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Abstract

Systematic biases such as long branch attraction can mislead commonly relied upon model-

based (i.e. maximum likelihood and Bayesian) phylogenetic methods when, as is usually

the case with empirical data, there is model misspecification. We present PhyQuart, a new

method for evaluating the three possible binary trees for any quartet of taxa. PhyQuart was

developed through a process of reciprocal illumination between a priori considerations and

the results of extensive simulations. It is based on identification of site-patterns that can be

considered to support a particular quartet tree taking into account the Hennigian distinction

between apomorphic and plesiomorphic similarity, and employing corrections to the raw

observed frequencies of site-patterns that exploit expectations from maximum likelihood

estimation. We demonstrate through extensive simulation experiments that, whereas maxi-

mum likeilihood estimation performs well in many cases, it can be outperformed by Phy-

Quart in cases where it fails due to extreme branch length asymmetries producing long-

branch attraction artefacts where there is only very minor model misspecification.

Introduction

Reconstructing what happened is a central task of any historical science [1]. In biology, phylo-

genetic relationships are an important component of the history of life, some knowledge of

which is a precondition of comparative methods [2]. The centrality of phylogeny in biology

justifies the substantial continuing interest in reconstructing the Tree of Life, e.g. [3–5].

Modern techniques of nucleotide sequencing and the exponential growth of molecular

databases increasingly provide data sets featuring hundreds of species and thousands of nucle-

otides in phylogenetic studies. The availability of whole genomes in the order of billions of

nucleotides makes all-encompassing phylogenetic analyses possible for the first time [6]. The

new age of phylogenomics gives reason to hope that congruence in phylogenetic analysis can

finally be achieved through the reduction of stochastic sampling errors [7]. However, there is
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considerable concern about increased accumulation of systematic errors due to reliance upon

simple substitution models that may not adequately consider variation in substitution rate,

compositional heterogeneity and the erosion of phylogenetic signal, e.g. [8–13] and which may

be inconsistent.

Generally, systematic errors are increasingly important and apparent as more data are ana-

lysed because stochastic effects become less prominent, eventually yielding maximally sup-

ported, but incorrectly resolved phylogenetic relationships [14–16]. Numerous studies have

shown that model misspecification can reduce the accuracy of phylogeny inference, e.g.

[11–13, 17–31].

Systematic bias is particularly a molecular data problem due to the small number of possible

character states [32] and the absence of complexity that might otherwise allow better distinc-

tion between homologies and homoplasies. Recent phylogenomic studies demonstrate how

sensitive probabilistic tree reconstruction methods are to model assumptions and data compo-

sition. For example, the position of myriapods within the arthropod tree of life [33–37], the

phylogeny within Chelicerata [38–40], the relationship within Lophotrochozoa [13, 41–43] or

the relationship between Placozoa, Porifera, Cnidaria and Ctenopohora within the Metazoa

[44–48] are remarkably sensitive to methods of analyses. Recent simulation studies show that

even a slight model misspecification, such as that arising from approximating among site rate

heterogeneity using discrete categories, can cause incorrect topologies in maximum likelihood

(ML) analyses [12, 49].

A major source of systematic bias, and probably the most frequently cited reason for incor-

rect placements of taxa in phylogenetic reconstructions, is long branch attraction (LBA). First

described by [50] as a problem of parsimony and compatibility methods, later studies revealed

that even more robust, probabilistic tree reconstruction methods such as ML and Bayesian

inference (BI) can fail to find the correct tree because of LBA, e.g. [8, 21, 23, 32, 41, 49, 51–63].

LBA is commonly understood as an incorrect phylogenetic reconstruction of two or more

highly-divergent (long branch) lineages as sister (rooted) or adjacent (unrooted) groups due to

the accumulation of convergent split signal (chance similarities) and the simultaneous loss of

apomorphic characters shared with the actual close relatives, e.g. [32, 50, 61, 64]). [12] have

shown that the probability of incorrect phylogenetic inferences increases with increasing het-

erogeneity of only inner edges and that unbalanced length differences between internal and

terminal branches can have a negative effect on the tree reconstruction process when internal

branch lengths are either too short or too long. Our usage of the term LBA is equivalent to the

characterisations of [23] and [32]: “. . .conditions under which bias in finite data set analyses

and/or statistical inconsistency arise due to the combination of short and long branches”.

