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Abstract

Environmental conditions in coastal salt marsh habitats have led to the development of spe-

cialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae

and 15 species of Chenopodiaceae from China’s coastal salt marsh area and inland area.

Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poa-

ceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of

Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found

that by increasing the number of samples collected from the coastal salt marsh area on the

basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris,

Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased,

with a principal coordinate plot clearly showing increased distribution points. The results of a

Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica,

and Setaria viridis, the distribution of intraspecific genetic distances was significantly differ-

ent when samples from the coastal salt marsh area were included (P < 0.01). These results

suggest that increasing the sample size in specialist habitats can improve measurements of

intraspecific genetic diversity, and will have a positive effect on the application of the DNA

barcodes in widely distributed species. The results of random sampling showed that when

sample size reached 11 for Chloris virgata, Chenopodium glaucum, and Dysphania ambro-

sioides, 13 for Setaria viridis, and 15 for Eleusine indica, Imperata cylindrica and Chenopo-

dium album, average intraspecific distance tended to reach stability. These results indicate

that the sample size for DNA barcode of globally distributed species should be increased to

11–15.
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Introduction

Since 2003, the concept of DNA barcoding has attracted the attention of botanical scientists

from all over the world [1; 2; 3; 4; 5; 6; 7]. The Plant Working Group of the Consortium for the

Barcode of Life recommended rbcL and matK as the core barcodes for plants [8]. Later, ITS
and trnH-psbA were also recommended as barcodes for plants [9; 10]. The use of these four

loci as plant DNA barcodes has become widely accepted. Some studies have concentrated on

evaluating identification capability for specific groups using these four barcode loci [11; 12; 13;

14; 15; 16; 17; 18], and others have focused on the discovery of new markers suitable for given

taxa [6; 19; 20]. However, most studies leave out consideration of ecological environmental

influences on plant genetic differentiation. Desert, lime rock, coastal salt marsh, polar circle,

alpine, and other unique habitats significantly affect the morphology and heredity of their

native plant species. Meyer and Paulay [21] have analyzed the effects of sampling scale on

intraspecific genetic distance. By comparing intraspecific genetic distances in different cases

when selecting 2, 5 and 10 individual samples, they found that the average coalescent depth

increased as sample size increased (from 0.0049 to 0.0057 and then to 0.0070). They recom-

mend a sample size of 5–10 individuals for DNA barcoding [21]. Other investigators have

adopted this recommendation due to research costs [6; 12; 18; 19; 22]. However, the average

coalescent depth reflects the maximum variation within the species, which has a large degree

of randomness. Expanding a sampling range and considering individuals from a special habi-

tat is bound to result in an increased number of samples, which conflict with the recom-

mended strategy. As a result, in order to optimize the accuracy of DNA barcode evaluation,

the appropriate number of samples remains to be explored.

Coastal halo-tolerant plants have specialized strategies [23], and their morphological identifi-

cation can be challenging [24; 25]. This reflects in a quite number of widely distributed species.

However, they are often neglected in DNA barcode researches. In fact, present DNA barcode

databases such as the Marine Barcode of Life do not include data from coastal halo-tolerant

plants. For such species, it is likely that when the samples size is increased over variable geo-

graphic territory, intraspecific genetic distance will expand along with sampling range [26, 27,

28]. Studies have also shown that plants have different morphological and molecular diversity

in arid habitats [29; 30]. However, studies have not been conducted on whether or not the DNA

barcode sampling of widely distributed plant species should specifically consider special eco-

logical environments. Of the coastal halo-tolerant plants, Poaceae and Chenopodiaceae are the

two largest families [31]. Poaceae are widely distributed globally [32], and are distributed in var-

ious ecological environments. Because of the difficulty in species identification, the importance

of DNA barcode research in this family is self-evident. Some reports have included the DNA

barcode of Poaceae [33; 34; 35; 36; 37], but none of these studies has specifically involved coastal

halo-tolerant species. Chenopodiaceae include about 1700 species distributed in tropical and

subtropical regions and well-adapted to arid environments [38]. Many species of this family live

in inland saline and coastal salt marsh area [38]. While there are many studies on the phylogeny

of Chenopodiaceae [39; 40; 41; 42; 43; 44], there are only 12 samples of 12 species of Chenopo-

diaceae reported by Bafeel for DNA barcode research [45]. The two families have a large num-

ber of widely distributed species that can grow coastally and inland, which provides an excellent

model for a coastal/inland halo-tolerant plant DNA barcode comparative study.

