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Abstract

Epidemiologic data has linked obesity to a higher risk of pancreatic cancer, but the underly-

ing mechanisms are poorly understood. To allow for detailed mechanistic studies in a rele-

vant model mimicking diet-induced obesity and pancreatic cancer, a high-fat, high-calorie

diet (HFCD) was given to P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific

oncogenic Kras mutation. The mice were randomly allocated to a HFCD or control diet

(CD). Cohorts were sacrificed at 3, 6, and 9 months and tissues were harvested for further

analysis. Compared to CD-fed mice, HFCD-fed animals gained significantly more weight.

Importantly, the cancer incidence was remarkably increased in HFCD-fed KC mice, particu-

larly in male KC mice. In addition, KC mice fed the HFCD showed more extensive inflamma-

tion and fibrosis, and more advanced PanIN lesions in the pancreas, compared to age-

matched CD-fed animals. Interestingly, we found that the HFCD reduced autophagic flux in

PanIN lesions in KC mice. Further, exome sequencing of isolated murine PanIN lesions

identified numerous genetic variants unique to the HFCD. These data underscore the role of

sustained inflammation and dysregulated autophagy in diet-induced pancreatic cancer

development and suggest that diet-induced genetic alterations may contribute to this pro-

cess. Our findings provide a better understanding of the mechanisms underlying the obe-

sity-cancer link in males and females, and will facilitate the development of interventions

targeting obesity-associated pancreatic cancer.
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Introduction

Pancreatic cancer, of which pancreatic ductal adenocarcinoma (PDAC) represents the vast

majority, is a remarkably aggressive and lethal disease with an overall 5-year survival rate of

only about 8% [1]. The incidence of this disease in the US is estimated to increase to 53,670

new cases in 2017 and it is currently the fourth leading cause of cancer mortality in both men

and women [1]. Despite advances in understanding the tumor biology of pancreatic cancer

development, molecularly targeted therapy has not been translated into substantially improved

prognosis of this deadly disease. Indeed, total deaths due to pancreatic cancer are projected to

increase dramatically to become the second leading cause of cancer-related deaths before 2030

[2]. Consequently, the focus of research has shifted gradually towards its prevention and inter-

ception [3–5]. Novel targets and agents for chemo- and/or dietary prevention are urgently

needed and will most likely arise from the identification of modifiable risk factors, and from a

more detailed understanding of the molecular mechanisms stimulating the promotion and

progression of PDAC.

Obesity, which is often attributable to a shift in diet towards increased intake of unhealthy

fats, simple carbohydrates, and overall elevated calories, has been positively associated with

pancreatic cancer risk [6–10]. Interestingly, visceral obesity (i.e. excess deposition of intra-

abdominal fat) is specifically linked to an increased risk for pancreatic and other cancers, inde-

pendent of general obesity measured by body mass index (BMI) [9, 11, 12]. Moreover, BMI is

imperfect to distinguish between metabolically healthy obesity from metabolically unhealthy

obesity with accompanying inflammation and hyperinsulinemia. In view of the compelling

epidemiological evidence and the increasing prevalence of obesity, the identification of strate-

gies to disrupt the link between obesity and pancreatic cancer is of central importance. How-

ever, the molecular basis underlying this link is complex and still unclear. Several potential

mechanisms have been proposed, including metabolic perturbations (hyperinsulinemia,

hyperglycemia, or dyslipidemia), unresolved inflammation, and dysregulated autophagy, all of

which are common features observed in obesity as well as in pancreatic cancer, creating a

tumor-promoting environment [13]. Infiltrating immune cells and stromal elements as com-

ponents of a robust fibro-inflammatory reaction, along with initiated neoplastic cells, are

thought to orchestrate the tumor microenvironment to foster proliferation, survival, metasta-

sis, and immunosuppression, through the production of mediators such as cytokines, chemo-

kines, and prostaglandins [14, 15]. Dysfunctional autophagy has also been linked to pancreatic

diseases including pancreatitis and pancreatic cancer [16, 17]. In PDAC development, the

function of autophagy seems to be double-edged and context-dependent [18, 19]. It is there-

fore pertinent to investigate the role of autophagy in obesity-associated PDAC, which remains

poorly understood.

In order to provide a platform for detailed mechanistic studies, we have previously

described a highly relevant model of diet-promoted pancreatic neoplasia. Specifically, a high-

fat, high-calorie diet (HFCD) was given for 3 months to P48+/Cre;LSL-KRASG12D (KC) mice

carrying a pancreas-specific oncogenic Kras mutation [20]. Compared with animals fed a con-

trol diet (CD), mice in the HFCD group gained significantly more weight and developed

hyperinsulinemia, hyperglycemia, and hyperleptinemia recapitulating conditions associated

with the human metabolic syndrome. Importantly, the pancreas of HFCD-fed KC mice

showed enhanced inflammation, increased stromal fibrosis, and more advanced PanIN lesions

[20]. Furthermore, mice on the HFCD exhibited a significantly increased inflammatory reac-

tion in the visceral adipose tissue (VAT), particularly in the peri-pancreatic fat (PPF), com-

pared to animals on a CD [21]. These results suggest that obesity-associated inflammation in

the pancreas and surrounding VAT may accelerate early pancreatic neoplasia in KC mice.
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However, the effects of the HFCD on the development of invasive pancreatic cancer were not

explored. Also, the dynamics of HFCD-promoted tumorigenesis were not addressed in previ-

ous studies with short-term and single time-point analysis.

