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Abstract

In this paper we address the problem of automated grading of invasive breast carcinoma

through the encoding of histological images as VLAD (Vector of Locally Aggregated

Descriptors) representations on the Grassmann manifold. The proposed method considers

each image as a set of multidimensional spatially-evolving signals that can be efficiently

modeled through a higher-order linear dynamical systems analysis. Subsequently, each

H&E (Hematoxylin and Eosin) stained breast cancer histological image is represented as a

cloud of points on the Grassmann manifold, while a vector representation approach is

applied aiming to aggregate the Grassmannian points based on a locality criterion on the

manifold. To evaluate the efficiency of the proposed methodology, two datasets with differ-

ent characteristics were used. More specifically, we created a new medium-sized dataset

consisting of 300 annotated images (collected from 21 patients) of grades 1, 2 and 3, while

we also provide experimental results using a large dataset, namely BreaKHis, containing

7,909 breast cancer histological images, collected from 82 patients, of both benign and

malignant cases. Experimental results have shown that the proposed method outperforms a

number of state of the art approaches providing average classification rates of 95.8% and

91.38% with our dataset and the BreaKHis dataset, respectively.

Introduction

Breast cancer is the second most common cancer in the world and by far the most frequent

cancer among women [1, 2]. According to the American Cancer Society, it is estimated that,

only in 2017, there will be approximately 255,180 new cases of invasive breast cancer and

around 41,070 deaths from breast cancer (for both women and men) in the U.S. [3]. Detection

and diagnosis of breast cancer can be achieved by mammography or ultrasound for the

identification of suspicious regions of the breast, followed by a tissue biopsy and microscopic

examination for the determination of the presence and grade of cancer. During the visual

examination of the biopsy specimen of the tissue, pathologists look for certain features that

can help them predict disease prognosis, i.e., how likely the cancer is to grow and spread.

These features include the spatial arrangement of the cells, morphological characteristics of the

nuclei (nuclear pleomorphism), whether they form tubules (tubule formation) and how many
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of the neoplastic cells are in the process of dividing (mitotic index). These histologic features

taken together determine the extent or spread of cancer at the time of the diagnosis and are

known as “Nottingham Grading System”. The grading of the invasive breast carcinoma is clas-

sified into a three-point scale: Grade 1 (low grade, well-differentiated carcinoma), Grade 2

(intermediate grade, moderately differentiated carcinoma) and Grade 3 (high grade, poorly-

differentiated carcinoma) [4], as shown in Fig 1.

However, the visual qualitative assessment is a labor and time-consuming task [5] and

results in inter- and intra-observer variation in diagnosis, i.e., different pathologists may come

up with diverse interpretations, leading to different diagnoses, or the same pathologist may

make different diagnosis at different times for the same set of histological images [6]. In other

words, the main problem in histological grading of breast carcinoma is not only the identifica-

tion of the correct combination of features and the morphological heterogeneity within the

tumor, but also the inter-observer variations in the assessment of the subjective criteria[5, 7].

The recent advances, however, on whole-slide scanning systems have enabled the digitization

of glass slides with stained tissue sections at high resolutions and have offered new opportu-

nities to image processing techniques to quantify histopathologic procedures and support

pathologists in the interpretation of histological images. To this end, various methods [8] of

automatic Breast Cancer (BC) grading have been proposed in the literature in order to increase

the accuracy and reproducibility of diagnosis. In most of the cases the main challenges are the

accurate segmentation [9] and detection of histologic primitives, such as nuclei, as well as the

extraction of a number of suitable textural or spatial features in order to model the patholo-

gist’s knowledge used in clinical practice. On the other hand other approaches have used deep-

learning techniques [10] aiming to address the problem by extracting knowledge directly from

the data. However, the training of complex deep learning networks requires a large number of

images, i.e., large datasets, as well as considerable effort and time for their annotation by expert

pathologists.

In this paper, we propose a novel approach for the grading of invasive breast carcinoma,

which considers each histological image as a set of multidimensional spatially-evolving signals

that can be efficiently represented as a cloud of points in a non-Euclidean space, such as a

Grassmann manifold. In contrast to traditional approaches that attempt to model pathologist’s

knowledge, the proposed method aims to model directly the available data, i.e., histological

images, avoiding the detection of histologic primitives through a series of preprocessing steps.

