
RESEARCH ARTICLE

Epidemic spreading in multiplex networks

influenced by opinion exchanges on

vaccination

Lucila G. Alvarez-Zuzek1*, Cristian E. La Rocca1, José R. Iglesias1,2,3, Lidia A. Braunstein1
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Abstract

Through years, the use of vaccines has always been a controversial issue. People in a

society may have different opinions about how beneficial the vaccines are and as a conse-

quence some of those individuals decide to vaccinate or not themselves and their relatives.

This attitude in face of vaccines has clear consequences in the spread of diseases and their

transformation in epidemics. Motivated by this scenario, we study, in a simultaneous way,

the changes of opinions about vaccination together with the evolution of a disease. In our

model we consider a multiplex network consisting of two layers. One of the layers corre-

sponds to a social network where people share their opinions and influence others opinions.

The social model that rules the dynamic is the M-model, which takes into account two differ-

ent processes that occurs in a society: persuasion and compromise. This two processes are

related through a parameter r, r < 1 describes a moderate and committed society, for r > 1

the society tends to have extremist opinions, while r = 1 represents a neutral society. This

social network may be of real or virtual contacts. On the other hand, the second layer corre-

sponds to a network of physical contacts where the disease spreading is described by the

SIR-Model. In this model the individuals may be in one of the following four states: Suscepti-

ble (S), Infected(I), Recovered (R) or Vaccinated (V). A Susceptible individual can: i) get

vaccinated, if his opinion in the other layer is totally in favor of the vaccine, ii) get infected,

with probability β if he is in contact with an infected neighbor. Those I individuals recover

after a certain period tr = 6. Vaccinated individuals have an extremist positive opinion that

does not change. We consider that the vaccine has a certain effectiveness ω and as a con-

sequence vaccinated nodes can be infected with probability β(1 −ω) if they are in contact

with an infected neighbor. In this case, if the infection process is successful, the new

infected individual changes his opinion from extremist positive to totally against the vaccine.

We find that depending on the trend in the opinion of the society, which depends on r, differ-

ent behaviors in the spread of the epidemic occurs. An epidemic threshold was found, in

which below β* and aboveω* the diseases never becomes an epidemic, and it varies with

the opinion parameter r.
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Introduction

In 1796 Edward Jenner invented and tested a vaccine against the smallpox, an illness that had

a very high index of mortality in the 18TH century [1]. The idea of Jenner was so successful

that nowadays smallpox is practically eradicated and after this pioneering essay different vac-

cines were elaborated to prevent a long list of infectious diseases, from poliomyelitis to influ-

enza. However, vaccines may present some lacks of efficiency and also some collateral effects.

For example, in recent years some publications wrongly associated vaccination with autism [2,

3]. In spite of the overwhelming scientific evidence that such correlation is not actual, the belief

that the results of vaccination could be worse than the illness itself spread through social net-

works and generated groups and movements against vaccination. Sometimes these groups are

also related to some religion beliefs and/or rightists political tendencies or candidates. The

debate about the efficiency of vaccination and its possible risks is then a very actual debate and

a typical example of propagation of opinions, for and against vaccination. Thus, considering

that opinions and contagion spreads in different ways, we will perform this study on a Net-

work on Network. In recent years the study of complex Network of Networks (NoN) has been

a subject of great interest for the scientific community, due to the large number of real word

systems that can be mimic and study using these kind of topological structures [4–7]. A NoN

is a system formed by single networks interacting through external connections between them.

Many researches on NoN were focused in the study of cascade of failures [8–10], propagation

of epidemics [11–14], and opinion dynamics [15–19] due to the ubiquitous of these processes

that are present in the real scenarios. In particular, we are interested in processes that develop

on NoN in which nodes belonging to different networks represents the same entities. This

type of NoN are usually called multiplex networks. Epidemic spreading models have been par-

ticularly successful in understanding and predicting an epidemic outbreak and its period of

extinction. Also, some models have incorporated a factor of human behavior, by considering

the information and sources of information that individuals must handle, rational decisions

and behavioral changes, in order to reach a more comprehensive understanding about the epi-

demic spreading [20]. A commonly-used model for reproducing spreading diseases dynamics

in networks is the susceptible-infected-recovered (SIR) model [21–25]. This model has been

successfully used to reproduce non recurrent diseases such as the H5N5 flu or the Severe

