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Abstract

There is a burst of work on human mobility and encounter networks. However, the connec-

tion between these two important fields just begun recently. It is clear that both are closely

related: Mobility generates encounters, and these encounters might give rise to contagion

phenomena or even friendship. We model a set of random walkers that visit locations in

space following a strategy akin to Lévy flights. We measure the encounters in space and

time and establish a link between walkers after they coincide several times. This generates

a temporal network that is characterized by global quantities. We compare this dynamics

with real data for two cities: New York City and Tokyo. We use data from the location-based

social network Foursquare and obtain the emergent temporal encounter network, for these

two cities, that we compare with our model. We found long-range (Lévy-like) distributions for

traveled distances and time intervals that characterize the emergent social network due to

human mobility. Studying this connection is important for several fields like epidemics, social

influence, voting, contagion models, behavioral adoption and diffusion of ideas.

Introduction

There is a burst of studies on human mobility nowadays due to the increasing availability of

data that allow us to determine, using mobile phones and location-based social networks, the

spatial location of people. On the other hand, it is clear that there must be an intimate connec-

tion between human mobility and encounter networks. People tend frequently to visit popular

places in a city meeting other people there. If this occurs often, there is a chance that a conta-

gion process takes place. In this way, there is feedback between human mobility in space and

the structure of the encounter network. The goal of this research is to study the emergence of

encounter networks due to human mobility in cities.

The science of networks has witness an exponential growth due to the ubiquity of the con-

cept of network in many areas of the human endeavor [1]. In particular, social networks are

now studied not only by researchers on the social sciences, but by people on the exact sciences

as well [2]. All this emergent science acquires importance due to the vast range of applications

in many different areas. On the other hand, human mobility just recently started to be
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explored in detail, thanks to geolocalized data of mobile phones and location-based social net-

works. Some of these studies show that human mobility follows a long-range dynamics, akin

to Lévy walks [3, 4], as has been shown before as a common strategy in many animal species

and humans [5–14].

It is clear that the spatial effects imposed by cities affects the mobility patterns of humans by

constraining the motion of individuals and providing efficient transportation networks that

allows long-range displacements. Understanding human mobility in urban areas is an impor-

tant and challenging problem due to the fact that millions of people live and interact in big cit-

ies [15]. The recent advent of diverse technologies that we use in our daily routines, like

mobile phones and GPS, allows the study of urban human mobility in detail [10, 11, 16–22],

with many applications in different multidisciplinary fields like epidemic spreading and conta-

gion processes [23–26], social influence [27] and urban traffic [28, 29]. Recently the connec-

tion between social networks and mobility has started to be explored as well [30–38].

In this paper, we explore the emergence of encounter networks due to human mobility in

cities. There are many different motivations of why people move. Of course, we live in specific

locations and we have to move to work on a daily basis during the week. We need to move to

many other places like banks, shops, markets, bars, restaurants, visit friends and so on. The

studies of human mobility started to flourish due to the digital trace leave by mobile devices

and the interaction of people through location-based social networks [18, 19, 21, 22, 29, 39–

45].

Some studies have addressed this type of mobility to characterize displacements of people

from one location to another [46, 47], to identify patterns and routines in visited locations [18,

42, 48] and to establish statistical properties of the structure of spatial networks that emerge

from the interplay between the locations in urban regions and human mobility [44, 49]. In

addition to the spatial mobility and its structure, there are different types of networks associ-

ated with the interactions between humans; many of them coupled with spatial translations

and inducing a collective dynamics. For example, many of our activities require to coincide

spatially and temporally with people at work, in restaurants, in a party, in a train station,

among many other places. Now, whereas different types of networks, in particular social net-

works, have been studied extensively in the last two decades, the way of how the social net-

works influence human mobility, and vice versa, has been explored only in recent times. The

interplay between social networks and mobility has been explored in the context of contact

networks [24, 33, 50–54], location based social networks [31, 55], face to face networks [56]

and the spreading of diseases [23, 57–60].

Here, we analyze the dynamics of multiple agents or walkers, visiting specific locations in

space, and their co-coincidences (temporal and spatial) at different sites. From this informa-

tion we obtain a temporal network of encounters or a contact network. We introduce a ran-

dom walker that visits locations with a strategy that combines transitions to nearest sites

with long-range displacements; this navigation strategy is inspired by Lévy flights in contin-

uum spaces. We analyze the capacity of this navigation strategy to explore different locations.

With this random walk strategy, we study the collective dynamics of simultaneous noninter-

acting agents. In this case, previous encounters are considered as a criterion to establish a

connection between agents defining an encounter network that evolves in time. We analyze

the temporal evolution of the topology of the network by different methods, and we establish

connections between the resulting structure and the mobility of the walkers. We will start

our analysis by presenting real data in two cities: New York and Tokyo. We apply a similar

approach to study the dynamics of two groups of people visiting places like restaurants,

gyms, museums, among other specific sites in these two cities. We find that the dynamics of

these groups is similar to the random Lévy strategy. Finally, we study the temporal evolution
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of encounter networks of humans. We observe how the global dynamics of users gives

additional information not captured when only spatial displacements are considered, for

example, the emergence of routines. The methods introduced here are general and can be

implemented to the analysis of different types of dynamics with applications in human

mobility, spreading of diseases and epidemiology.