Experimental results show that the proposed method provides high detection rates both with

small and large datasets, outperforming a number of state of the art approaches. More specifi-

cally, the contributions of this paper are summarized as follows: i) We introduce a new meth-

odology for the modelling of static breast cancer histological images through higher-order

linear dynamical systems analysis. ii) We demonstrate that each histological image can be

Fig 1. Indicative cases of H&E breast cancer histological images of (a) Grade 1, (b) Grade 2 and (c) Grade 3.

https://doi.org/10.1371/journal.pone.0185110.g001
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represented as a cloud of points on the Grassmann manifold and we propose the VLAD

encoding of each image on the non-Euclidean space. iii) To evaluate the efficiency of the pro-

posed methodology, we created a new dataset of 300 annotated images of grades 1–3 [11],

while we also provide experimental results using the well-known BreaKHis dataset [12, 13]

containing 7,909 breast histological images of both benign and malignant cases.

The remaining of this paper is organized as follows: In Section 2, similar works on breast

cancer histological image analysis are presented, while in Section 3, we describe the material

used in the experimental analysis, as well as the proposed methodology for the automated

grading of invasive breast carcinoma. Finally, the experimental results of our study are given

in Section 4, while conclusions are drawn in Section 5.

Related work

Numerous methods have been proposed in the literature for the detection of breast cancer in

histological images[8, 14–18]. As was mentioned above, most of them focus mainly on the seg-

mentation and identification of histologic primitives, such as nuclei, and the extraction of suit-

able features. Doley et al. [19] introduced a methodology for the automated grading of breast

cancer histological images using spectral clustering with textural (Gabor, Grey Level and Hara-

lick) and architectural (Voronoi diagram, Delaunay triangulation, minimum spanning tree,

nuclear characteristics) features, yielding an accuracy of 93.3% in a dataset of 48 breast biopsy

tissue studies. On the other hand, Niwas et al. [20] extracted color textural features for breast

cancer diagnosis using log-Gabor wavelet transform and least square support vector machine

(LS-SVM) classifier. More recently, Kowai et al. [21] studied different clustering algorithms

for the segmentation of nuclei and extracted various morphological, topological and textural

features for the classification of 500 microscopic images in two classes, benign or malignant,

while Filipczuk et al. [22] applied a circular Hough transform for the identification of nuclei

and then extracted a set of features for the classification of biopsies by using four different clas-

sifiers. Similarly, George et al. [23] applied a nuclei segmentation approach and then studied

several neural network architectures to investigate the most suitable network model for classi-

fying the tumor effectively. On the other hand, Zhang et al. [24] presented a classification

scheme based on a one-class kernel principle component analysis model ensemble using vari-

ous features extracted from a gray level co-occurrence matrix. Finally, Spanhol et al. [12] cre-

ated a big dataset of 7,909 breast cancer histopathology images, including both benign and

malignant images (but without grading annotation), and tested different texture descriptors

and state of the art classifiers.

Nevertheless, the majority of the above methods is feature dependent and in many cases

involves a series of pre-processing steps, such as segmentation, nuclei separation and detec-

tion, which affect significantly the final classification result. The need for methods that will be

able to learn directly from data has led many researchers to apply more sophisticated tech-

niques, such as deep learning networks. More specifically, Cruz-Roa et al. [14] proposed a

method for the automatic detection of invasive ductal carcinoma in whole slide images using

Convolutional Neural Networks (CNN), while Spanhol et al. [10] presented a method based

on the extraction of image patches for training the CNN and the combination of these patches

for the final classification of images into two classes, benign or malignant. Similarly, Litjens

et al. [25] investigated the general applicability of CNNs to improve the efficiency of cancer

diagnosis in H&E images by applying it to two tasks: the detection of prostate cancer in biopsy

specimens and the detection of breast cancer metastases in resected sentinel lymph nodes. The

aforementioned methods showed high classification rates, however, the training of the com-

plex deep learning networks requires a large number of images for the accurate determination
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of their parameters. To this end, in this paper, we propose a non-customized method for the

grading of invasive breast carcinoma, i.e., the proposed method is also applicable to other con-

texts, which provides promising results for both small and large datasets. The proposed

method is not based on the detection of histologic primitives, as is usually done in traditional

methods, but it models directly the breast cancer histological images as a set of spatially-evolv-

ing multidimensional signals, which are mapped and encoded on the Grassmann manifold.