Here, we present further longitudinal and detailed analyses of invasive pancreatic tumor

development in KC mice. The effects of the HFCD on inflammatory, fibrotic, and autophagic

pathways were investigated. In addition, we performed exome sequencing on isolated

advanced PanIN lesions to investigate HFCD-associated genetic alterations. Our data clearly

show that diet-induced obesity can promote the development of invasive pancreatic cancer in

female and male KC mice providing a suitable and valuable model to further investigate the

underlying molecular signals and to evaluate interventions targeting obesity-associated pan-

creatic cancer development. Furthermore, we described for the first time genetic variants in

advanced PanIN lesions that are unique to the HFCD and HFCD-induced obesity, suggesting

that diet-induced genetic alterations may underlie and/or contribute to the acceleration of

PDAC development by the HFCD.

Materials and methods

Experimental animals

The conditional KrasG12D (KC) model of pancreatic neoplasia [22] was used for this study.

After weaning, offspring of crosses of LSL-KRASG12D and P48+/Cre mice were randomly allo-

cated to either a control diet (CD) or a high fat, high calorie diet (HFCD). Individually tagged

mice had free access to the diet as well as water. Body weights, health and behavior of animals

were monitored weekly. Different cohorts of male and female mice were sacrificed at 3, 6, and

9 months of age, and tissues were harvested for histological analysis. Animal studies were

approved by the Chancellor’s Animal Research Committee of the University of California, Los

Angeles in accordance with the NIH Guide for the Care and Use of Laboratory Animals (pro-

tocol number: 2011-118-11). Animals were prematurely euthanized if signs of advanced tumor

development (ascites, palpable mass, jaundice, cachexia, weight loss of more than 10%)

occurred. None of the animals died without euthanasia.

Genotyping analysis

Prior to randomization to the study diets, the presence of the LSL-KRASG12D and Cre alleles in

the animals were determined by PCR analysis of genomic DNA, as described elsewhere [23].

Animals with both the LSL-KRASG12D and Cre alleles were designated as mutant (KC) and ani-

mals with neither allele were considered wild-type (WT).

Experimental diets

The diets were obtained from Dyets, Inc. (Bethlehem, PA). Mice at 1 month of age were ran-

domly allocated to receive either the CD or HFCD. Detailed composition of the diets is shown

in S1 Table. Briefly, 12% and 40% of calories were derived from fat (corn oil-based) in the CD

and HFCD, respectively. The diets were handled under low light conditions, and stored at

-20˚C for long-term storage or at 4˚C for short-term storage in sealed containers. The diets

given to mice were replaced weekly.

Metabolic panel

After blood was collected from the mice by cardiac puncture, plasma was separated by centri-

fugation at 5,000 rpm for 10 minutes at room temperature, and then stored at −80˚C until

use. Plasma levels of insulin and leptin were measured using the MILLIPLEX MAP Mouse
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Adipokine Magnetic Bead Panel—Endocrine Multiplex Assay (EMD Millipore, Billerica, MA)

according to the manufacturer’s instructions. Blood chemistry (cholesterol, glucose, and tri-

glycerides) was obtained by the UCLA Division of Laboratory Animal Medicine.

Pancreas histology

Formalin-fixed, paraffin-embedded (FFPE) pancreatic tissues of each animal were sectioned

(4 μm) and stained with hematoxylin and eosin (H&E), and were histologically analyzed by a

gastrointestinal pathologist blinded to the experimental groups. Inflammation was graded as

previously described [20]. Acinar loss was based on the percentage loss across the entire cross-

section and graded as 0 = absent; 1 = 1–25%; 2 = 26–50%; 3 = 51–75%; and 4>75%. Inflamma-

tion was based on the average number of lobular inflammatory cells per 40x high-power field

(HPF; as counted in 10 non-overlapping HPFs) and graded as 0 = absent; 1 = 1–30 cells; 2 =

31–50 cells; 3 = 51–100 cells; and 4>100 cells. Fibrosis was based on the cumulative area of

stromal fibrosis across the entire pancreas and graded as 0 = absent; 1 = 1–5%; 2 = 6–10%;

3 = 11–20%; and 4>20%. Murine PanINs and invasive ductal adenocarcinomas were classified

according to histopathologic criteria as previously described [24, 25]. The total number of

ductal lesions and their grade were determined. Only the highest-grade lesion per pancreatic

lobule was evaluated. About 100 pancreatic ducts of the entire fixed specimen (tail of the pan-

creas) were analyzed for each animal. The relative proportion of each mPanIN to the overall

number of analyzed ducts was recorded for each animal.

Sirius red staining

Sections (4 μm) from FFPE tissues were stained with Sirius red (which stains collagen red) to

evaluate the extent of collagen deposition. Whole stained slides were scanned using the AT

Turbo slide scanner (Aperio, Vista, CA) and digitized images were visualized using the Leica

Digital Image Hub (Leica microsystems). The total fibrosis area stained by Sirius red in each

specimen was quantified by morphometric analysis in at least 10 digitized, non-overlapping

sections at X200 magnification using the MetaMorph imaging system (Universal Imaging Cor-

poration, PA) and expressed as percentage of total tissue area. The percentage of Sirius red

stained area in each specimen was calculated as an average of data obtained from all digitized

sections; at least two specimens per mouse were measured, and 3–4 mice per group were

investigated.

Western blotting

Mouse pancreatic tissue samples were homogenized in RIPA (radio-immunoprecipitation

assay) buffer containing 50 mmol/L Tris (pH 7.4), 150 mmol/L NaCl, 1% deoxycholic acid,

1% Triton X-100, 0.1% SDS and a mix of protease and phosphatase inhibitors (Roche Applied

Science, Basel, Switzerland). Protein extracts were resolved by SDS-PAGE for immunoblot

analysis. The following primary antibodies were used: fibronectin (#F3648), prolyl-4-hydroxy-

lase (P4HA; #2SAB1100773), α-SMA (#A2547) and amylase (#A8273) were purchased from

Sigma-Aldrich (St. Louis, MO); cadherin 11 (#4442), p-STAT3 (Tyr 705; #9145), and total

STAT3 (#9132) from Cell Signaling Technology (Danvers, MA), and glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH; #9484) from Abcam (Cambridge, UK). Horseradish peroxi-

dase-conjugated specific secondary antibodies were from Cell Signaling Technology (rabbit

and mouse). The antibodies were diluted according to the manufacturer’s recommendation.