Results

Encounters in cities: Exploring Tokyo and New York

In this section we study the human mobility and collective behavior of people visiting specific

locations in two big cities. We use data from Foursquare check-ins explored in [55] for the

analysis of spatial-temporal patterns of users activity in location based social networks. The

dataset is available in [61] and contains check-ins in New York city and Tokyo, collected for

about 10 months (from 12 April 2012 to 16 February 2013), for anonymous users visiting loca-

tions like restaurants, gyms, bars, universities, among others. It contains 227428 check-ins in

New York city and 573703 check-ins in Tokyo. Each user’s check-in is associated with its time

stamp, the GPS latitude and longitude coordinates of the visited location and a brief descrip-

tion of the place [55]. For the case of New York the dataset contains the trajectories of

N = 1083 users and N = 2293 users in Tokyo. In Fig 1 we present the traces of two users in

New York and two users in Tokyo; the color of the line connecting two locations makes refer-

ence to the respective check-in reported in the dataset.

In order to determine the characteristics of the dynamics followed by people in New York

and Tokyo, we study the time τ between two successive check-ins registering the visit of loca-

tions and the respective geographical distance r separating them. We show in Fig 2 the results

for all the users. In Fig 2(a) we depict the probability distribution P(τ) of times τ. By using the

methods described by Clauset et al. in [62] for fitting power laws to empirical data, we establish

that the times τ are well described by the probability distribution P(τ)/ τ−γ in the interval

τmin� τ. In particular, for users in New York we have γ = 2.37 and τmin = 85.5h; on the other

hand, in the city of Tokyo γ = 2.45 and τmin = 107.7h. All these values represent the best fit that

minimizes the respective Kolmogorov-Smirnov distances [62, 63]. It is surprising that both

urban areas have a similar exponent (around −5/2) and coincide without any parameter

adjustment. To illustrate this scale invariance in time, we show in Fig 2(c), the time series of

differences of time between check-ins. Notice that here we are witnessing a clear instance of

burst and heavy tails in human dynamics [64]. In Fig 2(b), we show the probability distribution

P(r) of the distance r between the locations reported in two successive user check-ins. We ana-

lyze the entries reported for all the users in order to observe globally the spatial dynamics in

each city. In this case, by searching the best fit of the form P(r)/ r−δ for displacements of

length r in the interval 0.001Km� r� 10Km, we obtain the value δ = 1.147 for the New York

dataset and δ = 1.150 for displacements registered by users in Tokyo; we apply the same meth-

ods implemented for the analysis of P(τ). Again, we obtain the same behavior for the probabil-

ity distribution P(r) for New York and Tokyo. The distribution follows an inverse power-law

near to P(r)/ r−1 with an abrupt decay due to finite-size effects. As we will see in the following

sections, this dynamics can be obtained with our model and are similar to the probabilities

shown in Fig 7(b) for the Monte Carlo simulation with α = 2. This suggest that the displace-

ments of people in big cities have a connection with the Lévy strategy in our model.

In what follows, we study the collective dynamics and the encounter network that emerge

in these two cities. Since many of the locations in the datasets are places where each user can

stay many minutes, for example in a restaurant, a library or a museum, we consider as a co-

coincidence of users (temporal and geographical) if they register their locations at a distance
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D� Δr within the same hour. We do not know if the users are moving together or even if they

are friends, family or have a relationship. We only know that they visit the same location for a

certain window of time. This is the only condition to establish a link in the encounter network.

There exists different options to define a co-coincidence depending on the length Δr and also

the time window to explore. In Fig 3, we present the frequency f(n) of a number n of co-coinci-

dences in the datasets explored for different values of the distance Δr. We observe that in both

cities f(n) maintain similar characteristics for the values of Δr in the interval 1m� Δr� 200m;

in addition, the results are well approximated by the relation f(n)/ n−3.

Now, we explore the temporal evolution of the resulting network with N nodes associated

to N users, where each link between users is the consequence of previous encounters. The

resulting network at time t is described by an adjacency matrix A(t) with entries Aij(t) = 0

if there is no co-coincidences between users i and j at time t or before. On the other hand,

Aij(t) = 1 reveals at least c coincidences of these two users in the interval of time [0, t]. From the

adjacency matrix we can describe the collective dynamics by means of different global quanti-

ties. For example, the average degree hk(t)i and the average clustering coefficient hC(t)i, given

by Eqs (7) and (9), respectively (see the Methods section). In Fig 4 we depict the results for the

temporal evolution of hk(t)i and hC(t)i for the encounter network when we consider at least

c = 1, c = 2, c = 3 previous coincidences of users visiting specific locations in New York and

Tokyo. We use the length Δr = 100m to define co-coincidence of users (a similar behavior for

the resulting temporal networks is observed for the different values of Δr explored in Fig 3).