Material and methods

Dataset description

The proposed methodology was tested and evaluated on two datasets with different character-

istics. The first one is a medium-sized dataset containing breast cancer histological images of

different grades, while the second one is a large dataset that includes both benign and malig-

nant (without grading information) images. More specifically, the first dataset [11] was created

for the scope of this paper and contains archival cases of breast carcinoma histological speci-

mens received at the Department of Pathology, “Agios Pavlos” General Hospital of Thessalo-

niki, Greece. As was also confirmed by the Scientific Council of the hospital, there was no need

for ethical approval for this study, since all samples were analyzed anonymously and were col-

lected during the routine course of care for diagnostic purposes. In the typical hospital work-

flow, breast tumor excisions or biopsies are performed in the operating room and, then, the

material is sent for processing to the Pathology Department. The samples were fixed in buff-

ered formalin and then embedded in paraffin. From the paraffin blocks, sections with a thick-

ness of 4 μ m were cut using a microtome and mounted on glass slides. In order to be able to

visualize the structures of interest in the tissue, the sections were dyed with Hematoxylin and

Eosin (H&E) stain, as routine stain according to bioethics rules, and the glass slides were cov-

erslipped. Then, the glass slides were visually examined by a Pathologist using routine light

microscopy. The scoring was given by one Pathologist and reviewed by another one using the

Scarff-Bloom-Richardson histological grading system, Nottingham modification. Score of 3

(Grade 3) was given by the Pathologist to images showing marked variation of histologic fea-

tures upon comparison with normal tissue, a score of 2 (Grade 2) for moderate variations and

a score of 1 (Grade 1) for mild variations (score was given by the Pathologist firstly to the slides

and secondly to images). Our dataset consists of 300 images (Grade 1: 107, Grade 2: 102 and

Grade 3: 91 images) of resolution 1280x960 corresponding to 21 different patients with inva-

sive ductal carcinoma of the breast. The image frames were from regions afflicted by tumor

growth captured through a Nikon digital camera attached to a compound microscope with

x40 magnification objective lens.

The second dataset is the publicly available BreaKHis database [12, 13] consisting of 7,909

breast cancer histological images acquired on 82 patients. The dataset contains microscopic

biopsy images of benign and malignant breast tumors with no grading information, i.e., it con-

tains two different classes of images. The samples were generated from breast tissue biopsy

slides stained with hematoxylin and eosin, while images (with resolution 700x460) were

acquired using magnifying factors of x40 (625 benign and 1370 malignant), x100 (644 benign

and 1437 malignant), x200 (623 benign and 1390 malignant) and x400 (588 benign and 1232

malignant). In Fig 2, we indicatively present malignant cases from both our dataset and the

BreaKHis dataset.

Methodology

Breast cancer histological images contain spatially evolving characteristics and interrelated pat-

terns, which are strongly related to the grading of invasive breast carcinoma. For this reason,

Grading of invasive breast carcinoma through Grassmannian VLAD encoding

PLOS ONE | https://doi.org/10.1371/journal.pone.0185110 September 21, 2017 4 / 18

https://doi.org/10.1371/journal.pone.0185110


the proposed method attempts to model the histological images as a set of multidimensional

spatially-evolving signals that can be efficiently represented as a cloud of Grassmannian points,

enclosing the dynamics and appearance information of the image. By taking advantage of the

geometric properties of the space in which these points lie, i.e., the Grassmann manifold, we

estimate the VLAD encoding [26] of each image on the manifold in order to identify the grad-

ing of invasive breast carcinoma, as shown in Fig 3.

The dynamical model. Towards this end, we initially attempt to model histological

images through a linear dynamical system analysis. Linear dynamical systems have been

widely used in the past for the modeling and analysis of time-series in a broad range of applica-

tions in engineering (e.g., dynamic texture analysis or human action recognition[27–29]), as

well as economics and social sciences. A linear dynamical system (LDS) is associated with a

Fig 2. (a)-(c) Indicative cases of H&E breast cancer histological images from our dataset (image resolution 1280x960) and (d)-(f) malignant

cases from the BreaKHis dataset (image resolution 700x460) with different magnification factors:(d) x40, (e) x100 and (f) x200.

https://doi.org/10.1371/journal.pone.0185110.g002

Fig 3. The proposed methodology.

https://doi.org/10.1371/journal.pone.0185110.g003
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first order ARMA process with white zero mean IID Gaussian input and for this reason LDSs

are also known as linear Gaussian state-space models. In general, LDS models attempt to asso-

ciate the output of the system, i.e., the observation, with a linear function of a state variable,

while in each time instant, the state variable depends linearly on the state of the previous time

instant. Both state and output noise are zero-mean normally distributed random variables and

apart from the output of the system, all other variables (state and noise variables) are hidden.