Immuno-reactive bands were visualized by chemiluminescence (Pierce) and densitometrically

quantified using the PXi Touch Imaging System (Syngene). To estimate protein levels, optical
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density values in each blot were expressed relative to those of the corresponding loading

control.

Immunofluorescence staining

Immunofluorescence (IF) staining for LC3 and p62 was performed on FFPE pancreas tissue

sections. After xylene deparaffinization, ethanol dehydration, and heat-induced antigen

retrieval with 0.01 M citrate pH 6.0 was performed, nonspecific binding was blocked with 5%

rabbit or 5% goat serum. Tissue sections were incubated with primary antibodies, followed by

the incubation with FITC or Texas Red conjugated secondary antibodies. The primary anti-

body against LC3-B was purchased from Cell Signaling Technology (Danvers, MA), and anti-

body against p62/SQSTM1 was from Abcam (Cambridge, UK). IF images were acquired with

a Zeiss LSM 710 confocal microscope using a 63x objective. Nuclei were stained with DAPI.

Differential interference contrast (DIC) was used to display pancreas histology.

Exome sequencing

Harvested pancreas tissues were embedded in OCT. Serial sections were prepared on PEN

slides for laser-capture microdissection (LCM). PanIN-2/3 lesions (identified from flanking

H&E slides) were laser-captured from serial sections onto Capsure LCM Caps using an Arctur-

usXT LCM instrument. Caps were extracted using the PicoPure DNA extraction kit from

Thermo Fisher Scientific (Waltham, MA). Extracted DNA was amplified using the SeqPlex

DNA Amplification Kit (Sigma-Aldrich, St. Louis, MO) and tested for quality using a Bioana-

lyzer 2100 and run on a 1% gel prior to library preparation. Sample libraries were prepared

using the Swift Biosciences Kit (Accel NGS 2 plus) and Agilent Sure Select XT Mouse Exome

post-capture kit following manufacturer’s instructions. Sample libraries were pooled and run

paired-end (2x75 bp) on an Illumina NextSeq 500 for an average of 90M reads per sample.

Sequencing data analyses

Variant calling, annotation, and prioritization. Sequence data was aligned to the mouse

genome (GRCm38 assembly for reference strain C57BL/6J) using the BWA aligner [26]. PCR

duplicates were marked and removed, and quality scores of alignments were recalibrated.

CD and HFCD reads (n = 4 per group) were pooled together, and VCF (Variant Call Format)

files were generated by running Freebayes (Bayesian haplotype-based polymorphism discovery

and genotyping: http://arxiv.org/abs/1207.3907) separately on the CD and HFCD read sets

with filtering thresholds chosen to be QUAL>10 and DEPTH>30. The set of variants unique

to the HFCD group was computed by comparing coordinate and variant information con-

tained in the respective VCF files. VCF files were uploaded to UCSC genome browser (http://

genome.ucsc.edu/, [27]) with three tracks: variants found in CD group, HFCD group, and in

HFCD but not in CD groups (HF&notCD). Exon coordinates were downloaded from UCSC

table browser [28] and reduced to a distinct set of exons per gene (table browser reports identi-

cal exons appearing in multiple isoforms). Using Perl scripts, gene symbol IDs were merged

into the exon BED file before intersecting with variant positions, and the variant counts for

each gene were accumulated from the output of the bedTools intersectBed command [29].

The mouse-specific analysis was executed using freebayes with filtering thresholds set to

QUAL>10 & DEPTH>10 (the DEPTH requirement was reduced in this analysis to account

for the smaller data set compared to the grouped pooled data). The filtered mouse-specific

HFCD VCF files were used to extract the set of variants that did not appear in the CD pooled

case, and then they were intersected with exon regions and accumulated as gene-specific hit-

counts.
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Pathway analysis. Pathway analyses were performed using the publicly available database,

ConsensusPathDB (CPDB, http://cpdb.molgen.mpg.de/MCPDB). CPDB incorporates data

from 16 public databases to generate interaction networks potentially associated with the user-

specified list of genes. Genes with at least one variant unique to the HFCD were analyzed by an

over-represented pathway analysis. We selected pathways that matched at least 10 genes from

the list with the default p-value threshold of 0.01. A p-value in this software is determined as

the result of hypergeometric test based on the number of physical entities present in both the

predefined set and user-specified list of physical entities.

Statistical analysis

Values are presented as mean ± SD or SEM. To determine statistical significance, one-way (or

two-way) ANOVA and two-tailed Student’s t-tests were performed assuming unequal vari-

ances. A p-value less than 0.05 was considered significant and was indicated with an asterisk (�).

Results

The HFCD accelerates KRASG12D-driven pancreatic cancer

development

In order to investigate the time-course of pancreatic cancer development promoted by obesity,

we used P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific oncogenic Kras muta-

tion [20]. The KC mice were randomly allocated to either the CD or HFCD and were weighed

weekly. Different cohorts were sacrificed at 3, 6, and 9 months, and tissues were harvested for

further analysis, as illustrated in Fig 1A. HFCD-fed KC mice gained more weight (g) than CD-

fed KC mice at 3- (9.9 vs. 6.8), 6- (16.2 vs. 9.4), and 9-months (20.0 vs. 12.7) (p<0.05 for all

ages). Male mice gained more weight than female mice at each time point (p<0.05) (Fig 1B).

We have shown previously that 3-month-old mice fed the HFCD in comparison with CD-fed

animals displayed higher levels of insulin, leptin, and glucose in plasma, but there was no sig-

nificant difference in plasma cholesterol and triglyceride levels between the two diet groups

[20]. Here, we observed similar changes in the metabolic panel of the 9-month-old KC mice

given CD vs. HFCD (Fig 1C).