Acute Respiratory Syndrome (SARS) [26]. Besides, it has been extensively studied under the

topology of multiplex networks [27–30]. The model groups the population of individuals to be

studied into three compartments according to their state: the susceptible (S), the infected (I),
and the recovered (R). When a susceptible node is in contact with an infected node it becomes

infected with an intrinsic probability β, which we called the virulence of the disease, and after a

period of time tr it recovers and becomes immune. Usually, the type of disease that this model

describes has a period of infection that lasts for six or seven days on average, flu, for example.

The study of these models in real and synthetic networks [31, 32] have allowed researchers

to develop different mitigation strategies for decreasing the impact of diseases on healthy pop-

ulations [33–36]. These studies have been used in government policies to design vaccination

campaigns. For instance, for seasonal diseases, such as influenza, vaccination campaigns are

scheduled to begin before the epidemic spreads and in general this strategy is very effective

[36]. Another strategy of prevention is the isolation for a certain period of time of individuals

with infectious symptoms to prevent the spreading [34, 35]. Note that these scenarios are par-

ticularly interesting for epidemics spreading and the question that motivates this work is how

the spread of the disease is influenced and co-evolves with the social context. Within the con-

text of social phenomena, many empirical investigations show the importance of social influ-

ence in the formation of people’s opinions. It is argued that two interacting partners may exert
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social pressure to change their attitudes approaching their opinions [37]. This particular social

mechanism is named compromise [15, 38–40]. A less explored mechanism of social interac-

tions is the persuasion [41–44]. Myers [41] observed in group discussion experiments that

when two individuals talk, they do not only state their opinions, but they also discuss about the

arguments that support their opinions. If they hold the same opinion, they could strength it by

persuading each other with new arguments or reasons, becoming more extreme in their

believes. In this context, La Rocca et. al [45] proposed and studied a model that explains the

phenomena of polarization in a population of individuals that evolve under pairwise interac-

tions, by implementing those two main social mechanisms of opinion’s formation, i.e., com-

promise and persuasion [44, 46, 47]. This model, denoted as the M-model, has 2M different

states describing the spectrum of possible opinion orientations on a given issue, from totally

against (state x = −M) to totally in favor (x = M), with some moderate opinions between these

extreme values.

The study of opinion dynamics on NoN is relatively new [6]. Alvarez-Zuzek et al. [48]

investigated the interaction between two social dynamics, one for opinion formation and the

other for decision making, on two interconnected networks. The dynamics for opinion forma-

tion corresponds to the M-model proposed in [45], and the decision making dynamics is akin

to the Abrams-Strogatz (AS) model [49, 50] originally introduced to study language competi-

tion, where agents can choose between only two possible options (x = ±1). In this model each

agent may change its decision by a mechanism of social pressure, in which the probability of

switching his present choice increases non-linearly with the number of neighbors that have the

opposite opinion. They concluded that under certain parameters of the system, one model pre-

vails over the other and dominates the behavior of the system.

The goal of the present contribution is to investigate the effect of the dynamic of opinion

formation on vaccination on the evolution of a given disease, for instance the flu. Thus, we will

study the propagation of a disease in a population where all the individuals are continuously

debating about getting vaccinated, considering that a susceptible individual is vaccinated if he

is completely convinced about the benefits of the vaccine. However if after being vaccinated he

catch the disease he becomes completely against the vaccination. For this purpose, and because

the two processes occur on the same group of individuals, we studied the SIR model with vac-

cination and the M-model in a multiplex system composed by two networks. Both dynamics

take place in different layers and co-evolve. Susceptible individuals become vaccinated if they

acquire the state M in the other network, while the vaccinated individuals acquire the state −M
if they get infected.

The paper is organized as follows: in the next section we expose the model presented in its

extended form. In Section 3, we present the simulation results and Section 4 is devoted to dis-

cussion and conclusions.