Materials and methods

Samples

The silica gel samples together with vouchers were collected in non-protected areas for

the access of which no permits were needed (no specific permissions were required for

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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these locations/activities and the field studies did not involve endangered or protected

species.

Samples from 68 species distributed in China’s coastal salt marsh area (223 Poaceae and

144 Chenopodiaceae) and 32 samples from inland China (19 Poaceae and 13 Chenopodiaceae)

were collected for barcode sequencing. The sequence data of 799 further samples from the

same species were downloaded from GenBank. Downloaded sequences met the following cri-

teria: 1. species identification was accurate and reliable; 2. sample collection location was non-

coastal salt marsh, or without collection site records but from a widely distributed species; and

3. sequence information is complete and reliable according to the information in the Genbank

and sequences blast. Samples from the inland salt marshes and from GenBank that met the

requirements were grouped as inland halo-tolerant plant samples. Wherever possible, each

species included more than five samples from coastal halo-tolerant populations more than 50

kilometers apart, though several species had fewer than 5 samples. Sequences of matK, rbcL,

ITS and trnH-psbA were analyzed. For Poaceae, sequences of rps16 and ndhF that are widely

sequenced in this family [46; 47; 48; 49; 50] were added as candidate loci, with Pharus latifolius
L. and Joinvillea plicata (Hook. f.) Newell & B. C. Stone as outgroups. For Chenopodiaceae,

sequences of trnL-F and atpB-rbcL were added as candidate loci [41; 42; 51], with Gypsophila
oldhamiana Miq. and Silene gallica L. as outgroups. All specimens were stored in the herbar-

ium of East China Normal University (HSNU), with GenBank accession numbers given in

Supplementary S1 and S2 Tables.

Analysis

DNA extraction, PCR amplification, and sequencing. DNA was extracted from 10 mg

dry weight of each sample using CTAB [52]. PCR amplification was carried out using a

TaKaRa TP600 (TaKaRa Bio, Inc., Otsu, Shiga, Japan). Primers and PCR amplification systems

are given in S3 Table. PCR products were sequenced using Sanger by Huagene, Shanghai,

China.

Sequence alignment and phylogenetic analysis. The sequences returned by the sequenc-

ing company were spliced and edited using Seqman (DNASTAR package, Madison, WI, USA)

[53], followed by a comparison with the sequences downloaded from GenBank using the

MUSCLE function in MEGA5.0 [54] to obtain a sequence matrix for “best close match” and

phylogenetic analysis. A “best close match” operation was performed in TAXONDNA (identi-

fying the query when the closest sequence is within a distance threshold) with a threshold of

3% calculated by the pairwise summary function [55]. Phylogenetic analysis was performed

using Bayesian methods, model GTR+I+R for all the six loci of Poaceae and two loci (ITS,

trnH-psbA) of Chenopodiaceae, GTR+G for matK, trnL-F and atpB-rbcL of Chenopodiaceae,

HKY+I for rbcL of Chenopodiaceae were selected under PAUP 4.0b10 and MrModelTest [56].

The tree was sampled every 1000 generations until the average deviation of split frequencies

fell below 0.01 using MrBayes3.1.2 [57]. The species discrimination rate was calculated manu-

ally. When a branch achieved a supporting rate of over 95% in the Bayesian tree, it was defined

as trustworthy. Comprehensive evaluation of the optimal barcodes was carried out for each of

the two families.

Genetic diversity analysis. Haplotype analysis of the ten widespread species (1. Arundi-
nella hirta (Thunb.) Tanaka, 2. Chloris virgata Sw., 3. Dactyloctenium aegyptium (L.) Beauv., 4.

Digitaria ciliaris (Retz.) Koel., 5. Eleusine indica (L.) Gaertn., 6. Imperata cylindrica (L.) Beauv.,

7. Setaria viridis (L.) Beauv., 8. Chenopodium album L., 9. C. glaucum L., 10. Dysphania ambro-
sioides (L.) Mosyakin & Clemants) was carried out by comparing the sequence matrices of the

inland, coastal, and total samples using the MEGA 5.0 to obtain a K2P genetic distance matrix.