A salient feature of the results presented in this study is that the occurrence of pancreatic

cancer was remarkably accelerated by the HFCD (Figs 2 and 3). The PDAC incidence (%) for

CD-fed KC mice was 0 at all ages, and 10, 21, and 42 for HFCD-fed mice at 3, 6, and 9 months,

respectively (Fig 3A). It is noteworthy that male mice had a higher rate and an earlier onset of

malignancy than females (Fig 3B). For HFCD-fed KC males, the PDAC incidence (%) was 17,

44, and 50 at 3, 6, and 9 months, respectively (Fig 3B, left panel), and 0, 0, and 33 for HFCD-

fed KC females (Fig 3B, right panel).

In addition, KC mice fed the HFCD showed more extensive inflammation and fibrosis, and

more advanced PanIN lesions, compared to age-matched CD-fed animals (Fig 2). The stage

distribution (in %) of PanIN lesions was further evaluated in the pancreas of cancer-free mice.

In each age group (3, 6, or 9 months), the KC mice fed the HFCD displayed significantly less

normal pancreatic ducts and more advanced PanINs than did those on the CD (Fig 4). Overall,

these data demonstrate that the HFCD accelerates KRASG12D-driven PanIN formation and

pancreatic cancer development, with a noticeable gender difference.

The HFCD promotes pancreatic inflammation and fibrosis in KC mice

To assess pancreatic inflammation, we histologically evaluated pancreatic tissue sections of KC

mice fed the CD and HFCD for different time periods. The pancreatitis index (0–12) was
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Fig 1. HFCD leads to greater weight gain in male and female KC mice. (A) A schematic view of the study design. (B)

Weight gain of male (left panel) and female (right panel) KC mice fed the CD or HFCD. The values are means ± SD. *P<0.05,

Student’s t-tests. For the male mice collected at 3, 6, and 9 months, n = 12 (5 on CD and 7 on HFCD), 12 (6 on CD and 6 on
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calculated as the sum of individual scores of acinar cell loss, number of infiltrating inflamma-

tory cells, and percentage of stromal fibrosis. Remarkably, scores of these parameters were all

significantly greater in the pancreas of HFCD-fed male and female KC mice in every age

group (3, 6, or 9 months) (Fig 5), indicating that the HFCD leads to more prominent early and

sustained pancreatic inflammation.

Inflammation in the neoplastic pancreas is associated with stromal fibrosis, which is

thought to be regulated by pancreatic stellate cells [30]. Characteristics of a fibrotic response

include increased production of stromal elements such as collagen and fibronectin. Pancreatic

tissues from KC mice fed the HFCD were highly fibrotic (Fig 6). As determined by Sirius red

staining, the levels of collagen deposition were significantly greater in the pancreas of KC mice

fed the HFCD for 3, 6 and 9 months (Fig 6A and 6B). At 9 months, these mice display thicker

collagen bundles around PanINs than KC mice fed CD (Fig 6B), suggesting increased ECM

stiffness. In addition, the HFCD led to the upregulation of fibronectin, Prolyl 4-Hydroxylase,

Alpha Polypeptide II (P4HA2, a key component of the enzyme prolyl 4-hydroxylase that is

required for the formation of 4-hydroxyproline and folding of newly synthesized collagen

fibers), cadherin 11 (a type II cadherin expressed by mesenchymal cells that regulates stroma

remodeling, cell migration and metastasis; [31, 32]) and alpha smooth muscle actin (α-SMA, a

marker of activated pancreatic stellate cells in the pancreas (Fig 6C and 6D). Furthermore,

HFCD induced in KC mice marked activation of signal transducer and activator of transcrip-

tion-3 (STAT3), as indicated by increase phosphorylation of STAT3 (Y705) in HFCD-fed

compared to CD-fed mice (Fig 6D). STAT3 is a key regulator of pancreatic cancer develop-

ment and progression [33, 34] and recent evidence indicates that these effects are mediated by

STAT3-induced stroma remodeling and increased ECM stiffness [35]. In accordance with the

histological data showing acinar cell loss, levels of amylase were markedly decreased in the

pancreas of HFCD-fed mice (Fig 6C and 6D). Together, these data demonstrate that HFCD

promotes an enhanced fibro-inflammatory reaction in the pancreas of KC mice.

The HFCD reduced autophagic flux in PanIN lesions of KC mice

Autophagy fuels malignant cells under certain conditions (e.g. metabolic stress caused by des-

moplasia) and is known to stimulate progression of PDAC in a KRAS model [36]. To investi-

gate the role of autophagy in obesity-associated pancreatic cancer, we therefore examined the

effects of the HFCD on autophagy in the pancreas of KC mice at different ages (3 or 9 months)

utilizing immunofluorescence (IF)-based and immunoblot (IB)-methods. As shown in Fig 7A

and 7B, PanIN lesions in KC mice on either diet showed an age-dependent accumulation of

autophagic vacuoles evidenced by the accumulation of LC3-II puncta for IF and the intensity of

LC3 for IB [37]. Notably, the HFCD potentiated vacuole accumulation in PanIN lesions as man-

ifested by an increase in the integral intensity of LC3-II puncta, average size of LC3-II dots, and

area occupied by LC3-II, with the effect being more pronounced at 9 month of age (Fig 7C).

In addition to LC3-II, we also measured the changes in p62, a multifunctional protumori-

genic adaptor protein accumulated in human PDAC, known to stimulate the proinflammatory

and anti-apoptotic transcription factor NF-kB and promote cancer development [38–40].