Fig 1. Mobility features of Fourthsquare users visiting locations in two big cities. Trajectories followed by two users in the cities of (a)

New York and (b) Tokyo. One user visits the locations marked with squares and the other one the sites marked with diamonds. The color of

the line connecting two locations represents the number user check-in when the last location is registered, the corresponding color bar

encodes this value. The maps were drawn from base maps of satellite imagery (Source: http://services.arcgisonline.com/ArcGIS/rest/

services/ESRI_Imagery_World_2D/MapServer) and the Matplotlib Basemap package (https://pypi.python.org/pypi/basemap/1.0.7). The

trajectories of users are depicted using the dataset of Foursquare check-ins explored in [55, 61].

https://doi.org/10.1371/journal.pone.0184532.g001
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The results reveal the differences between the collective dynamics in these two cities. One

important feature that emerges from our approach is that in the case of New York, the average

clustering coefficient of the temporal network reveals a stable configuration after a couple of

weeks with an average clustering coefficient around hCi = 0.1; this behavior remains for

months. A similar result is obtained in our model of independent random walkers depicted in

Fig 10; however, in that case, the stationary state is a consequence of the finite memory of the

walkers. In the case of real cities, such stationary dynamics can be related with the fact that after

some time we tend to encounter the same people at the same places and, therefore, the chance

of incorporating new links decreases and the clustering remains almost constant. On the other

hand, the dynamics in Tokyo is different and the clustering coefficient does not reach a station-

ary value for the period of time registered in the datasets. Additionally to the temporal evolution

of the system, it is important to analyze the final structure of the encounter network. In Fig 5

Fig 2. Statistical analysis of the events registered by Fourthsquare users in the cities of New York and Tokyo. (a) Probability

distribution P(τ) of the time τ between successive check-ins registering the visit of a specific location. The straight line represents a power

law with an exponent P(τ)/ τ−5/2. (b) Probability distribution P(r) associated to the distance r between successive visited locations. The

dashed line represents the power-law relation P(r)/ r−1. In (c), we show the time τ for all the users in the database; each event registers the

time between successive check-ins with the values sorted chronologically for all the users. The results are obtained from the analysis of the

datasets in [55, 61]. Notice the clear instance of burst and heavy tails in human dynamics.

https://doi.org/10.1371/journal.pone.0184532.g002
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we present the structure of the final configuration for the dataset studied in Fig 4. We depict the

largest connected component for the resulting network when we consider one, two or three

encounters (c = 1, c = 2 and c = 3) to define the network. It is observed how, for the users in

New York, the case with c = 3 leads to a structure with a low-clustering coefficient. On the other

hand, in Tokyo there are more encounters between users and therefore the network acquires

more links. In order to analyze the effect of the quantity Δr, in Table 1, we present the detailed

analysis of the final encounter networks obtained by using different values of the length that

determines the co-coincidence of users, namely Δr = 1m, 10m, 20m, 50m, 100m, and 200m. We

analyze the structure of the largest component of the final network with the following quanti-

ties: number of nodes, number of edges, average degree, average clustering coefficient, diameter

and average distance. We observe that in both cities, for the minimum number of encounters

c = 1, the largest component of the final configurations contain a high fraction of the users and

these structures have the small-world property for all the values of Δr considered. On the other

hand, for Tokyo this property is preserved for c = 2 and c = 3. These results can be seen in Fig 5,

where we depict the final configuration obtained for the particular case Δr = 100m.

Long-range random walk strategy

In this part, we are interested in a navigation strategy, similar to Lévy flights, that allows to ran-

domly visit specific locations in a spatial region. We consider N points randomly located in a

2D plane. We introduce an integer number a ¼ 1; 2; . . . ;N that identify these different loca-

tions. In addition, we know the coordinates of the locations and we denote as lab the distance

between the places a and b. In the following, the distance lab = lba� 0 can be calculated by dif-

ferent metrics; for example, in some cases could be appropriated the use an Euclidean metric,

whereas, in other contexts, a Manhattan distance could be more useful. We define a discrete

time random walker that at each step visits one of the locations. The transition probability

Fig 3. Distribution of co-coincidences of users of Fourthsquare in (a) New York and (b) Tokyo. In this case we define a co-

coincidence when two users visit locations separated by a distance D� Δr at the same hour. By using this criterium we calculate the total

number of encounters n for all the pairs of users N(N − 1) and different values of the distance Δr. We present the quantity f(n) that gives the

frequency of the value n = 1, 2, 3,. . ., this is the total number of pairs of users that coincide n times. Dashed lines represent the relation f(n)/

n−3.

https://doi.org/10.1371/journal.pone.0184532.g003
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Fig 4. Temporal evolution of encounter networks for Fourthsquare users in the cities of (a) New York, and (b) Tokyo. In the left

panels we present the average degree hk(t)i and in the right panels we depict hC(t)i for the encounter networks obtained considering at least

c = 1, c = 2 or c = 3 previous encounters (c is the number of encounters). The results are obtained from the analysis of the datasets in [55,

61] and using Eqs (7) and (9). We define a co-coincidence of users if they register their locations at a distance D� 100 meters at the same

hour. In (c), we show the probability distribution of the degree of the network that emerges in New York and Tokyo. Notice that for Tokyo,

with c = 1 and c = 2, the degree distribution develops a heavy tail. We use the value Δr = 100m.

https://doi.org/10.1371/journal.pone.0184532.g004
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wðaÞa!bðRÞ to hop from site a to site b is given by:

wðaÞa!bðRÞ ¼
O
ðaÞ

ab ðRÞ
PN

m¼1
O
ðaÞ

amðRÞ
; ð1Þ

where

O
ðaÞ

ab ðRÞ ¼
1 for 0 � lab � R;

ðR=labÞ
a for R < lab;

(

ð2Þ

and α and R are positive real parameters. The radius R determines a neighborhood around

which the random walker can go from the initial site to any of the locations in this region with

Fig 5. Final configuration of the encounter networks analyzed in Fig 4. We depict the largest connected component of each final

structure resulting from the co-coincidences of users in the cities of (a) New York and (b) Tokyo. Different characteristics of theses structures

are presented in Table 1. The size and color of each node is related to its degree.

https://doi.org/10.1371/journal.pone.0184532.g005
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equal probability; this transition is independent of the distance between the respective sites.