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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A principal coordinate analysis was performed under GenALEx 6.5 [58]. Haplotype analysis

was performed in DNAsp5.10.01 [59]. To obtain haplotype number, Autosome or Chloroplast

model was selected according to the location of markers. M-W tests were performed in SPSS

20 [60] using K2P genetic distance matrices of inland samples and of whole samples. Boxplots

for inland, coastal, and whole samples were plotted in SPSS 20.

Analysis of the relationship between sample size and the representativeness of DNA

barcodes. Seven species (2. Chloris virgata, 5. Eleusine indica, 6. Imperata cylindrica, 7. Setaria
viridis, 8. Chenopodium album, 9. C. glaucum, 10. Dysphania ambrosioides) with 17 samples or

more of the ten widely distributed species were included in an analysis of the relationship

between sample size and barcode representativeness. We hypothesized that the obtained sam-

ples of these species adequately reflected all variants of the associated species. Of these, the

sample size of Chenopodium album was too large and was simplified based on the proportion

of samples per haplotype, leaving 23 samples. Theta (θ) values (average K2P distances between

different individuals in each species) of seven widely distributed species were calculated using

APE package [61] using random sampling. Sample sizes from 2 to the number collected were

tested for each species, each sample size was randomly sampled 20 times, and the average val-

ues of the obtained θ matrix were used to produce a scatter plot. A trend line was plotted by

taking the maximum average value of θ over 20 samplings.

Genetic distance matrices were obtained for the seven widely distributed species. The confi-

dence interval of genetic distance was calculated in SPSS 20 [60], with confidence level set at

99.99%. The confidence interval was obtained and the graph was merged with the scatter plot

and trend line.

Results

Species differentiation rate of DNA barcodes for Chenopodiaceae and

Poaceae

The Poaceae yielded 1233 novel sequences from 53 species (193 ITS, 215 matK, 199 rbcL, 210

trnH-psbA, 226 rps16, 190 ndhF), and the Chenopodiaceae yielded 910 novel sequences from

15 species (150 ITS, 152 matK, 147 rbcL, 152 trnH-psbA, 156 trnL-F, 153 atpB-rbcL). A total of

623 sequences from 53 species of Poaceae (337 ITS, 81 rbcL, 83 matK, 53 trnH-psbA, 33 rps16,

36 ndhF) and 176 sequences from 15 species of Chenopodiaceae (66 ITS, 23 rbcL, 38 matK, 27

trnH-psbA, 14 trnL-F, 8 atpB-rbcL) were selected from GenBank.

Sequence similarity analysis for Poaceae showed that the best discrimination occurs in ITS
and rps16, with best close matches of 84.64% and 80.45%, respectively. Phylogenetic analysis

showed that ITS (S1 Fig) and matK showed a high discrimination with the resolution of

71.11% and 67.92% (Table 1). Sequence similarity results for Chenopodiaceae indicated that

matK and trnH-psbA showed the best results, with best close matches of 93.6% and 93.33%.

Bayesian analysis indicated that the identification rates of trnL-F and matK (S2 Fig) were rela-

tively high, with the resolution of 86.67% and 80.00%, respectively (Table 1).

Haplotypes obtained according to the optimal barcode of the Poaceae

and Chenopodiaceae

Sequence comparison were performed on each of the 10 species. The haplotype was counted

in DNAsp using the optimal barcode, ITS for Poaceae and matK for Chenopodiaceae. As

shown in Table 2, the number of haplotypes of species 1, 4, 5, 6, 7 and 9 increased when sam-

ples from coastal salt marshes were added.

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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Effect of adding salt marsh samples on the genetic diversity of widely

distributed species

For species 8 (Chenopodium album), the principle component of the first dimension contrib-

utes a hundred percent due to the relatively small number of variable sites, so a two-dimen-

sional PCA map cannot be made. The genetic diversity of the remaining nine widely

distributed species was visualized using PCA (Fig 1). When the samples of coastal salt marsh

were added, the species 1, 4, 5, 6, 7, and 9 showed obvious increased distribution points.

Results were the same in the variation trend of the number of haplotypes.

Intraspecific genetic distance distribution patterns in different sampling

areas

A Mann-Whitney test was performed and boxplots were constructed using the genetic dis-

tance matrices of the six widely distributed species, and showed an increase in the number of

the haplotypes after adding the samples from the coastal salt marsh (Fig 2). These results

Table 2. Haplotype number of 10 species sampled in inland habitat, coastal salt marshes, and the

combined area.