Immunostaining of p62, which accumulates with ubiquitin-conjugated aggregates, has been

recommended as a histochemical diagnostic marker for protein aggregates [41]. Furthermore,

HFCD), and 11 (5 on CD and 6 on HFCD), respectively. For the female mice collected at 3, 6, and 9 months, n = 11 (6 on CD

and 5 on HFCD), 12 (5 on CD and 7 on HFCD), and 11 (5 on CD and 6 on HFCD), respectively. (C) Plasma levels of insulin,

leptin, cholesterol, glucose, and triglycerides in 9-month-old KC mice fed the CD or HFCD. Data are depicted as means ± SD.

*P<0.05 vs. control, Student’s t-tests.

https://doi.org/10.1371/journal.pone.0184455.g001
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Fig 2. Histological analysis of the pancreas. Pancreas histology of male and female KC mice fed the CD or HFCD for 3, 6, and 9 months. For

each group, images (10x) from two different mice were shown. CA, cancer.

https://doi.org/10.1371/journal.pone.0184455.g002
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p62 is specifically degraded by autophagy and is widely used as an indicator of autophagic flux

efficiency [31]. Interestingly, PanIN lesions do not reveal any significant changes in p62 inte-

gral intensity with age or diet (Fig 7D and 7E). However, the HFCD increased % area posi-

tively stained for p62, indicating accumulation of protein aggregates (Fig 7E). It is noteworthy

that the HFCD promoted formation of autophagic vacuoles and p62-labeled protein aggre-

gates not only in PanINs but also in morphologically normal areas of pancreas from KC mice

(Fig 7F and 7G). Taken together, these data suggest that the HFCD leads to inefficient (dysre-

gulated) autophagy in the pancreas of KC mice.

Exome sequencing revealed genetic variants unique to the HFCD

In order to investigate whether the HFCD or the HFCD-induced inflammatory microenviron-

ment induces genetic alteration that could explain the acceleration of PDAC development in

Fig 3. HFCD leads to increased cancer incidence in male and female KC mice. (A) The cancer incidence (%) for CD- and HFCD-fed KC mice at indicated

ages. (B) Gender-specific analyses of the PDAC incidence (%) for CD- and HFCD-fed KC mice at indicated ages. The numbers of mice included in the

analyses are: n = 34 for 3-month-old mice including 13 on CD (6 males and 7 females) and 21 on HFCD (12 males and 9 females), n = 31 for 6-month-old mice

including 12 on CD (6 males and 6 females) and 19 on HFCD (9 males and 10 females), and n = 36 for 9-month-old mice including 17 on CD (9 males and 8

females) and 19 on HFCD (10 males and 9 females).

https://doi.org/10.1371/journal.pone.0184455.g003
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Fig 4. HFCD leads to accelerated pancreatic neoplasia in male and female KC mice. Staged PanIN distribution in cancer-free male and female, CD-

and HFCD-fed KC mice at indicated ages. The values are means ± SD.

https://doi.org/10.1371/journal.pone.0184455.g004
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Fig 5. HFCD promotes inflammation in the pancreas of KC mice. Inflammatory parameters in the histological sections of pancreas were evaluated

quantitatively. Specifically, acinar loss scores, inflammatory scores, fibrosis scores, and pancreatitis indices were determined for male and female KC

mice fed the CD or HFCD for different time periods. The values are means ± SD. *P<0.05, Student’s t-tests.

https://doi.org/10.1371/journal.pone.0184455.g005
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HFCD-fed KC mice, we performed exome sequencing on laser-captured PanIN-2/3 lesions of

CD- and HFCD-fed KC mice. Exome sequencing identified a total of 4,856 variants in micro-

dissected PanIN-2/3 lesions specific to the pooled HFCD group. These variants were then pro-

cessed to generate a list of somatically mutated genes with a read-depth of 30 and a quality

score of 10. A total of 2,986 genes were found to contain at least a single variant call (S2

Table). The number of variants unique to the HFCD group ranged from 1 to 36 per gene,

with the majority of the genes having only a single variant (75%). As expected, the KrasG12D

mutation was detected in each of the pancreatic lesions, confirming the validity of the exome

sequencing. There were no additional somatic mutations present within the Kras gene. More-

over, there were no somatic mutations detected in a panel of genes that are commonly mutated

in human PDAC, including Tp53, Smad4 and Ink4a/ Arf.
Using this gene set, we used the CPDB analysis tool to determine whether the constellation

of mutated genes may be involved in specific signaling pathways. We identified 33 signaling

pathways that were uniquely altered by the HFCD, in which at least 10 genes from the list were

involved. Based on p-values, the top five pathways are listed in Table 1. Many of the variants

that are specific to the HFCD group were identified in genes involved in several key pathways:

Fig 6. HFCD markedly accelerates stroma formation, extracellular matrix deposition and exocrine atrophy in KC mice. (A) The extent of

pancreatic collagen deposition was evaluated by Sirius red staining. Graph shows percentage of Sirius red-stained area in pancreas tissue sections at

the indicated ages. Data represent mean ± SEM; 8–10 random pancreatic sections were evaluated per mouse; 3–4 mice per group. *P<0.05 vs. CD.

(B) Pictures illustrate Sirius red staining in pancreatic tissue sections of KC mice fed the CD or HFCD for 6 months, the time-point displaying the

highest differences in collagen deposition between CD-fed and HFCD-fed mice. (C) Pancreatic levels of fibrosis-related proteins were analyzed by

Western blotting in pancreas lysates from KC mice fed the CD or HFCD for 9 months. Picture shows representative immunoblots of fibronectin; prolyl-

4-hydroxylase (P4HA2), a key collagen processing enzyme; cadherin 11, a mesenchymal marker expressed by activated myofibroblasts; α-SMA, a

myofibroblast marker; and p-STAT3 (Y705)/ total STAT3. Picture also shows protein levels of pancreatic amylase, a digestive enzyme produced by

acinar cells and GAPDH used as loading control. Each lane represents an individual mouse; three mice per group are shown. (D) Graphs show optical

density of immunoblots depicted in panel D. Data in graphs represent mean ± SEM, n = 3. *P<0.05 vs. CD.

https://doi.org/10.1371/journal.pone.0184455.g006
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transport of small molecules between cells and the microenvironment, including a solute car-

rier (SLC) group of membrane transport proteins and ECM components (Table 1).