The model

We are interested in studying how the propagation of diseases is influenced by the opinion for-

mation of individuals in favor or against of getting vaccinated. The opinions will be formed

and/or modified through the interaction and exchange of ideas with other individuals, which

have their own opinion and co-evolves with the health condition of those individuals. In this

way, the group of individuals develop a dynamic of formation of opinions in which individuals

interact expressing opinions about the importance or not of being vaccinated. When an indi-

vidual has a fully positive opinion about the vaccine, he acts accordingly and gets vaccinated.

In our model we do not consider parental decisions on children, so the opinion on vaccination

motivates just individuals, not family groups. While the process of spreading a disease
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generally requires face-to-face physical contact, the process of formation of opinions is more

flexible because opinions can be transmitted via other media: phone calls, online social net-

works, video conference and instant messaging services, etc.

To model the spread of the disease in layer A we use a variation of the SIR model in which

a new stage of healthy vaccinated individual (V) is incorporated. Let’s recall that vaccinated

individuals share opinion M = +2. i) An individual S in contact with an infected individual I
becomes infected with a probability β (the infectivity of the disease). ii) However, as the vac-

cine does not guarantee 100% protection a vaccinated individual (V) can become infected

with a probability (1 − ω)β, where ω is the efficiency of the vaccine. iii) An infected individual

recovers after a period of time tr, and we assume he acquires immunity. If the vaccinated agent

gets infected, he changes to the opposite opinion becoming an extremist against the vaccine

(M = −2). This may be an extreme behavior and probably people are not so extremists, but our

objective here is to describe the frustration of a vaccinated agent after acquiring the infection.

Notice that, if we let this frustrated agent go to an intermediate opinion, the influence on the

epidemics evolution is almost irrelevant.

For the process of opinion formation in network B we use the M model [45]. This model

explains the phenomena of polarization in a population of interacting individuals and two

main processes are involved: compromise and persuasion. We consider M = 2, being M (totally

in favor) and −M (totally against) the extremist cases and the intermediate cases correspond to

the states of moderate opinion. In our model we considered that only one individual, the i–
agent, can change his opinion, assuming that the other one, the j–agent has enough arguments

to convince or change the opinion state of the first individual. Then, the rules of the opinion

model are:

A node i is chosen and it can change its opinion state after interaction with a neighbor j. If

their respectively opinion states are xi and xj, we proceed as follows:

• If both individuals have the same opinion orientation (i.e. xixj > 0), then with probability p:

xi = ±1! xi = ±2.

In case that i is already in an extremist state (xi ± 2) it remains extremist.

• If both individuals have different opinion orientations (i.e. xi xj < 0), then with probability q

xi = ±1! xi =�1,

xi = ±2! xi = ±1.

However, one assumes that if node i is a vaccinated agent, he keeps his opinion (and his vac-

cinated state) even when interacting with neighbor j having an opposite sign opinion.

If two nodes have the same opinion orientation, one of them becomes more extremist with

probability p, but if they have different opinion orientations one of the individuals becomes

more moderate with probability q. For simplicity, we consider p + q = 1 and define the ratio

r = p/q. In our model an individual S becomes V if in layer B he reaches opinion 2. On the

other hand, if an individual V becomes I with probability β(1 − ω), then in layer B he changes

his opinion to −2. Notice that even when the recovered individuals becomes inactive in the

layer A, they are still active in the layer B.

In Fig 1 we show a scheme of the rules of the dynamics of the whole system. An individual

with opinion state xi whose neighbor with state xj has an opinion with different orientation

approaches to the opinion of the neighbor with probability q (Fig 1a)), whereas if both individ-

uals have the same orientation of opinion i-agent reinforces his opinion with probability p
(Fig 1b)). Concerning the contagion (Fig 1c)), an individual S (green) becomes I (red) with a

probability β and after a time tr goes to the recovered state R (blue). An agent S is vaccinated

V (gray) when acquiring the opinion state 2, and in contact with an infected individual can get
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infected with a probability (1 − ω)β, where ω (0� ω� 1) is the efficiency of the vaccine. If the

V agent is infected he loses its confidence in the vaccine and thereby changes his state of opin-

ion from 2 to −2.