Species Inland Coastal salt

marshes

The combined area

a b a b a b

1. Arundinella hirta 7 2 4 2 11 3

2. Chloris virgata 18 4 5 1 23 4

3. Dactyloctenium aegyptium 4 3 8 1 12 3

4. Digitaria ciliaris 5 3 4 3 9 5

5. Eleusine indica 14 4 9 4 23 5

6. Imperata cylindrica 13 7 11 6 24 9

7. Setaria viridis 11 3 8 5 19 7

8. Chenopodium album 25 3 34 1 58 3

9. Chenopodium glaucum 6 4 13 5 17 7

10. Dysphania ambrosioides 8 4 10 1 18 4

Note: a, Sample size; b, Haplotype (number).

https://doi.org/10.1371/journal.pone.0185311.t002

Table 1. Species discrimination on the basis of best close match and phylogenetic analysis.

Loci Best close match (%) Phylogenetic analysis(%)

Poaceae Chenopodiaceae Poaceae Chenopodiaceae

a b c d a b c d

ITS 84.64 11.23 2.62 1.49 82.53 14.81 0.52 2.11 71.11 73.33

matK 77.25 20.73 2.0 0.0 93.6 5.81 0.58 0.0 67.92 80.00

rbcL 70.56 25.53 3.19 0.7 57.64 42.35 0.0 0.0 62.00 66.67

trnH-psbA 66.91 30.48 2.6 0.0 93.33 2.22 2.77 1.66 42.59 73.33

ndhF 73.47 19.56 6.08 0.86 63.04

rps16 80.45 17.24 2.29 0.0 56.86

trnL-F 87.05 12.35 0.58 0.0 86.67

atpB-rbcL 72.22 26.54 1.23 0.0 73.33

Note: Grey area indicates specific loci for Poaceae; pink indicates loci for Chenopodiaceae. a, Correct; b, Ambiguous; c, Incorrect; d, NO ID.

https://doi.org/10.1371/journal.pone.0185311.t001

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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indicate that the inclusion of coastal samples in the sample pool yielded significant differences

in the intraspecific genetic distances of species 4–7 compared to inland samples only

(P< 0.01). The boxplot of Imperata is more contracted because the variation of one sample

was much bigger than that observed in all the others.

Relationship between sample size and DNA barcoding data

representativeness

R language programming was used to calculate the effect of the sample size on the representa-

tiveness of DNA barcoding data (Fig 3). The distribution of θ for each species gradually con-

verges to θ of all the samples as the sample size increases. When eleven samples were taken

from species 2, 9 and 10, thirteen samples were taken from species 7, and fifteen samples were

taken from species 5, 6 and 8, θ was less than the upper limit confidence interval of all samples.

These results indicate that in the DNA barcode research for global distribution species, sample

size should be expanded to 11–15.

Discussion and conclusions

ITS is the best DNA barcode for halo-tolerant Poaceae species in

coastal areas

In the process of evaluating the DNA barcodes of the halo-tolerant Poaceae, both the best close

match results based on sequence similarity and the phylogenetic analysis showed that discrimi-

nation using ITSwas preferable to matK (Table 1). Therefore, ITS is recommended as an opti-

mal DNA barcode for halo-tolerant Poaceae species. This result is consistent with Peterson’s

findings in Leptochloa [62]. Although ITSwas not at first the proposed optimal DNA barcode

Fig 1. PCA Results of genetic distances variation when adding samples from coastal salt marshes.

Green points represent samples from inland, orange points indicate samples from coastal salt marshes, and

yellow points indicate samples from both inland and coastal salt marshes.

https://doi.org/10.1371/journal.pone.0185311.g001

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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marker by the Consortium for the Barcode of Life, its evolution rate is three to four times that

of plastid markers, and its application range has gradually exceeded that of matK and rbcL [6;

16; 63]. Many taxonomic groups have been shown to be best represented by ITS as an opti-

mum DNA barcode [11; 15; 18]. However, the limitations of study area and community in this

investigation require that further research be conducted before ITS can be validated as applica-

ble to Poaceae as a whole. The trnH-psbA sequences showed significant indels in the Poaceae,

resulting in the lowest rate of discrimination. The candidate loci rps16 and ndhF have been

widely used in phylogenetic studies of Poaceae [46; 47; 48; 49; 50]. However, we found that the

discrimination rate of these two loci are considerably lower than that of ITS, and we discourage

their use as DNA barcodes for the Poaceae.

