

low vegetative cover and understory stem densities were high. While detections in this study

were not frequent enough to address this pattern in carnivores, we showed that even small

game trails can be important features for species detection rates for a wide range of body sizes

and taxa groups, from T. striatus to O. virginianus. While there is substantial research docu-

menting the influence of trails and old roads on detection of carnivores [10, 14–17], and in

some cases their prey [15, 18, 19], we are not aware of previous research showing these same

patterns in small- and medium-sized mammals.

The size of trails or roads and other trail characteristics are typically not reported in camera

trapping studies nor are they commonly incorporated into models for detection probability in

an occupancy modeling framework. In our system where only game trails (as opposed to roads

or human use trails) were considered, we show that O. virginianus were more easily detected

on larger, more well-worn game trails. It should be noted that in the eastern US deer do not

share these trails with any large predators. In Belize, researchers found that on large human-

use trails, jaguar, puma and ocelot were photographed more often as trail width increased, and

red brocket deer showed the opposite pattern [20], indicating differential response of predators

and prey to different trail sizes. We recommend that camera studies using trails of any type

record trail characteristics at camera locations and either use these factors in models explicitly

estimating detection probability, or somehow control for potential variation in trail character-

istics in the study design phase.

The effect of camera placement on detection probability was not limited to trails. Position-

ing a camera trap in view of a log, a heretofore ignored feature, resulted in substantially higher

detection probabilities for four of eight species investigated. The impact on detection was dra-

matic for the three rodent species in this group, indicating that the presence of microhabitat

features like this must be accounted for in camera placement for small mammals. As expected

for a species primarily using travel pathways to move through the forest, O. virginianus detect-

ability was lower at log cameras than at random locations. Interestingly, while increases in

understory stem density, low vegetative cover, and overstory stem density reduced the proba-

bility of local occupancy of squirrels, these factors increased the detection of the species at log

pairings, suggesting that perhaps log features are used more readily in densely vegetated habi-

tats. This potential interaction between surrounding habitat and the importance of microhabi-

tat features for detection probability is likely to occur for other features as well, and this

possibility should be strongly considered when researchers collect field data and build covari-

ate sets for model-based investigations. That is, the extent to which important microhabitat

features influence detection rates may depend at least in part on other local habitat characteris-

tics, and these should not be ignored.

Ours is the first study to investigate the influence of camera placement on detection of any

bear species. Placement strategy had no influence on detectability of U. americanus and indeed

none of our small-scale habitat covariates influenced either local occupancy or detectability for

this species. It is likely that the omnivorous diet of this species renders extended travel along

predetermined routes like game trails an inefficient foraging strategy.

Very few previous studies investigating factors influencing species detection on camera

traps have used a truly controlled design with paired cameras as we have here [21, 22, 30], and

only one to our knowledge has had more than 10 stations [30]. This paired design is essential

for the control of other potential habitat characteristics that may also influence detectability,

which we show can play a large role (e.g. stem densities and vegetative cover). Further, the use
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of the multi-method occupancy modeling approach explicitly accounts for the lack of indepen-

dence between the two cameras resulting from their close proximity. We therefore strongly

encourage other studies investigating detection bias to employ this design and analysis to

properly incorporate the potential influence of spatial and temporal heterogeneity.

Conclusions

Researchers have readily acknowledged that the detectability of animals on camera traps is

impacted by behavioral (e.g. arboreality [38]), ecological [39], and biological (e.g. size [11])

variation across species. However, the role of more subtle factors on detection such as small

scale local habitat features, within and across species, has been unclear. We show that small

scale features associated with camera placement, including some that have been widely ignored

in camera placement design and analysis (e.g. presence of logs, trail quality), may have strong

impacts on detection in certain species. The resulting bias in detection will directly bias esti-

mates of system state parameters like occupancy probability and therefore future camera study

design may need to incorporate additional controls or model covariates to ensure robust

estimates.