Simulation results

We study the model described in the previous section by means of extensive Monte Carlo sim-

ulations with synchronous update using a two-layer network of the same size N = 105. Nodes

in each layer represent the same agent, thus we connect through an external link a pair of

nodes, each from different layer, allowing only one interlink by node. We construct each layer

using the Molloy-Reed algorithm [51] considering the Erdős-Rényi (ER) [52] degree distribu-

tion with hki = 4. The propagation of the disease takes place in layer A and we fix the recovery

time in tr = 6, which is in days the characteristic period of infection for a flu. Layer B is the

social network, where the M-model rules the dynamic, with M = 2. As initial conditions we

use for the layer B an uniform distribution for the densities of opinion, i.e., the same initial

probability P+2,+1,−1,−2 = 1/4. In layer A we have initially only one agent infected, which is con-

sidered the patient zero and whose opinion is chosen at random between the four possible

opinion states, a fraction 1/4 of the agents are vaccinated ones, as a consequence of their opin-

ion state +2, and the rest are susceptible. We chose one source node of infection because this is

the standard approach used by epidemiologists where most outbreaks starts with one person.

At each time steps, we first let evolve the epidemic dynamic and then the opinion process. In

layer A, we allow all the infected individuals to infect each one of their susceptible neighbors

with probability β and the vaccinated neighbors with a probability (1 − ω)β. Then, in the opin-

ion layer, we iterate over all the individuals and give each one of them the chance to interact

with only one of its neighbors. This neighbor is chosen among those who can change the indi-

vidual opinion. In case there is no neighbor that can change the opinion, nothing happen.

Finally, we update all the opinions and epidemic states at the next time step. Notice that those

Fig 1. Simplified scheme of opinions and epidemics dynamics. Left figures illustrate the opinion dynamics, when two nodes have

opinion states with different sign, one of them approaches its state to the opinion of the other with a probability q (a), whereas if the sign is the

same the node reinforces its opinion with probability p (b). Right figure illustrate the contagion dynamics, a susceptible individual S (green) is

infected (red) with probability β and after a time tr he recovers (blue). A S becomes vaccinated V (gray) when he acquires a state of opinion

2, but then he can become I with a probability (1 −ω)β, changing his opinion to −2.

https://doi.org/10.1371/journal.pone.0186492.g001
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infected individuals who had tr time step to spread the disease recover and those susceptible

individuals whose opinion change to +2 change into the vaccinated state. All numerical results

correspond to an average over 105 independent realizations.

We concentrate in the steady state of the system which is reached when the number of

infected nodes becomes zero, regardless of whether consensus was reached in the opinion net-

work. Then, the magnitudes to be studied are the fraction of recovery nodes (R), the fraction

of vaccinated nodes (V), the duration time of the epidemic (τ) and the magnetization of the

opinions (Mag). Notice that at any time S + I + R + V = 1 and Mag = σ+ − σ−, where σ± is the

fraction of nodes with positive (negative) opinion state. We only take into account those reali-

zations in which an epidemic occurs, i.e., the total number of recovered individuals in the final

state is greater than a cutoff 200 for a system size of N = 105 [53].

Now, we will present in further details R, V, τ and Mag as a function of the efficiency of the

vaccine ω, for different values of the parameters r and β. In Fig 2 we present the case r = 0.1,

that mimics a scenario in which the population’s opinion settles in a centralized state where

the compromise process dominates.

In Fig 2(a) we show the total fraction of recovery nodes as a function of ω for different val-

ues of β. We can observe that for certain values of β, as ω increases the fraction R decreases and

above a value ω�, which is a threshold for the efficiency of the vaccine, the system does not

present an epidemic phase and corresponds to the inflection point of the curve. This is because

as the vaccine becomes more effective, more people remain vaccinated and the propagation of

the disease slows down. An efficiency above the threshold ω> ω� is enough to ensure that an

epidemic will not develop, such as the case of low values of β. For example for β = 0.1 we need

an efficiency of at least 55% in order to avoid the epidemic. On the other hand, above a certain

value of β� the propagation of the disease is enhanced and it is impossible to prevent an epi-

demic. Even for ω = 1 there will be a macroscopic number of recovery individuals in the steady

state. This is the case for the values β = 0.4, 0.6 and 0.8. Fig 2(b) and 2(c) shows the fraction of

vaccinated nodes and the magnetization of the opinions as a function of ω. For all the values of

β we can see that both magnitudes increases with ω. This is consistent with the fact that as the

vaccine becomes more efficient, more people will agree to get vaccinated.