That is, if there are S sites inside a circle of radius R, the probability of going to any of these

sites is simply 1/S. Additionally, for places beyond the local neighborhood, for distances

greater than R, the transition probability decays as an inverse power law of the distance and is

Table 1. Properties of the largest connected component of encounter networks in the cities of New York and Tokyo. We study the final configuration

of the largest connected component for encounter networks obtained by using different values of the distance Δr that defines a co-coincidence. We present

the size N (number of nodes of the largest component), the number of edges, the average number of neighbors hki, the average clustering coefficient hCi and

quantities related with the distance in the network: length of the shortest path connecting two nodes, the diameter that gives the maximum possible distance

and the average distance hdi, which is the average shortest path among all pair of nodes. All the networks explored are analyzed by using the igraph package

[65].

New York

Δr(m) c Size N Total Edges hki hCi Diameter hdi

1 1 940 3837 8.1638 0.1789 9 3.6502

1 2 235 299 2.5447 0.0669 14 5.9413

1 3 3 2 1.3333 0.0 2 1.3333

10 1 951 3954 8.3155 0.1732 9 3.6143

10 2 257 323 2.5136 0.0568 15 6.0148

10 3 16 24 3.0 0.225 5 2.525

20 1 967 4186 8.6577 0.1617 9 3.5534

20 2 300 379 2.5267 0.0589 16 6.2025

20 3 21 31 2.9524 0.2075 6 2.8143

50 1 1012 5218 10.3123 0.1323 8 3.3102

50 2 435 607 2.7908 0.0801 14 5.5013

50 3 97 114 2.3505 0.0978 19 7.2601

100 1 1037 7665 14.783 0.11 8 2.9715

100 2 705 1220 3.461 0.0674 13 4.891

100 3 261 329 2.5211 0.0932 19 6.3167

200 1 1063 15071 28.3556 0.1192 7 2.5427

200 2 944 3253 6.8919 0.0856 11 3.7287

200 3 599 1170 3.9065 0.1201 12 4.5594

Tokyo

Δr(m) c Size N Total Edges hki hCi Diameter hdi

1 1 2260 89004 78.7646 0.2408 6 2.3324

1 2 1753 18103 20.6537 0.2226 9 3.0005

1 3 1234 6618 10.7261 0.2537 11 3.4051

10 1 2267 91462 80.6899 0.2372 6 2.315

10 2 1820 18967 20.8429 0.2155 9 3.0095

10 3 1271 6962 10.9552 0.2531 11 3.4036

20 1 2272 95140 83.75 0.2321 6 2.2898

20 2 1898 20606 21.7134 0.2093 10 3.0044

20 3 1357 7590 11.1864 0.2373 10 3.4079

50 1 2287 112698 98.5553 0.228 5 2.1963

50 2 2117 29958 28.3023 0.2167 7 2.8113

50 3 1655 12046 14.5571 0.2497 9 3.1579

100 1 2291 148251 129.4203 0.2336 5 2.0672

100 2 2253 48251 42.8327 0.2198 6 2.5574

100 3 2006 21537 21.4726 0.2494 9 2.908

200 1 2293 230430 200.9856 0.2739 4 1.9472

200 2 2284 100049 87.6086 0.2538 5 2.2198

200 3 2243 51497 45.918 0.2794 7 2.5342

https://doi.org/10.1371/journal.pone.0184532.t001
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proportional to l� a
ab . In this way, the parameter R defines a characteristic length of the local

neighborhood and α controls the capacity of the walker to hop with long-range displacements.

(See a complete discussion in the Methods section). In particular, in the limit α!1 the

dynamics becomes local, whereas the case α! 0 gives the possibility to go from one location

to any different one with the same probability. In this limit, we have wð0Þa!bðRÞ ¼ N � 1
. Our

model is then a combination of a rank model [18, 19, 66] for shorter distances and a gravity-

like model for larger ones [17].

In Fig 6(a) we illustrate the model for the random strategy introduced in Eq (1). In Fig 6(b),

we present Monte Carlo simulations of the random walker described by Eqs (1) and (2). We

generate N random locations (points) on a 2D plane on the region [0, 1] × [0, 1] inR2 and, for

different values of the exponent α, we depict the trajectories described by the walkers. In the

case of α!1, it is observed how the dynamics is local and only allows transitions to sites in a

neighborhood determined by a radius R = 0.17 around each location. In this case, all the possi-

ble trajectories in the limit t!1 form a random geometric graph [67, 68]; we can identify

features of this structure in our simulation. On the other hand, finite values of αmodel spatial

long-range displacements such as the dynamics illustrated in Fig 6(b) for the case α = 5. We

observe how the introduction of the long-range strategy improves the capacity of the random

walker to visit and explore more locations in comparison with the local dynamics defined by

the limit α!1. In addition, when the number of locations N is large, the trajectories

described by the random walker are similar to Lévy flights in a continuum. This connection is

illustrated in Fig 7, where we study the navigation strategy given by Eq (1) to visit N ¼ 2000

locations in the plane.