To identify pathways that are common among individual mice, we generated a list of genes

with HFCD-specific variants for each mouse. The number of genes with one or more variants

Fig 7. HFCD leads to an accumulation of autophagic vacuoles and p62/SQSTM1. (A,D,F) Representative IF images of LC3-II (A,F), p62/SQSTM1 (p62)

(D,F) in PanIN lesions (A,D), and histologically normal exocrine pancreas (F) of KC mice of indicated age fed CD and high fat calorie diet HFCD. DAPI was

used to stain nuclei, and DIC to visualize tissue structure (upper lines). Scale bar: 20 μm. (B) Immunoblot analysis of LC3 in pancreas from 3- and 9-month-old

KC mice. GAPDH is a loading control. (C,E,G) Quantification of LC3-II (C,G) and p62 (E,G) integral intensity, average size of puncta and % positively stained

area was performed with ImageJ software. The values are means ± SEM (3 mice were analyzed for each strain, age and diet). * P< 0.05 vs. 3 months (mo)

CD, # p < 0.0001 vs. 3 mo HFCD, $ p < 0.05 vs. 9 mo CD, ƒ p< 0.05 vs. 3 months (mo) CD.

https://doi.org/10.1371/journal.pone.0184455.g007
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ranged from 1,203 to 1,827 between mice with filters set for a read-depth of 10 and a quality

score of 10. Genes that were specifically altered within the HFCD group were similar among

mice (in particular mice #HF_S5, HF_S7, and HF_S8), confirming a remarkably consistent

effect of the HFCD on inducing genetic alterations (Table 2). Using the lists of genes, mouse-

specific CPDB analyses were performed as described above. The result showed that several

pathways among all four HFCD-fed KC mice were commonly altered, including transmem-

brane transport, PI3K-Akt signaling, insulin signaling, ECM-receptor interaction, SLC-medi-

ated transmembrane transport and G protein signaling pathways (Table 3).

Given the known importance of the insulin (PI3K/Akt/mTORC1) signaling pathway in

nutrient sensing and PDAC development [42], we analyzed in detail the HFCD-induced

genetic alterations within this pathway. We found several mutations in key molecules within

the insulin signaling pathway, e.g. mTOR and class II PI3K isoforms that may be of functional

relevance. For example, we detected a non-synonymous substitution T2345A in exon 51 of

mTOR that occurred at a frequency of 50%. This mutation causes an amino acid change from

a methionine (ATG) to lysine (AAG) in position 2,345, resulting in a change in polarity (non-

polar to polar), pH (neutral to basic) and hydropathy to the protein. Most importantly, this

codon is located within the kinase domain of the protein, suggesting possible changes in kinase

activity.

Discussion

There is strong epidemiologic evidence linking obesity to an increased risk of cancer, includ-

ing pancreatic cancer [10] but the mechanisms involved have remained incompletely under-

stood. The results presented in the current study provide a comprehensive time-course of

pancreatic cancer development in female and male mice and for the first time analyzes genetic

exomic alterations in PanIN lesions in HFCD-fed obese KC mice. This detailed analysis identi-

fied several major and novel observations:

1. The most salient finding of the current study is a substantially increased incidence of inva-

sive pancreatic cancer in KC mice fed the HFCD. This result is in line with a very recent

report showing that a high fat diet significantly promotes primary pancreatic cancer growth

and the rate of metastasis in the KPC mouse model (with additional p53 mutation) [43]. In

our study, the development of PDAC was associated with more extensive pancreatic inflam-

mation and fibrosis, and dysregulated autophagy in the pancreas. Although the mecha-

nisms driving the obesity-cancer link are not fully understood, a number of factors are

implicated, such as the pro-inflammatory state and altered levels of adipokines associated

with excess adiposity [44]. Additionally, in obesity there are elevated levels of growth hor-

mones (i.e. insulin and insulin like growth factor-1) as a consequence of the insulin resis-

tance, which is also causally linked to dysfunctional adipose tissues, especially VATs [45].

Table 1. Enriched pathways of genes with variants unique to HFCD (pooled analysis).

Pathways # of genes in the

pathway

# of genes from the

list

p-value

Transmembrane transport of small molecules 499 100 (20.2%) 1.97E-07

SLC-mediated transmembrane transport 249 53 (21.3%) 3.38E-05

ECM-receptor interaction—Mus musculus (mouse) 87 24 (27.6%) 8.48E-05

Transport of glucose and other sugars, bile salts and organic acids, metal ions and

amine compounds

95 25 (26.3%) 0.00014

Amine compound SLC transporters 30 11 (36.7%) 0.000534

https://doi.org/10.1371/journal.pone.0184455.t001
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Our previous and current findings reinforce the importance of an obesity-associated

inflammatory environment in diet-promoted PanIN development and cancer formation, as

enhanced inflammation was observed in the pancreas of the HFCD-fed mice ([20] and Fig

5). Importantly, we recently showed that KC mice on the HFCD exhibited a significantly

more robust inflammation in the VATs, particularly in the depot adjacent and overlying

the pancreas (peri-pancreatic), compared to animals on the CD [21]. These results suggest

that VAT inflammation is a critical promoting factor in obesity-promoted neoplastic

progression.

Table 2. List of genes and variant counts unique to HFCD in individual mice.