For r = 0.1 the compromise is higher than the persuasion and as a consequence agents tend

to have moderate opinions (in favor or against). However, when an agent is vaccinated, his

opinion (2) remains fixed producing an attractive effect towards positive opinion and he will

only change his opinion if he gets infected. As can see from Fig 2(c), for low values of efficiency

Mag decreases as β increases, for example, for β = 0.8 agents opinion are in a polarized state

(Mag = 0). This behavior is due to the fact that as β increases more vaccinated agents gets

infected, so their opinion change from 2 to −2, which means that more people become extrem-

ist against the vaccine. On the other hand, for an efficiency close to one, the opinion of the sys-

tem is in average almost completely in favor of the vaccine, reaching a consensus where all the

agents have the same opinion. Because the efficiency of the vaccine is high the vaccinated

agents stay pinned in the opinion +2, pushing all the agents to adopt their opinion. Notice that

in this scenario the convergence time of both dynamics are similar, i.e, the time that it takes to

the disease to propagates all over the population allows the people to reach consensus in favor

of the vaccine.

In Fig 2(d) we can see the duration time of the epidemic as a function of ω. As we can

observe as ω increases more nodes are vaccinated and as a consequence the duration of the dis-

ease increases. Around the threshold ω� the time of the epidemic exhibits a peak and then

decreases rapidly. This is consistent with the fact that as ω increases the number of R decreases,

which means that it is hard to spread the disease and therefore τ increases. The time of dura-

tion of the epidemic reaches a maximum at ω� and then decreases because the spreading of the

Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination
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disease is diminish (there is no epidemic). Note that for ω> ω� the majority of the agents in

the system are vaccinated. We added an inset in Fig 2, (as well as in the following ones), com-

paring the duration of the epidemics with the derivatives of the number of recovered (R) and

vaccinated (V) agents as a function of the efficiency. It is possible to see that there is an inflec-

tion point (a maximum in the derivatives) when the duration of the epidemics is maximum,

meaning that the number of recovered and vaccinated agents increase at a lower rate when the

efficacy of the vaccine is high than when the efficacy is low, going trough a maximum rate

when the duration of the epidemics is maximum.

In Fig 3 we show the case of r = 1, which mimics a neutral society where the probability of

compromise and persuasion are equal (p = q = 0.5). Fig 3(a) shows R as a function ω. We can

observe that an efficiency threshold exists (for low values of β) below which the diseases never

becomes an epidemic. While for higher values of β there is always an epidemic phase. In Fig 3

(c) we show Mag as a function of ω. From the plot we can see that for low values of ω the mag-

netization decreases as β increases, while for an efficiency close to one the system reaches con-

sensus in favor of the vaccine. Besides, for low values of ω and high values of β, Mag becomes

negative because of the persuasive effect, which is not negligible. Agents with negative opinion

Fig 2. (a) Fraction of recovery individuals R, (b) Fraction of vaccinated individuals V, (c) Magnetization of the opinions Mag and (d)

The duration time of the epidemic τ, as a function of the efficiency of the vaccineω. Inset: τ (solid line), the derivative of R (dashed

line) and the derivative of V (dot dashed line) as a function of the efficiencyω and β = 0.1. From the inset it is clear that the maximum duration

of the epidemics corresponds to inflection points in the number of recovered and vaccinated agents. In all cases we set tr = 6 and r = 0.1 for β
= 0.1 (�), 0.2 (□), 0.4 (�), 0.6 (4) and 0.8 (5). All numerical results correspond to an average over 105 independent realizations.

https://doi.org/10.1371/journal.pone.0186492.g002
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are less likely to change their opinion. Also, since the vaccine is not much effective, vaccinated

agents gets infected, thus their opinions change to negative and this contributes to a negative

magnetization. On the other hand, we can see that for large values of ω the convergence time

of both dynamics are similar, the Mag in the opinion dynamic is close to one, thus is close to

the consensus state. The opposite occurs for the other values of ω, where the model of opinions

is far from consensus.