More specifically, the stochastic modeling of the signal’s dynamics and appearance is encoded

by two stochastic processes, in which dynamics are represented as a time-evolving hidden state

process x(t) 2 Rn and the observed data I(t) 2 Rd as a linear function of the state vector:

xðt þ 1Þ ¼ AxðtÞ þ BvðtÞ ð1Þ

IðtÞ ¼ �I þ CxðtÞ þ wðtÞ ð2Þ

where A 2 Rnxn is the transition matrix of the hidden state and C 2 Rdxn is the mapping matrix

of the hidden state to the output of the system. The quantities w(t) and Bv(t) are the measure-

ment and process noise respectively, with w(t)~N(0,R) and Bv(t) ~N(0,Q), while �I is the mean

value of observations.

To apply such a time-series analysis approach to a static breast cancer histological image,

we initially divide each image into a number of image patches, since describing each image by

local descriptors is preferable to a holistic representation. Then, we consider each patch as a

multidimensional signal evolving in the spatial domain, i.e., in consecutive pixels i, instead of

discrete time instances t. For the estimation of the system parameters, i.e., A and C, several

approaches have been proposed based either on Expectation-Maximization (EM) algorithm or

non-iterative subspace methods [30]. Since these approaches require high computational cost,

a suboptimal method was proposed in [31], according to which the columns of the mapping

matrix C can be considered as an orthonormal basis, e.g., a set of principal components. How-

ever, most of the approaches in the literature often make a simplifying assumption of the data

structure, which leads to the concatenation of data into a simple vector. In order to fully exploit

any hidden correlation between the different channels of data, i.e., the RGB data of a histologi-

cal image, we use a third order tensor representation for each NxN patch, i.e., Y 2 RNxNx3. Sub-

sequently, we apply a generalization of the singular value decomposition for higher order

tensors, such as higher-order SVD analysis as proposed in[32–33].

Y ¼ S�1Uð1Þ�2Uð2Þ�3Uð3Þ ð3Þ

where S 2 RN×N×3 is the core tensor, while U(1) 2 RN×N, U(2) 2 RN×N and U(3) 2 R3×3 are orthog-

onal matrices containing the orthonormal vectors spanning the column space of the matrix

and ×j denotes the j-mode product between a tensor and a matrix. Since the columns of the

mapping matrix C of the stochastic process need to be orthonormal, we can easily choose one

of the three orthogonal matrices of Eq (3) to be equal to C. In addition, given the fact that the

choice of matrices A, C and Q in Eqs (1) and (2) is not unique, we can consider C = U(3) and

X ¼ S�1Uð1Þ�2Uð2Þ ð4Þ

Hence, Eq (3) can be reformulated as follows:

Y ¼ X�3C, Yð3Þ ¼ CXð3Þ ð5Þ

where Y(3) and X(3) indicate the unfolding along the third dimension of tensors Y and X
respectively, and X(3) = [x(1),x(2),. . .,x(n)] are the estimated states of the system. If we define

X1 = [x(2),x(3),. . .,x(n)] and X2 = [x(1),x(2),. . .,x(n−1)] the transition matrix A, containing the
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dynamics of the signal, can be easily computed by using least squares as:

A ¼ X2X
T
1
ðX1X

T
1
Þ
� 1

ð6Þ

Fig 4 illustrates the observation data, i.e., the original breast cancer histological image con-

sidering image patches of size 16x16 (for visualization purposes, we have used non-overlap-

ping patches), as well as the corresponding hidden state variables and the transition and

mapping matrices A and C, respectively, for each image patch.

In order to ensure the stability of the system, the spectral radius of the transition matrix A
needs to be smaller than 1, i.e., |λ1(A)|� 1, where λ1 denotes the first eigenvalue of matrix A,

considering the eigenvalues in descending order of magnitude. Towards this end, we apply an

approximation solution based on a convex optimization technique [34], which leads to the

estimation of the stabilized transition matrix A through the solving of the following quadratic

problem:

minimize aPa � 2qTaþ r

subject to gTa � 1
ð7Þ

where α = vec(A), q ¼ vecðX1XT
2
Þ, r ¼ trðXT

2
X2Þ and P ¼ I 
 ðXT

1
X1Þ. Here, I is the identity

matrix, tr(�) indicates the trace of a matrix, vec(�) operator converts a matrix to vector and


denotes the Kronecker product. In order to estimate the stabilized transition matrix, i.e., α =

vec(A), we define g ¼ vecðu1vT1 Þ with vectors u1 and vT
1

corresponding to the first eigenvalue of

the transition matrix A, i.e., A = USVT or l1 ¼ uT
1
Av1.