In Fig 7(a) we depict one trajectory of the random walker with α = 3; whereas, in Fig 7(b)

we present the probability P(l) to make a displacement of length l. The results are obtained

Fig 6. A schematic illustration of the random walk strategy as defined in Eq (1). In (a) we depict N ¼ 20 random locations on the plane

(represented by stars); the probability to go from location a to a different site is determined by two types of transition probabilities: First, to a

site b inside a circular region of radius R centered in the location a,wðaÞa!bðRÞ, which is a constant; and second, a transition to a site c outside

the circle of radius R,wðaÞa!cðRÞ that considers long-range transitions with a power-law decay proportional to l� a
ac , where lac is the distance

between sites a and c. In (b) we show Monte Carlo simulations of a discrete-time random walker that visits N ¼ 100 specific locations in the

region [0, 1] × [0, 1] inR2 following the random strategy defined by the transition probabilities in Eq (1), with R = 0.17. We depict the results

for a short-range dynamics with very large values of the exponent (α!1), and a long-range dynamics with α = 5. The total number of steps

is t = 200 and the scale in the color bar represents the time at each step.

https://doi.org/10.1371/journal.pone.0184532.g006
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using Monte Carlo simulations of the random strategy with different values of α. We observe

the behavior P(l)/ l−α+1, characteristic of Lévy flights; however, in the cases explored, this

behavior is modified for large l due to the finite-size effect of the domain and the finite number

of points. To obtain the scaling observed in Fig 7(b), let us assume that we have an infinite

plane and a high constant density of sites. In this case, the probability to find a site between the

circular regions with radii l and l + dl is proportional to 2πldl. Then, P(l)dl/ l−α2πldl, and

therefore P(l)/ l−α+1.

In order to quantify the capacity of the random walker to visit the N locations in space, we

use the time τ(α)(R) that gives the average number of steps needed to reach any of the N sites,

independently of the initial condition (see Eqs (5) and (6) in the Methods section). In Fig 8 we

show the time τ(α)(R) for different values of the parameters α and R to visit N ¼ 100 locations

on the plane. The values are obtained using the exact analytical results in terms of the eigenvec-

tors and eigenvalues of the transition matrix defined by Eq (1). It is observed how, for α>> 1,

different values of R define diverse ways to visit the N sites in the plane; in particular, R<< 1

characterize a local strategy that require many steps to reach the locations. On the other hand,

strategies with α� 1 are optimal and in this interval the results are independent of the parame-

ter R. The results observed with the aid of the global time τα(R) suggest that long-range strate-

gies always improve the capacity of the random walker to reach any of the N locations.

The random walk model introduced by Eq (1) is motivated by the fact that many search

strategies in a random environment follow this long-range power law dependency. The reason

is that this Lévy-like strategy is more efficient, in general, than other strategies. That could be

the reason why, as mentioned before, this Lévy flight mode of searching or mobility is used not

Fig 7. Statistical analysis of displacements for the random walk strategy defined in Eq (1). (a) Monte Carlo simulation of a discrete-

time random walker that visits N ¼ 2000 specific locations in the region [0, 1] × [0, 1] inR2 following the random strategy given by Eq (1) with

α = 3 and R = 0.01. The total number of steps is t = 200 and the scale in the color bar represents the time associated to each step. (b)

Probability P(l) to find a displacement of length l, as a function of l, for different values of α. We analyze 106 displacements of the random

walker visiting sites in the plane; the value of R is the same as in (a). The dashed lines represent the power-law relation P(l)/ l−α+1.

https://doi.org/10.1371/journal.pone.0184532.g007
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only by many animal species, but for humans as well [5–14]. In the context of searching in a

changing complex environment, like a city, it turns out that this strategy is also very useful. In

our model, we define a local environment with S sites where the probability of choosing any of

these sites is the same. Therefore, the probability of visiting one of these places is simply 1/S,

and the more sites we have in our vicinity, the less likely is to visit one particular site. In this

sense, our long-range model is similar to the rank model studies by other authors, where the

transition probability is inversely proportional to the rank (defined as the number of sites in

my neighbor) to some power [18, 19, 66]. Outside our local neighborhood, we choose to have

a transition probability that depends on the spatial distance decaying as a power law, similar to

a gravity-like model of migrations [17]. It is worth mentioning that recently we have intro-

duced a Lévy-flight strategy to navigate networks, generalizing previous work, and showing

that this strategy is indeed more efficient [69–74].

In the following section, we will explore the collective effect of many random walkers and

their coincidences in space and time, and the corresponding emergent temporal encounter

network.

Fig 8. Global time to visit N locations. The value τ(α)(R) gives the average number of steps needed to reach any of the N sites,

independently of the initial condition; we use N ¼ 100 random sites in the region [0, 1] × [0, 1] inR2. The results are obtained from the

analytical expressions in Eqs (5) and (6), in the Methods section, and the eigenvectors and eigenvalues of the transition matrix with

elementswðaÞa!bðRÞ.

https://doi.org/10.1371/journal.pone.0184532.g008
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Multiple random walkers

In this section we study the simultaneous dynamics of N random walkers, each of them follow-

ing the strategy described in Eqs (1) and (2) to visit independently N fixed locations in space,

as we described before. We are interested in the coincidence or encounter of these walkers at

different locations.