Fig 2. Genetic distance distribution of six widespread species and the results of M-W testing.

Asterisk* indicates that samples from the combined area are significantly different from the inland samples in

terms of genetic distance. Δ, � indicate outliers.

https://doi.org/10.1371/journal.pone.0185311.g002

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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MatK is the best DNA barcode for halo-tolerant Chenopodiaceae

species in the coastal area

For the species of Chenopodiaceae in this study, there was no problem with amplification or

primer universality for the six DNA barcode loci. In best close match analysis, matK and trnH-

psbA showed the best species discrimination rates. Bayesian tree analysis showed that matK
and trnL-F had similar discrimination rates (Table 1). The lengths of trnH-psbA sequences

were relatively stable within the genera included in this study, but it is not clear whether they

Fig 3. Theta (θ) of sampling volume for seven widespread species. The symbol—indicates the upper

confidence interval at 99.99% confidence. The trend line is plotted by taking the maximum average value of θ
at 20 replicates of each sampling. Red arrow indicates the minimum sampling volume when θ falls between

the confidence intervals.

https://doi.org/10.1371/journal.pone.0185311.g003

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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would remain stable when more genera are added. The resolution of trnL-F is positive in phy-

logenetic analysis [42; 64; 65], but is less than predicted by the best close match based on

sequence similarity (Table 1), possibly due to its number of mutations leading to a within-spe-

cies variation convergence rate below the threshold. Based on these evaluations, we suggest

that matK is the optimal DNA barcode for coastal halo-tolerant Chenopodiaceae.

RbcL has a high discrimination rate at the genus and family ranks, but has lower resolution

within genus (Table 1), consistent with previous reports [4; 8; 10; 66; 67]. As an alternative, ITS
and matK could be used as substitutes when identifying genera and families [8; 68]. DNA bar-

codes of large genera, such as Paphiopedilum [12], Ficus [13], Pedicularis [18], and Dendrobium
[69] have been evaluated, with findings supporting the used of ITS + matK as a combined bar-

code for large genera. Since the object of DNA barcodes for identification is generally limited

within genus, we suggest that the necessity of rbcL as a barcode for seed plants should be

reevaluated.

Saline habitat increases the genetic diversity of widespread species

Plants adapt with unique morphology and genetic differentiation in particular habitats [29,

30]. This study found significant genetic variation within Poaceae and Chenopodiaceae species

distributed in coastal salt marsh areas compared with plants of the same species from other

regions. This indicates an increase in genetic diversity of the species when coastal samples

were added (Figs 1 and 2) and an increase in haplotypes within the species (Table 2). This is

likely associated with coastal environmental conditions, including high salinity. These results

indicate that when constructing the DNA barcode database of a species, samples from all kinds

of habitats should be included [70]. While data on intraspecific and interspecific genetic dis-

tances obtained for locally distributed species [11; 12; 13; 14; 15; 16; 17; 18; 22] may be reliable,

it is necessary to supplement sampling to make up for a lack of genetic diversity when consid-

ering widely distributed species.

Sample size for DNA barcoding of widely distributed species should not

be less than 11–15

The representativeness of DNA barcodes increases as sample size increases, and the expansion

of the sampling range makes the evaluation of DNA barcodes more realistic [70]. Meyer &

Paulay proposed strategies to take into account the cost of research, and suggested that sam-

pling volume should limited to 5–10 individuals [21]. However, average K2P distances show

that θ continuously converges as sample size increases, and θ falls into the confidence interval

for all samples of a species when sample size is 11–15 (Fig 3). Our results indicate that the

DNA barcode sampling of widespread species should not be less than 11–15, in order to accu-

rately represent the extent of variation and genetic diversity. Using smaller sample sizes may

lead to a significant loss of genetic diversity as shown in Ficus simplicissima Lour. (s.l.), where 5

additional haplotypes, based on the analysis of 78 samples, were added to the original 4 haplo-

types base on 10 samples [13; 71]. By our experience, sampling of widely distributed species is

relatively convenient, for the widely distributed species. The continuing decline in sequencing

costs also helps make expanded sample sizes possible. Therefore, for widespread species,

expanded sampling should not be cost-prohibitive and is to be encouraged when conducting

barcode research. The difference in the minimum necessary sample size of different species

may be related to the degree of intraspecific genetic differentiation, habitat diversity, distribu-

tion range.

Sample size should increase for barcode studies of widely distributed, specialist-adaptable species
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