As always, study design should reflect the study objectives. Given the numerous potential

factors influencing detection within and across species, including those heretofore not investi-

gated, it seems clear that studies attempting to document richness and diversity should simi-

larly maximize diversity in camera setups as much as possible. When faced with obvious bias

in detection across species due to roads and trails, some researchers have recommended that

camera locations include both road/trail features and more randomized locations, in unspeci-

fied proportions [15, 21, 22]. Yet for different species this will have unknown effects on detec-

tion and spatial and temporal bias, and there is no defensible method for selecting how to

spatially and proportionally distribute random and targeted locations. We therefore agree with

Cusack et al. [30] and Wearn et al. [16] in recommending random placements of camera traps

for these studies. Although this study confirms results of previous research showing random

locations will result in lower capture rates, we also show that bias in richness estimates can be

overcome with large samples. More importantly, this approach should result in sampling of

game trails, log features, and other microhabitats in proportion to their occurrence in the envi-

ronment. Studies in this context that set cameras on game trails, roads, or a mix of trails and

random locations will likely suffer from biased detection across species and make it challeng-

ing to interpret relative abundance derived from capture rates.

Those studies aiming to maximize capture of a single species (e.g. single-species occupancy

and spatially-explicit capture-recapture approaches) by targeting specific habitat features

should record characteristics associated with that feature (e.g. trail or road size), to model their

potential effect on detection probability, particularly when spatial patterns across a landscape

are of interest. The presence and characteristics of small-scale habitat features should be regu-

larly recorded along with standard measures such as camera height, make/model and settings.

Even these factors directly associated with cameras are often unreported [9, 40, 41], indicating

that there is widespread lack of recognition of the importance of accounting for factors influ-

encing detectability in study design.

Camera traps are a powerful tool for surveying mammal communities, and the more we

know about the factors and mechanisms that influence detectability, the more accurately we

can model abundance, diversity, and species interactions. The full continuum of factors influ-

encing detectability in mammal communities is still not well understood, and the more under-

standing that we have of these factors, the more fully we can utilize camera traps to answer

questions of scientific and conservation concern.
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Supporting information

S1 Table. The influence of a trail feature on detection probability and cumulative AICc

weights of habitat covariates. First column of data indicates whether camera placement on a

game trail influenced detection probability of the given species, and in what direction (+ or -).

The difference in AICc between the models with and without camera placement (ΔAICc) is

also shown. Remaining columns show cumulative AICc weights across a balanced set of either

16 or 32 possible models (depending on whether placement was included) for five tested

covariates on detection probability for 24 samples of trail pairings at 21 different grid locations

across two years. Models were compared while holding ψ constant, and using the best model

for θ(Four possible covariates: Low vegetative cover, Overall vegetative cover, Understory stem

density, Overstory stem density). The sign (+ or -) of the relationship between detection prob-

ability (p) and the covariate is indicated in parentheses after cumulative weight values. Trail

quality (coded “1–3”, with 1 highest quality) was tested as an interaction effect with camera

placement, and is only reported for feature cameras (i.e. on trail). For the Season covariate,

Summer was coded “1” with Fall coded “0”. For CamType, Reconyx cameras were coded “1”

and Spypoint “0”.

(DOCX)

S2 Table. The influence of a log feature on detection probability and cumulative AICc

weights of habitat covariates. First column of data indicates whether camera placement

with a log in view influenced detection probability of the given species, and in what direction

(+ or -). The difference in AICc between the models with and without camera placement

(ΔAICc) is also shown. Remaining columns show cumulative AICc weights across a balanced

set of either 16 or 32 possible models (depending on whether camera placement was impor-

tant) for five tested covariates on detection probability for 29 samples of log pairings at 23

different grid locations across two years. Models were compared while holding ψ constant,

and using the best model for θ(Four possible covariates: Low vegetative cover, Overall vegeta-

tive cover, Understory stem density, Overstory stem density). The sign (+ or -) of the relation-

ship between detection probability (p) and the covariate is indicated in parentheses after

cumulative weight values. Log diameter effect was tested as an interaction effect with camera

placement, and is only reported for feature cameras (i.e. log in view). For the Season covariate,

Summer is coded “1” with Fall coded “0”. For CamType, Reconyx camera was coded “1” and

Spypoint “0”.

(DOCX)
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