Fig 4. Visualization of the higher-order linear dynamical system on an H&E stained breast cancer

histological image using patches of size 16x16. (a) Input image, (b) hidden state, (c) transition matrix A and

(d) mapping matrix C.

https://doi.org/10.1371/journal.pone.0185110.g004
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For the selection of patches in a breast cancer histological image, different strategies can be

adopted, e.g., overlapping patches, non-overlapping patches or random selection of patches

(in Section 4, experimental results with different patching strategies and various sizes are pre-

sented in detail). In order to fully exploit image patches information, we consider the spatial

evolution of multidimensional signals towards all possible directions, i.e., right, left, up and

down. To do so, we rotate each image patch by ninety degrees in clockwise direction for three

consecutive times, so that each patch is finally modeled by four higher order linear dynamical

systems corresponding to the four possible directions of the signal’s evolution. Fig 5 illustrates

the estimated stabilized transition matrices A containing the dynamics information towards

the four possible directions of signal’s transmission and the corresponding histograms of the

stabilized higher–order LDS descriptors.

Grassmannian analysis. Having modeled each image patch using a higher-order linear

dynamical systems approach, our next step is to represent the parameters of each dynamical

system, M= (A,C), as a point on the space of the extracted descriptors. Towards this end,

we initially estimate the finite observability matrix of each dynamical system, OT
mðMÞ ¼

½CT ; ðCAÞT ; ðCA2Þ
T
; . . . ; ðCAm� 1Þ

T
� (in our experiments, we set m equal to 3), and, then, we

apply a Gram-Scmidt orthonormalization [35] procedure in order to represent each descriptor

with an orthogonal matrix G 2 RmNx3. The columns of this matrix contain an orthonormal

basis and for this reason we can consider that G corresponds to a point on the Grassmann

manifold, i.e., a quotient of the special orthogonal group SO(n). Since it can be shown that SO

(n) is a Riemannian manifold [36], we can claim that a Grassmann manifold, i.e., a manifold

with linear subspaces, is endowed with a Riemannian structure.

For the modeling of a breast cancer histological image, we apply a vector representation

approach, which aggregates the descriptors, i.e., the extracted Grassmannian points, based on

Fig 5. (a) An indicative portion of a histological image consisting of 32x16 patches. Each image patch is modeled by four higher-order linear

dynamical systems corresponding to the four possible directions of the signal’s evolution. Figures (b)-(e) illustrate the stabilized transition

matrices of each patch in the four directions, i.e., (b) right, (c) up, (d) left, and (e) down. Figures (f)-(i) illustrate the corresponding histograms

of the stabilized higher–order LDS descriptors.

https://doi.org/10.1371/journal.pone.0185110.g005
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a locality criterion on the manifold. More specifically, in this paper we adopt the Vector of

Locally Aggregated Descriptors (VLAD) encoding approach and we attempt to apply it to the

space created by the parameters of the stabilized higher-order linear dynamical systems.

VLAD representation is considered as a simplified coding scheme of the earlier Fisher Vector

(FV) representation and has shown to outperform histogram representations in bag of features

approaches [37]. In general, VLAD encoding considers only the first-order differences and

assigns descriptors to a single mixture component. More specifically, let us consider a code-

book, fmig
k
i¼1
¼ fm1;m2; . . . ;mkg, with k visual words and local descriptors x, where each

descriptor is associated to its nearest codeword. The VLAD descriptor, �V , is created by con-

catenating the k local difference vectors fuig
k
i¼1

corresponding to differences mi−xj, with mi =

NN(xj), where xj are the descriptors belonging to class i, with i = 1,. . .,k. In other words, the

VLAD vector of an image can be estimated as follows:

�V ¼ fuig
k
i¼1
¼ fu1; . . . ; ukg

¼

(
P

xj such that

m1 ¼ NNðxjÞ

ðm1 � xjÞ; . . . ;
P

xj such that

mk ¼ NNðxjÞ

ðmk � xjÞ
)

ð8Þ

while the final VLAD code is determined by the L2-normalization of vector �V :

�V ¼ �V=k �Vk2 ð9Þ

However, the main problem of applying such an approach to our case lies in the fact that

the descriptors extracted from the image patches, i.e., the Grassmannian points, do not lie in

the Euclidean space. Hence, in order to represent breast cancer histological images through a

VLAD encoding approach, we need first to resolve two significant problems. First, we should

define a dissimilarity metric between two descriptors on the manifold, in order to estimate the

difference between a codeword and a Grassmannian point, and, second, we have to define a

suitable notion of the "mean" between a finite set of points on the manifold.