HF_S4 Count HF_S5 Count HF_S7 Count HF_S8 Count

Mroh2a 12 Klra22 35 Klra22 35 Klra22 35

Hjurp 10 BC048546 34 BC048546 34 BC048546 34

Col6a6 9 Klra6 28 Klra6 28 Polr1a 30

Vmn2r121 8 Klra18 25 Klra18 25 Urb1 29

Muc4 7 Polr1a 25 Polr1a 25 Klra6 28

Ccp110 6 Urb1 25 Urb1 25 Klra18 25

Ddo 6 Klra7 24 Klra7 24 Klra7 24

Gm13152 6 Klra9 20 Klra9 20 Klra9 20

Ppwd1 6 Klra5 19 Klra5 19 Klra5 19

Tmc5 6 Mpo 17 Mroh2a 18 Mroh2a 19

Col6a4 5 Ankrd26 15 Mpo 17 Muc4 19

Col6a5 5 Ints10 15 Muc4 17 Ankrd26 17

Pkd1l2 5 Mroh2a 14 Ankrd26 15 Hjurp 17

Slc22a16 5 Muc4 14 Hjurp 15 Mpo 17

Cdh1 4 Dnah6 13 Ints10 15 Ptcd3 17

Gm2022 4 Hjurp 13 Dnah6 13 Ints10 15

Parp8 4 Klra1 13 Klra1 13 Dnah6 14

Smg1 4 Klra17 13 Klra17 13 Als2 13

Smim15 4 Ptcd3 13 Ptcd3 13 Gm2022 13

Tmc7 4 Pzp 12 Als2 12 Klra1 13

Tyk2 4 Unc13a 12 Pzp 12 Klra17 13

Ugt1a6a 4 Als2 11 Unc13a 12 Pzp 12

Vmn2r117 4 Ankfn1 11 Vmn2r121 12 Unc13a 12

9030624J02Rik 3 Itpr1 11 Ankfn1 11 Vmn2r121 12

C130026I21Rik 3 Lpl 11 Col6a6 11 Ankfn1 11

Cct4 3 Mks1 11 Immt 11 Col6a6 11

Coq7 3 Olfr462 11 Itpr1 11 Immt 11

Ddx4 3 Rfxank 11 Lpl 11 Itpr1 11

Dux 3 Col6a6 10 Mks1 11 Lpl 11

Elovl7 3 Immt 10 Olfr462 11 Mks1 11

Ipo11 3 Klra12 10 Rfxank 11 Olfr462 11

Olfr1532-ps1 3 Klrb1c 10 Klra12 10 Rfxank 11

Olfr207 3 Vmn2r121 10 Klrb1c 10 Klra12 10

Olfr611 3 1700030K09Rik 9 Prmt9 10 Klrb1c 10

Ppfibp1 3 Ano2 9 1700030K09Rik 9 Prmt9 10

Trim23 3 Klrb1a 9 Ano2 9 Synj1 10

https://doi.org/10.1371/journal.pone.0184455.t002
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2. Surprisingly, our results revealed a strong gender difference, with male KC mice displaying

a significantly higher rate and earlier onset of pancreatic cancer in response to the HFCD

compared to female KC mice (Fig 3B). Although the elucidation of the precise mechanism

(s) requires further experimental work, our findings suggest a tumor-protecting role of

estrogens. Interestingly, estrogens are thought to be protective against VAT gain [46],

which may also underlie the increased risk of obesity-associated metabolic disturbances in

men. The human data are supported by our animal findings demonstrating a greater weight

gain (Fig 1B) and a significantly greater expansion of the VAT in male mice as shown previ-

ously [20]. In addition, since pancreatic cancer usually occurs in older patients, the putative

protective effect of estrogens may disappear in post-menopausal women, which may

explain the only slightly increased risk of pancreatic cancer in men [1].

3. Another unexpected finding of our study is that despite a dramatic increase in pancreatic

cancer incidence in male (compared to female) KC mice, no significant difference in

HFCD-associated pancreatic inflammation between male and female KC mice was

observed. This was particularly evident in the 6-month cohort. Although pancreatic inflam-

mation was assessed histologically and subtler differences in inflammatory processes,

Table 3. Enriched pathways and genes (�10 genes) with variants common to each HFCD-fed mouse.

Pathways HFCD-specific genes with variants # of

genes

Transmembrane transport of

small molecules

Ano8; Tpcn1; Tpcn2; Nup107; Slc22a16; Ano6; Ano2;

Slco3a1; Slc18a1; Slc6a13; Slc6a11; Abcd2; Slc22a8; Slc8a3;

Atp4a; Atp2a3; Atp10a; Gnas; Trpc1; Gng2; Nup155; Clcnka;

Heph; Atp6v1b2; Atp2c1; Slc25a10; Adcy5; Slc2a4; Slc22a21;

Wnk1; Atp8b1; Mcoln3; Trpa1; Abcc6; Gabra1; Cftr; Abcc3;

Slc6a2; Aaas; Adcy7; Slc7a9; Slc27a1; Nup54; Atp1b2;

Unc80; Slc26a1; Slc22a7; Abcg1; Slc5a5; Slc5a7; Slc15a2;

Nup210

52

PI3K-Akt signaling pathway Nos3; Fn1; Itga4; Pkn3; Hgf; Ifnar1; Lpar2; Rps6kb2; Lpar4;

Itgb3; Comp; Col5a2; Col5a3; Insr; Gng2; Mtor; Lamb3; Flt1;

Cdkn1b; Igf1r; Col27a1; Pik3r2; Col6a3; Col6a4; Col6a6;

Itga9; Pdgfra; Lama4; Chad; Il7; Itga2b; Rps6kb1; Akt2;

Chrm1; Itga7; Jak2; Jak3; Fgf23; Kras

39

Insulin Signaling Snap25; Rac2; Kif5b; Pik3c2a; Map3k14; Igf1r; Map4k2; Insr;

Map2k6; Slc2a4; Prkcd; Map3k4; Pfkm; Pik3r4; Stxbp4; Egr1;