Now we will show the case of r = 10, which represents an extremist society where persua-

sion dominates the process of opinion formation. In this case, agents with extremist opinion

tend to convince agents with moderate opinion to become extremists. From Fig 4(a) and 4(d)

we can see that the behavior of R and the time duration of the epidemic τ are qualitative the

same that for the two previous cases studied of r with different β�. Agents become extremist in

their opinions and those who are against the vaccine have a small probability to be vaccinated.

Then the disease spreads is promoted among the non vaccinated agents, which are an impor-

tant fraction of the population. In Fig 4(b) and 4(c) we can observe that V and Mag increase as

ω increases, and for the cases below β� (as β = 0.1) both magnitudes increase with ω until

reaching a peak around ω� after which these magnitudes decreases. This is due to the fact that

Fig 3. (a) Fraction of recovery individuals R, (b) Fraction of vaccinated individuals V, (c) Magnetization Mag and (d) The duration

time of the epidemic τ, as a function of the efficiency of the vaccineω. Inset: τ (solid line), the derivative of R (dashed line) and the

derivative of V (dot dashed line) as a function of the efficiencyω and β = 0.1. In all cases we set tr = 6 and r = 1 for the same values of β and

symbols used in Fig 2. All numerical results correspond to an average over 105 independent realizations.

https://doi.org/10.1371/journal.pone.0186492.g003
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above the point ω�, the time of the epidemic decreases as ω increases, and there is not enough

time to convince the negative opinion agents to vaccinate.

As the persuasion is higher than compromise (p = 0.91 and q = 0.09), agents tend to remain

with extremist opinions, against or in favor of the vaccine. The attractor effect that generate

the vaccinated agents in the opinion state is now hidden by the persuasive effect. The persua-

sive effect moves agents to the extreme opinions. When a vaccinated agent is infected, its

opinion becomes a negative extremist and in this extremist society he will rarely change his

opinion. For this reason, for all values of β and low values of ω the Mag is always negative. On

the other hand, for high values of the efficiency the average opinion of the system can be in

favor or against depending of the virulence, but in general it is polarized and as a consequence,

Mag closed to zero. Even for the case in which ω = 1 there still some agents that are against the

vaccine. This is due to the fact that almost all agents that began with negative opinion remains

in that state. Notice that the epidemic dynamics is faster than the dynamics of opinions -the

convergence time is higher in layer B- making that the population never reach a consensus of

opinions.

We mentioned before that there is a threshold β� above which the system always stay in an

epidemic regime, independently of the efficiency of the vaccine, ω. In Fig 5 we show β� as a

Fig 4. (a) Fraction of recovery individuals R, (b) Fraction of vaccinated individuals V, (c) Magnetization Mag and (d) The duration

time of the epidemic τ, as a function of the efficiency of the vaccineω. Inset: τ (solid line), the derivative of R (dashed line) and the

derivative of V (dot dashed line) as a function of the efficiencyω and β = 0.1. In all cases we set tr = 6 and r = 10 for the same values of β and

symbols used in Fig 2. All numerical results correspond to an average over 105 independent realizations.

https://doi.org/10.1371/journal.pone.0186492.g004
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function of r for tr = 6 and ω = 1. We set ω = 1, so that the vaccine is 100% effective, in order to

know how strong the virulence of the disease has to be to win the best vaccination scenario. In

addition, we also study this scenario for different values of initial vaccinated nodes -1%, 5%

and 25%- to see how the initial conditions impacts on the evolution of both dynamics. As

we can see from Fig 5, for a certain value of r, β� decreases as the initial vaccinated nodes

decreases. This is consistent with the fact that having fewer initial vaccinated nodes causes the

disease to spread more easily, so that less virulent diseases could become epidemic. As we can