To address the first problem, we take advantage of the Riemannian structure of our mani-

fold in order to define the distance between two points as the Riemannian distance between

two subspaces, i.e., the distance corresponding to the length of the shortest geodesic connect-

ing two Grassmannian points. To do so, we apply the inverse exponential map between two

points on the manifold, e.g., G1 and G2, to map the first Grassmannian point on a tangent

space of the second one, while preserving the distance between the points. In other words,

using the inverse exponential map, we can move from a Grassmann manifold to an Euclidean

space, such as the tangent space of a manifold’s point. Hence, the dissimilarity metric between

G1 and G2, can be defined as follows:

dðG1;G2Þ ¼ kexp
� 1

G2
G1kF ð10Þ

where the inverse exponential map, exp−1, defines a vector in the tangent space of a manifold’s

point, i.e., the mapping of G1 to the tangent space of G2, and ||.||F indicates the Frobenius

norm. For more details regarding the estimation of inverse exponential map on Grassmann

manifold, we refer the reader to [38].

On the other hand, for the definition of the k representative words, i.e., the k means in Eq

(8), of the codebook fmig
k
i¼1

, we initially identify the most representative k Grassmannian

points among the existing points on the manifold, by using a K-Medoid approach, and then

we use the estimated medoids for the initialization of the Karcher mean algorithm [39]. This

procedure enables us to ensure the deterministic convergence of the algorithm, since we avoid
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picking points at random, as is commonly done for the initialization of the Karcher mean algo-

rithm. Based on the estimated Karcher means, mi, we can re-identify the members xj of each

class, i.e., mi = NN(xj), using the dissimilarity metric defined in Eq (10). Hence, the VLAD

encoding of a histological image on the Grassmann manifold for a codebook of k representa-

tive words, fmig
k
i¼1

, can be defined as:

�V ¼
1

k �Vk

(P
Gj such that

the Karcer mean

m1 ¼ NNðGjÞ

kexp� 1

m1
GjkF; . . . ;

P

Gj such that

the Karcer mean

mk ¼ NNðGjÞ

kexp� 1

mk
GjkF

)

ð11Þ

For the classification of a breast cancer histological image the VLAD representation on

Grassmann manifold is estimated and the extracted code is provided to an SVM classifier to

infer the grading of invasive breast carcinoma.

Results and discussion

This section provides the details about the experiments conducted for the evaluation of the

proposed method. The goal of this experimental evaluation is twofold: i) we aim to validate the

efficiency of the proposed methodology in the grading of invasive breast carcinoma using a

medium-sized dataset that contains breast cancer histological images of three different grades,

i.e., grades 1, 2 and 3, and ii) we attempt to demonstrate the reproducibility of our method

using a large dataset containing both benign and malignant images (without including any

grading information), acquired with four different magnification factors (x40, x100, x200 and

x400). Experimental results involve comparison of the proposed method with 14 different state

of the art methods, including deep learning and handcrafted feature based methods (relying

on textural, graph or morphological features).

Grading of invasive breast carcinoma

In this section, we evaluate the performance of the proposed method in the grading of invasive

breast carcinoma using our dataset [11], which contains breast cancer histological images of

three different grades. For the classification results presented in this section, we estimated the

classification rate as the ratio between the correctly classified images, Nc, and the total number

of images, Nall, in the dataset:

To define the best parameters of our method, we initially carried out experiments with dif-

ferent patch sizes and patching strategies, i.e., overlapping, non-overlapping or random

patches. For all experiments we adopted a 5-fold cross validation approach and we estimated

the average classification rate of the five trials using Eq (12). As we can clearly see in Fig 6,

Fig 6. Classification rates with different patch sizes and patching strategies.

https://doi.org/10.1371/journal.pone.0185110.g006
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patches of small size, i.e., 8x8, provide the best classification rates (95.8% for overlapping,

95.1% for non-overlapping and 91.2% for random patches) with overlapping patches obtaining

the higher detection rate. Results show that patches of 8x8 size contain sufficient dynamics and

appearance information for the classification of histological images with resolution 1280x960,

while at the same time, the strategy of overlapping patches (with 50% overlap between patches)

results in an adequate number of Grassmannian points i.e., 151,376 points corresponding to

all possible multidimensional spatial signals in each histological image.