We define a “social network” based on the encounters of the random walkers by using the

following criteria: Each random walker moves independently visiting locations with transition

probabilities given by Eq (1). Each walker at time t can remember the co-coincidences (to visit

the same location at the same time) that has had with other random walkers at time t and at

previous M − 1 steps. In this way, the value M quantifies the memory of each walker to remem-

ber previous encounters. The emergent collective dynamics is described by a temporal simple

undirected network [75, 76] with a N × N adjacency matrix A(t) at time t, with entries Aij(t) =

1 if in the temporal interval (t − M, t] exists at least c encounters between the walkers i and j. If

this condition is not fulfilled, Aij(t) = 0. In addition, we consider that the dynamics starts at

t0 = 0, and for t< 0, there are no encounters. With this definition, the adjacency matrix A(t) is

symmetric and has binary entries zero or one; Aii(t) = 0, because we do not consider coinci-

dences of a walker with itself.

As an illustration of this process, in Fig 9 we present Monte Carlo simulations of N = 20

simultaneous random walkers visiting N ¼ 50 locations on the plane. We choose the memory

value M = 20 and the minimum of encounters is c = 2. In this case, each random walker

follows a strategy defined by Eq (1) with parameters α!1 and R = 0.25. We depict the paths

Fig 9. Monte Carlo simulation of N = 20 simultaneous random walkers visiting N ¼ 50 locations on the plane. Each random walker

visits independently these locations with a strategy defined by Eq (1) with parameters α!1 and R = 0.25. We choose the parameter M,

characterizing the memory of the walker, as M = 20 and the number of encounters to establish a link is two (c = 2). In the left panels we plot

the trajectories of the walkers in the plane and in the right we plot the encounter network for different times: (a) t = 10, (b) t = 20, (c) t = 50, (d)

t = 100. In the Supporting Information (S1 Video), we include the complete simulation for 0� t� 100.

https://doi.org/10.1371/journal.pone.0184532.g009
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followed by the random walkers and the corresponding network associated to the encounters

for different times. The emergence of new connections is apparent and, for times t> M some

links can vanish as a consequence of the finite memory of the walkers. In the section Support-

ing Information, we present two videos to illustrate the dynamics of the temporal network. In

the S1 Video, we present the complete simulation for the times 0� t� 100. In the S2 Video,

we include a simulation for the case with Lévy flights with α = 5; the locations to visit and

other parameters are the same as in Fig 9.

In the following we describe the evolution of the average degree hk(t)i and the average clus-

tering coefficient hC(t)i, at time t, for the temporal network associated to the encounters of

random walkers (see the Methods section for precise definitions). In Fig 10 we plot our find-

ings obtained from Monte Carlo simulations with N = 500 random walkers. We show the

ensemble average of the results as a function of time for different values of the parameter α. In

this case we observed how the two global quantities hk(t)i and hC(t)i grow, starting from the

null value associated to an empty network, evolving to a stationary state due to the equilibrium

between the creation of new links and the removal of connections associated to the finite

memory of each walker. It is observed how different types of random-walk strategies lead to

different stationary limits. In addition, for all times, increasing the value of α increases the

ensemble average of the global quantities hk(t)i and hC(t)i. In other words, for the local

dynamics (cases with α>> 1) the values hk(t)i and hC(t)i are greater than the results obtained

for the long-range dynamics. However, this result depends on the quantities that define the

system, i.e, the distribution of the N locations in space, the parameters R and α, the memory

M, and the minimum number of contacts c needed to establish a new link in the network.

Once we have studied the temporal evolution of quantities that describe the dynamics and dis-

covered a stationary limit, we explore the structure of the network in the limit t!1. In Fig

10(c) we show the results for the probability distribution of degrees P(k) in the network of

encounters for different values of the exponent (α = 2, α = 5, α = 10). We consider the

Fig 10. Dynamics of encounter networks. (a) Average degree hk(t)i and (b) average clustering hC(t)i as a function of time for different

values of α. The results are obtained by Monte Carlo simulation of N = 500 random walkers visiting N ¼ 100 random locations in the region

[0, 1] × [0, 1] inR2 following the strategy defined by the transitions probabilities given by Eq (1) with R = 0.17. For each time, we compute the

adjacency matrix considering a memory M = 50 and a minimum of c = 3 contacts to establish a link between two nodes. (c) Degree

probability distribution P(k) for encounter networks in the stationary limit for different values of α. We analyze the structure of the networks at

time t = 200 for which the temporal evolution is stationary. All the results are obtained considering the ensemble average from 100

realizations of the system.

https://doi.org/10.1371/journal.pone.0184532.g010
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stationary case in Fig 10(a) and 10(b) at time t = 200. The probability distribution P(k) has a

defined associated to the most probable value of the degree in the network; the form of each

probability distribution varies with α.