observe that the maximum values are around r� 1, which means that a neutral society is opti-

mal to prevent an epidemic. In a society with r<< 1, compromise dominates the process of

opinion formation and the agents tend to have a moderate opinion. This prevents those mod-

erate agents from becoming extremists in favor of vaccination. The disease spreads through

the non vaccinated agents very easily, even when the virulence is small. On the other hand, in a

society with r>> 1, persuasion dominates the process of opinion formation and the agents

tend to adopt extremists opinion. All extremists agents in favor of vaccination will be vacci-

nated, but those agents with a negative opinion (against the vaccine) have a small probability

to be vaccinated because they will hardly change their opinion. In this case, the disease spreads

very easily over these agents, which are an important fraction of the population. In a neutral

society it is more likely for an agent with a positive moderate opinion to become an extremist

in favor of the vaccine than in the case r<< 1, and it is more likely for an agent against the

vaccine to change his opinion in favor than in the case r>> 1. For this reason, β� is higher

Fig 5. Threshold epidemic value β* as a function of r, with tr = 6,ω = 1 and as initial conditions 1%, 10% and 25% of vaccinated

nodes, from bottom to top. The maximum value is closed to r� 1, which is a neutral society.

https://doi.org/10.1371/journal.pone.0186492.g005
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than in the other cases, because it is easier to convince people to get vaccinated, making more

difficult for the disease to expand all over population.

Discussion

In this paper, we studied the propagation of a disease in a population where all the individuals

are continuously debating about getting vaccinated, considering that a susceptible individual

is vaccinated if he is completely convinced about the benefits of the vaccine. For this purpose

we used two-layer network where in one layer we use the SIR-model with vaccination for the

propagation of a disease, and in the other layer we used the M-model (with M = 2), for the

opinion formation process, where compromise and persuasion are the two processes involved

and are controlled by the parameter r. We found that, in all the cases, the number of recovered

agents decreases as ω increases, and this is due to the fact that as the vaccine becomes more

effective, more people remain vaccinated and the propagation of the disease slows down. We

found an epidemic threshold ω� above which we ensure that an epidemic will not develop.

Furthermore, we found that above a certain value of β� the propagation of the disease is

enhanced and it is impossible to prevent it from becoming an epidemic. Even for ω = 1 there

will be a final macroscopic number of recovery individuals in the steady state. We computed

this threshold as a function of r, and we found that a neutral society is the best scenario to pre-

vent an epidemic (r� 1). When compromise dominates the process of opinion formation

(r<< 1), the agents tend to have a moderate opinion, making difficult that they become

extremist in favor of vaccination. The disease spreads through the non vaccinated agents very

easily, even when the virulence is small. On the other hand, when persuasion dominates the

process of opinion formation (r>> 1) the agents tend to have an extremist opinion. All the

extremist agents in favor of the vaccine will be vaccinated, but those agents with a negative

opinion, which are an important fraction of the population, will be easily infected. In a neutral

society it is more likely to convince those agents with a negative opinion in favor on vaccina-

tion, to become extremist in favor. With compromise and persuasion in the same proportion

it is easier to convince people to get vaccinated, blocking the propagation of the disease and

preventing it to expand all over the population. We can conclude that the influence of the

opinion on the vaccination determines, in certain cases, whether or not the disease becomes in

an epidemic.

Acknowledgments

JRI acknowledges financial support of Brazilian agency CNPq and Argentinian agency CONI-

CET. He also thanks the kind hospitality of the IFIMAR (Instituto de Fı́sica de Mar del Plata)

during 2015-2016. LGAZ, CEL and LAB wish to thank to UNMdP, FONCyT and CONICET

(PICT 0429/2013, PICT 1407/2014 and PIP 00443/2014) for finantial support.

Author Contributions

Conceptualization: Lucila G. Alvarez-Zuzek, Cristian E. La Rocca, José R. Iglesias, Lidia A.
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Braunstein.

Visualization: Lucila G. Alvarez-Zuzek.

Writing – original draft: Lucila G. Alvarez-Zuzek, Cristian E. La Rocca, José R. Iglesias, Lidia
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