After the definition of the optimal parameters of our method, in the next experiment we

aim to show that the use of a third order tensor for the representation of image patches along

with the VLAD encoding on the Grassmann manifold improve the classification accuracy of

the standard LDS [31] descriptor. More specifically, for the standard LDS descriptor we

adopted a bag-of-features approach based on subspace angles (in this case the Martin distance

[40] was used as a similarity metric between two LDS descriptors as in [41]) and then, we fol-

lowed the same bag of features approach using the higher-order LDS descriptor. Experimental

results in Fig 7 show that the proposed method achieves an improvement of 19.07% compared

to the standard LDS descriptor, while the use of VLAD encoding, instead of Martin distance,

improves the classification accuracy up to 4.9% (h-LDS Martin: 90.9%, proposed method:

95.8%). In addition, in Fig 7 we compare the proposed method with three other state of the art

approaches, such as standard GLCM, i-BGLAM [42] and SIFT [43], that have been used in the

past in various image classification problems. The experimental results show again that the

proposed method, due to its ability to model the hidden dynamics of spatial signals in the

image patches, outperforms all other approaches achieving improvements of 15.1%, 9.3% and

6.9% with respect to GLCM, SIFT and i-BGLAM, respectively.

Finally, we evaluated the performance of the proposed method against three other

approaches, which are based on the extraction of graph features and nuclear features after a

preprocessing step for the detection of nuclei in each histological image. More specifically, the

first two approaches rely on the extraction of two different sets of graph features aiming to

model the arrangement of nuclei within a histological image. The first set of features is based

on Voronoi Diagram [44], while the second one on Delaunay Triangulation, as proposed in

[18]. On the other hand, the third method is based on the extraction of a number of shape and

textural features of nuclei, e.g. nuclear density, nuclear shape regularity, number and size of

nucleoli, as proposed in our previous work [45]. For the experimental results of the methods

in Fig 8, we have used as a preprocessing step for the detection of nuclei (the preprocessing

step includes segmentation of nuclei and splitting of clustered nuclei) the methodology pro-

posed in our previous work [6], while for the classification of the extracted features we used

the same SVM classifier with radial basis function kernel for all methods to infer the label of

Fig 7. Comparison of the proposed method against five state of the art approaches based on textural

features.

https://doi.org/10.1371/journal.pone.0185110.g007
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classes. As we can see in Fig 8, the proposed method outperforms all methods based on nuclei

characteristics. We can also notice that by fusing the proposed method with graph (both Voro-

noi Diagram and Delaunay Triangulation) and nuclear features, the classification accuracy

increases slightly by 0.5%.

Classification of benign and malignant cases

In this section, we aim to evaluate the efficiency of the proposed method using a large dataset,

such as BreaKHis, consisting of 7,909 breast cancer histological images (with resolution

700x460) of two classes: benign and malignant. To define the optimum size of patches for each

magnification factor, we run experiments with four different patch sizes, 8, 16, 32 and 64, and

three different patching strategies, as in the previous section. For the results in Fig 9, we

divided the BreaKHis dataset into training (70%) and testing (30%) sets, as proposed in [10],

Fig 8. Comparison of the proposed method against two graph-based approaches, i.e., Voronoi

diagram and Delaunay triangulation and a method based on various nuclear features. The last

classification rate corresponds to the fusion of the proposed method with the three other approaches.

https://doi.org/10.1371/journal.pone.0185110.g008

Fig 9. Classification rates with different patch sizes and patching strategies for the four magnifications factors. (a) x40, (b) x100,

(c) x200, (d) x400.

https://doi.org/10.1371/journal.pone.0185110.g009
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and we estimated the average of five trials using Eq (12) (the patients used to build the training

set are not used for the testing set). The same procedure was applied independently to each of

the four magnifications available in the dataset.