Discussion

It is important to mention that we are modeling an encounter network of agents without con-

sidering the social network that might exist between them. That is, we assume that, at the

beginning, they do not know each other and the social bond that might emerge is due to sev-

eral coincidences in the same place at the same time. Of course, we are aware that in reality

you can coincide in this way with many people without establishing a social bond. That is why

it is important to distinguish between an encounter network and a social network, although

they are intertwined. On the other hand, it is clear that an established social network of friend-

ship influence the mobility. First, we tend to move together with friends, and secondly, we

move to meet fiends at some location. Thus, encounter networks contain both a real social net-

work of friendship and simply a network of strangers. Anyhow, for the cases of propagation of

diseases, epidemics, behavioral adoption or diffusion of ideas, the encounter network can be as

important as a social network. In short, there is a feedback: mobility generates friends and

friends move together or move to meet friends.

Conclusions

In this paper we explore the connection between human mobility and encounter networks in

cities. We analyze real data for two big metropolitan areas: New York City and Tokyo. The

data we used is from the location-based social network Foursquare. As a first result, we

obtained a probability distribution for the travelled distances of users that decays as an inverse

power law, and is the same for New York City and Tokyo. Not only that, we obtained a proba-

bility distribution for the successive times of check ins, that follows again a power law and is

the same in both cities. Secondly, using the data set, we construct a temporal encounter net-

work of New York City and Tokyo, that we characterize with the average degree and the

average clustering coefficient. One result using these quantities and some others, is that the

encounter network in Tokyo tend to be a small world, whereas for New York is more like a big

world, at least under some circumstances.

This empirical results inspired us to introduce a model that considers multiple random

walkers that visit specific locations randomly located in space, following a long-range power-

law strategy for the transition probability, akin to Lévy flights. We measure the encounters

or coincidences in space and time and establish a link between these walkers if they coincide

several times, generating in this way a temporal encounter network. We characterize this

temporal network with global quantities, like the average degree and the average clustering

coefficient. There is a qualitative agreement between this model and the empirical data that

we used.

The encounter network that we analyzed here is related with the social network, since peo-

ple tend to visit popular places in a city meeting other people there. If this happens with some

frequency, there is a chance that friendship or familiarity emerges between people due to these

encounters. There is also the case where people go together to the same place precisely because

they are friends; that is, there is a feedback between human mobility and social networks.

However, we cannot distinguish in our analysis of the data set this intertwined relationship.

Finally, we think that our results can be useful in several fields like epidemics, social influ-

ence, contagion models and diffusion of ideas.
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Methods

Master equation

In this part we present statistical properties of the random walk strategy defined by Eqs (1) and

(2). The temporal evolution is modeled as a discrete time Markovian process for which the

probability p(a, t0;b, t) to find the random walker at position b at time t, starting from the site a
at time t0, satisfies the master equation [77]:

pða; t0; b; t þ 1Þ ¼
XN

l¼1

pða; t0; l; tÞwðaÞl!bðRÞ: ð3Þ

Here, the discrete time t = 0, 1, 2,. . ., denotes the number of steps or transitions made by

the random walker. The Markovian process modeled by Eq (3) can be explored by different

methods in order to characterize the dynamics with quantities like the stationary probability

distribution, the mean-first passage time, among others [77]. All these quantities can be

obtained analytically from the spectral properties of the transition matrix with elements

wðaÞa!bðRÞ by applying the methods presented in [69] for Lévy flights on networks or by consid-

ering the process as a random walker in a weighted network [78, 79]. For example, due to the

result O
ðaÞ

ab ðRÞ ¼ O
ðaÞ

ba ðRÞ, there is a detailed balance condition that relates the probability p(a,

t0;b, t) with the reversed case p(b, t0;a, t) that allows to establish that, for finite α, the random

walker can reach any of the N locations. On the other hand, in the case α!1, the dynamics

is constrained to transitions from one site to places in the local neighborhood. In this limit, the

random walker can be trapped in some regions and never visit all the N sites. However, for

specific geometries and random distributed locations, a minimal value rc of the radius can be

calculated in order to define a strategy with local transitions that can reach any of the locations.

In the case of N � 1, random locations on the region [0, 1) × [0, 1) in R2, with Euclidean dis-

tances, all the possible trajectories of the random walker generate a random geometric graph

[67, 68]; this allow us to find that the critical value is rc ¼

ffiffiffiffiffiffiffiffiffiffiffi
logN

pN

q

. In this way, the local

strategy α!1, with radius R> rc, can reach any of the N sites. Also, from the detailed

balance condition we obtained the stationary distribution of the random walker

p1b � lim T!1
1

T

PT
t¼0

pða; t0; b;TÞ, that gives the probability to reach the location b at time

t!1. This quantity is given by:

p1b ¼
PN

l¼1
O
ðaÞ

bl ðRÞ
PN

l;m¼1
O
ðaÞ

lm ðRÞ
: ð4Þ

The stationary distribution p1b allows to characterize the dynamics at time t!1 and to

rank the locations based on the geographical distances. In addition, the average time hTai ¼

1=p1a is an important quantity in the context of Markovian processes and gives the average

number of steps required for the random walker, starting in the location a, to return for the

first time to this location [69].