Rps6kb1; Akt2; Cbl; Rps6kb2; Ptprf; Mtor; Pik3c2g; Pik3r2

24

SLC-mediated transmembrane

transport

Nup107; Slc22a16; Slc5a11; Slc22a3; Slc6a13; Slc18a2;

Slc24a1; Slc9a1; Slc44a4; Nup133; Nup98; Slc16a1; Slc9a4;

Slco3a1; Slc10a6; Slc2a9; Slc28a1; Slc2a2; Slc7a11;

Slco1a1; Slc12a3; Gm14085; Slc15a1; Slc4a8

24

ECM-receptor interaction Itga9; Itgb3; Lamb3; Lama4; Fn1; Chad; Comp; Itga4; Itga7;

Col5a2; Col5a3; Col27a1; Itga2b; Agrn; Col6a3; Col6a4;

Col6a6

17

Cholinergic synapse Adcy5; Adcy7; Plcb4; Camk2d; Chrm1; Cacna1c; Akt2;

Camk2b; Chrna6; Jak2; Pik3r2; Slc5a7; Itpr3; Itpr1; Gnai2;

Gng2; Kras

17

Estrogen signaling pathway Adcy5; Nos3; Plcb4; Gnas; Sp1; Hspa8; Prkcd; Fkbp4; Fkbp5;

Akt2; Adcy7; Pik3r2; Itpr3; Itpr1; Gnai2; Kras

16

Dilated cardiomyopathy Itga9; Itgb3; Adcy7; Dmd; Myh7; Adcy5; Itga2b; Cacna1c;

Itga4; Itga7; Mybpc3; Ttn; Myh6; Gnas; Cacna2d4

15

G alpha (s) signalling events Adcy5; Ghrhr; Pde4c; Gnas; Ptger4; Crhr2; Drd5; Pth2r;

Pde2a; Adcy7; Gng2; Gipr; Adcyap1r1; Gnai2; Ghrh

15

G Protein Signaling Pathways Adcy5; Adcy7; Akap1; Gnas; Itpr1; Prkcd; Akap9; Akap5;

Gna13; Pde4c; Gnai2; Kras

12

https://doi.org/10.1371/journal.pone.0184455.t003

High fat diet promotes pancreatic cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0184455 September 8, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0184455.t003
https://doi.org/10.1371/journal.pone.0184455


including distinct cytokine production and/or infiltrating immune cells cannot be rule out,

these findings suggest that the different pancreatic cancer incidence between male and

female KC mice is independent of HFCD-associated pancreatic inflammation. However,

the finding that the HFCD (compared to the CD) led to an increase in the pancreatic

inflammatory score as well as to more advanced PanIN lesions similarly in males and

females suggests a promoting effect of the HFCD and HFCD-associated pancreatic inflam-

mation in early stages of pancreatic neoplasia.

4. Our data also demonstrated dysregulated autophagy in PanIN lesions of KC mice fed the

HFCD, as evident by an accumulation of p62 and increase in LC3-II indicating reduced

autophagy flux. It has been shown that a high fat diet alters membrane lipid content to

reduce autophagosome/lysosome fusion in the liver, thus suppressing the autophagic flux

[47]. Together, these effects may cause an increase in autophagic vacuoles concomitant

with reduced autophagic flux. In PanIN lesions from the HFCD-fed KC mice we indeed

found accumulation of autophagic vacuoles without a corresponding decrease in p62-

labeled protein aggregates. Accumulation of these aggregates may represent one mecha-

nism, by which autophagy dysregulation promotes tumorigenesis in obesity. Although the

precise contribution and role of autophagy in pancreatic cancer is complex, recent evidence

clearly indicate a tumor-promoting role of autophagy in pancreatic cancer [36, 48]. In con-

trast, our data show increased incidence of pancreatic cancer in KC mice fed the HFCD

despite inefficient autophagy. This interesting observation may suggest that the HFCD

overcomes or circumvents a reduction in the tumor-promoting effects of autophagy,

possibly by directly providing required nutrients for tumor cell growth independent of

autophagy.

5. It is plausible that HFCD-induced obesity with accompanied inflammatory changes in the

pancreatic microenvironment causes additional genetic alterations that can accelerate

PDAC development. Exome sequencing on laser-captured PanIN-2/3 lesions of KC mice

fed the CD or HFCD revealed 4,856 genetic variants (in 2,986 genes) that were unique to

the HFCD. Interestingly, we found a remarkable consistency in HFCD-induced genetic

variants in 3 out of 4 KC mice. Overall, our data suggest that genetic alterations (mutations)

may underlie or contribute to the tumor-promoting effect of the HFCD and HFCD-

induced obesity; however, further analyses are clearly needed to determine the functional

consequence of these variants. Pathway analysis has identified common networks that were

uniquely altered by the HFCD, including the insulin and PI3K/Akt pathway. Given the

importance of these pathways in nutrient sensing and pancreatic cancer development [42],

we have further analyzed HFCD-induced genetic variants in genes within these networks.

Several mutations with possible functional significance were detected. For example, we

found mutations (unique to the HFCD) in the kinase domain of mTOR, which may modu-

late its activity. However, detailed in vitro experiments are needed to clearly determine the

functional significance of these mutations.

In conclusion, our current study identifies several novel and provocative aspects of diet-

induced and obesity-associated pancreatic cancer development in the conditional KrasG12D

mouse model. These include a marked increase in invasive pancreatic cancer incidence, pro-

found gender differences, a disconnection between pancreatic inflammation and gender-spe-

cific cancer incidence, dysregulated autophagy despite increased cancer formation, and

genetic alterations unique to the HFCD in key signaling pathways. Our results will greatly

stimulate further studies investigating the precise mechanisms involved and open up experi-

mental avenues for identifying novel aspects in the prevention of PDAC.
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