Fig 9 displays the classification performance of our method for each magnification factor,

using different patch sizes and patching strategies. As we can see, the best experimental results

are produced again using overlapping patches (50% overlap) with a small size, i.e., 8x8, inde-

pendently of the magnification factor. More specifically, the highest average classification

rates, 91.8% and 92.1%, are produced with magnification factors of x40 and x100, respectively,

while the other two magnification factors (x200 and x400) provide also classification rates

higher than 90%, i.e., 91.4% and 90.2% respectively. We have to note here that the optimal clas-

sification rate could be achieved by selecting all possible patches from each image, however,

this would increase the computation cost. We believe that the use of overlapping patches, with

50% of overlap between patches, is a reasonable compromise, since it results in the extraction

of an adequate number of patches, i.e., 9634, 2270, 552 and 110 for patch sizes of 8x8, 16x16,

32x32 and 64x64 respectively. For the random patches, in our experiments we fixed the arbi-

trary number of patches to 10,000 for patch size of 8x8, 2,500 for patch size of 16x16 and 1,000

for the other two patch sizes. However, one could also run experiments with more random

patches in order to further increase the classification rate.

To compare the performance of our methodology against the state of the art algorithms pre-

sented in [10] and [12], we adopted the same experimental protocol followed in these works to

ensure a fair comparison. More specifically, we estimated the patient score as:

Patient Score ¼
Nc

Np
ð12Þ

where Nc is the number of correctly classified images for each patient and NP are the number

of cancer images of patient P. Similarly, the global patient classification rate is defined as fol-

lows [10]:

Global Patient Classification Rate ¼
P

Patient Score
Total number of Patients

ð13Þ

For the experimental results in Fig 10, we estimated the average global patient classification

rate of five trials, as proposed in [10] and [12]. The first six classification approaches, i.e., Local

Binary Patterns (LBP) [46], Completed Local Binary Patterns (CLBP) [47], Local Phase Quanti-

zation (LPQ) [48], Gray Level Co-Occurrence Matrices (GLCM) [49], Parameter-Free Thresh-

old Adjacency Statistics (PFTAS) [50] and Oriented FAST and Rotated BRIEF (ORB) [51], are

based on different textural descriptors, while the last one, i.e., Convolutional Neural Networks

(CNN) [10], is a deep learning approach. As we can see from Fig 10, the proposed method out-

performs all state of the art approaches yielding average patient classification rates of 91.8%,

92.2%, 91.6% and 90.5% for magnification factors of x40, x100, x200 and x400, respectively. We

have to note here that the classification rates presented in Fig 10 are the best classification rates

for each method, i.e., the rates corresponding to the optimal set of parameters for each method.

Finally, in Fig 11 we present a comparative analysis of the proposed method against the sec-

ond most efficient approach, i.e., the CNN-based deep learning approach [10], using as a met-

ric the image classification rate defined in (12). We can see again that the proposed method

outperforms the CNN-based approach in all magnification factors showing its great potential

even with a large dataset. More specifically, the proposed method achieves improvements up

to 2.2%, 7.1%, 7.4% and 9.4% for magnification factors of x40, x100, x200 and x400, respec-

tively, i.e., improvement of 6.53% in the average classification rate (proposed method: 91.38%,

Grading of invasive breast carcinoma through Grassmannian VLAD encoding

PLOS ONE | https://doi.org/10.1371/journal.pone.0185110 September 21, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0185110


CNN: 84.85%). For the experimental results of our method using both datasets, we did not

apply any preprocessing step to improve the quality of the images and we did not change their

original size.

Fig 10. The patient classification rates of the proposed method and seven state of the art methods

using histopathological images of different magnification factors. (a) x40, (b) x100, (c) x200 and (d)

x400.

https://doi.org/10.1371/journal.pone.0185110.g010
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Conclusions

In this paper, we presented a novel approach for the grading of invasive breast carcinoma by

applying histological image classification on the Grassmann manifold. More specifically, we

showed that breast cancer histological images can be considered as a set of multidimensional

spatially-evolving signals, which can be efficiently modeled through a higher-order linear

dynamical systems analysis, and then we proposed the VLAD encoding of each image on the

Grassmannian space. The key advantage of the proposed method over existing methods is the

fact that it exploits both image dynamics and appearance information, while at the same time

it avoids the detection of the histologic primitives, such as nuclei, which is usually a challeng-

ing task due to the complex appearance of the tissue. Experimental results using two datasets

with different characteristics showed the superiority of the proposed method against a number

of state of the art approaches (14 different state of the art methods) based on either handcrafted

features, such as textural, graph or morphological, or deep learning. In the future, we aim to

explore its applicability to other histological image classification problems, exploiting the fact

that the proposed method is based on the direct modeling of data rather than on any previous

domain knowledge.
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