In addition, we are interested in the capacity of each random walker to visit the different N
locations in space. In order to characterize the dynamics we use the eigenvectors and eigenval-

ues of the transition matrix W with elements wðaÞa!bðRÞ. The right eigenvectors of this stochastic

matrix satisfy W|fai = λa|fai for a ¼ 1; ::;N . The corresponding set of eigenvalues is ordered

in the form λ1 = 1 and 1 > l2 � :: � lN � � 1. On the other hand, using the right eigenvec-

tors we define the matrix Z with elements Zab = ha|fbi. This matrix is invertible, and a new

set of vectors h��aj is obtained by means of Z� 1
ab ¼ h

��ajbi. In terms of these eigenvectors and

Encounter networks due to human mobility

PLOS ONE | https://doi.org/10.1371/journal.pone.0184532 October 12, 2017 16 / 22

https://doi.org/10.1371/journal.pone.0184532


eigenvalues, a similar approach to the methods introduced in [69] allows to analyze the master

Eq (3) to obtain the mean first-passage time and in particular the time:

ta ¼
XN

m¼2

1

1 � lm

haj�mih
��mjai

haj�1ih
��1jmi

ð5Þ

that gives the average number of steps needed to reach the site a from a randomly chosen ini-

tial location. Now, in order to quantify the capacity of the walker to reach N sites, we use the

average of the quantity τa over all the locations, defined as

t �
1

N

XN

a¼1

ta: ð6Þ

This global time τ gives the average number of steps needed to reach any of the N sites,

independently of the initial condition. We denote this quantity as τα(R) to emphasize the

dependence of this quantity with the parameters α and R.

Temporal networks

An important quantity in the study of networks is the degree of each node, that gives the num-

ber of connections to that node. In the case of temporal networks, the degree ki(t) of the node i
at time t is: kiðtÞ ¼

PN
l¼1

AilðtÞ. In terms of this quantity we define the average degree at time t
as:

hkðtÞi ¼
1

N

XN

i¼1

kiðtÞ: ð7Þ

Another important quantity to characterize the topology of networks is the clustering coef-

ficient [1]. This coefficient Ci(t)of the node i at time t, quantifies the fraction of connected

neighbors4i(t) of the node i with respect to the maximum number of these connections given

by ki(t)(ki(t) − 1)/2. In terms of the adjacency matrix we have for ki(t)� 2 [1]:

CiðtÞ ¼
ðA3ðtÞÞii

kiðtÞðkiðtÞ � 1Þ
; ð8Þ

otherwise Ci(t) = 0. Here A3(t) = A(t)A(t)A(t) =4i(t)/2. In addition, the average clustering

coefficient at time t is given by:

hCðtÞi ¼
1

N

XN

i¼1

CiðtÞ: ð9Þ

In this way, for each time t, we can calculate the adjacency matrix A(t) and obtain the global

quantities hk(t)i and hC(t)i that describe the structure of the corresponding temporal network.

Supporting information

S1 Video. Monte Carlo simulation of N = 20 simultaneous random walkers visiting N ¼

50 locations on the plane, represented by stars. Each random walker visits independently

the locations with a strategy determined by the transition probabilitywðaÞa!bðRÞ in Eq (1) with

parameters α!1 and R = 0.25. We choose the parameter M, characterizing the memory of

the walker, as M = 20, and the minimum number of encounters to establish a link is two

(c = 2). In the left panel we depict the trajectories followed by the walkers and in the right we
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plot the respective encounter network for the discrete times 0� t� 100.

(AVI)

S2 Video. Monte Carlo simulation of N = 20 simultaneous random walkers visiting N ¼

50 locations on the plane, represented by stars. In this case we depict the dynamics with α =

5 that defines a navigation strategy with long-range transitions. The rest of the parameters are

the same as in the S1 Video.

(AVI)
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28. De Domenico M, Lima A, González MC, Arenas A. Personalized routing for multitudes in smart cities.

EPJ Data Science. 2015; 4(1):1. https://doi.org/10.1140/epjds/s13688-015-0038-0
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45. Saramäki J, Moro E. From seconds to months: an overview of multi-scale dynamics of mobile telephone

calls. Eur Phys J B. 2015; 88(6):164. https://doi.org/10.1140/epjb/e2015-60106-6

46. Serok N, Blumenfeld-Lieberthal E. A Simulation Model for Intra-Urban Movements. PLoS ONE. 2015;

10(7):e0132576. https://doi.org/10.1371/journal.pone.0132576 PMID: 26161640

47. Zhao K, Musolesi M, Hui P, Rao W, Tarkoma S. Explaining the power-law distribution of human mobility

through transportation modality decomposition. Sci Rep. 2015; 5:9136. https://doi.org/10.1038/

srep09136 PMID: 25779306

48. Yan XY, Han XP, Wang BH, Zhou T. Diversity of individual mobility patterns and emergence of aggre-

gated scaling laws. Sci Rep. 2013; 3:2678. https://doi.org/10.1038/srep02678 PMID: 24045416
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73. Weng T, Small M, Zhang J, Hui P. Lévy Walk Navigation in Complex Networks: A Distinct Relation

between Optimal Transport Exponent and Network Dimension. Sci Rep. 2015; 5:17309. https://doi.org/

10.1038/srep17309 PMID: 26601780

74. Estrada E, Delvenne JC, Hatano N, Mateos JL, Metzler R, Riascos AP, et al. Random Multi-Hopper

Model. Super-Fast Random Walks on Graphs. Journal of Complex Networks. 2017
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