Different strategies exist for ameliorating LBA in phylogenetic analyses. Possibilities include

the analysis of only slowly evolving sequences to reduce branch lengths [65] or the addition of

slowly-evolving taxa to divide long internal branches [66]. However, slowly evolving sequences

are sometimes not available, not least because of extinction [32], and exclusion of rapidly-

evolving taxa reduces taxon sampling, which is often considered undesirable [67–74]. The

exclusion of complete long-branched groups might successfully reduce LBA, but is not helpful

if the relationship of those taxa is of importance to the study in question. Another frequently

used strategy is the removal of sequence positions inferred to be fast evolving, e.g. [75–78], or

entire classes of putatively fast evolving sites such as third codon positions in protein coding

nucleotide data sets, which are potentially saturated by multiple substitutions [53, 79]. Conver-

sion of nucleotides to more slowly evolving character states such as amino acid residues or

purines and pyrimidines [60] is another strategy. One likely reason for misspecifications in

modern probabilistic substitution models is the usual assumption of time reversibility. The

direction of character evolution along a tree is not considered by these models and therefore
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these analyses do not incorporate an important step of Hennigian phylogenetic inference, the

distinction between new (apomorphic) and old (plesiomorphic) homologies [49].

The susceptibility of ML to systematic biases in cases where these is model misspecification

motivates us to ask: is it possible to develop alternative techniques that are less effected than is

ML by, for example, extreme branch length asymmetries? Here we introduce PhyQuart, a new,

quartet-based algorithm which considers two alternative directions of character evolution

along the internal branch of a quartet tree to discern between potentially apomorphic and ple-

siomorphic split-supporting site-patterns, and ML to estimate the expected number of conver-

gent split-supporting site-patterns. This combination of Hennigian logic and ML estimation

represents a completely new strategy for the evaluation of sequence data. A quartet tree com-

prising one internal and four external branches is the smallest phylogenetically informative

unrooted tree. It is sometimes helpful to focus on quartets because of their computational sim-

plicity: there are only three alternative topologies to be investigated and far fewer potential

site-patterns (the basic empirical data from which inferences are to be made) than in align-

ments containing many taxa. Despite this helpful computational simplicity, it is widely

believed that quartet analyses exacerbates LBA (because it is the opposite of adding taxa so as

to break up long branches) and thus represents the most difficult taxon sampling context in

which to overcome LBA [80]. Through extensive quartet simulations, including cases with

strong branch length differences, we demonstrate the efficiency of our new approach in detect-

ing phylogenetically informative and conflicting signals and compare its performance to ML

alone when there is a (unrealistically) small degree of model misspecification. The PhyQuart
algorithm is implemented in a command line driven software script.

1 The method: Concept and algorithm

1.1 Concept

The PhyQuart algorithm takes as input an alignment and outputs normalised split-support for

alternative quartet trees based on a site-pattern classification and using observed and expected

(based on ML inference) frequencies of split-supporting site-patterns, considering the Henni-

gian distinction between phylogenetically informative (apomorphic) and uninformative (ple-

siomorphic) character.

Here we define some basic concepts and provide a brief overview of our approach. A more

complete and formal description of the PhyQuart algorithm is given in the next section.

We decided to use the established terms plesiomorphy and apomorphy to distinguish

between old (pelsiomorphic) and new (apomorphic) shared homologous character states. The

alternative would have been to invent some new term for the same meaning, which clearly is

not a better option. Both terms describe a simple fact that is observed everywhere where evolu-

tion takes place: an old state is modified and transformed to a new state. Or, something that

did not exist appears de novo. This is not different from saying that there is a sequence (a com-

plex character) in which a nucleotide at a specific site position of an alignment is substituted

by a new nucleotide, which would be the apomorphic detail. The discovery that it makes a dif-

ference whether in molecular evolutionary processes the polarity in time is considered or not

has recently been published by Kück & Wägele [49]. Phylogenetically informative split-

supporting site-patterns are only those site-patterns which contain apomorphies. Further, we

define an informative split-supporting sitre-pattern as “putative synapomorphy” when a

shared apomorphic character similarity between two taxa on one side of a split is assumed to

be present in the most recent common ancestor (internal node of a tree).

The goal of the PhyQuart algorithm is to identify among all split-supporting site-patterns

those that support polarized splits with characters that are probably putative synapomorphiies.
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A split is a bipartition of a set of species or sequences [62, 64, 81]. A sequence position sup-

ports some split if no pair of taxa separated by split share the same character state [82]. For the

quartet of taxa A-D there are three phylogenetically informative quartet splits AB|CD, AC|BD

and AD|BC, corresponding to the single internal branches of the three possible unrooted

binary quartet trees. Let W-Z correspond to different character states (e.g., nucleotides or

amino acid residues). Sites with the character distribution {WXYZ} support all three quartet

trees and thus do not differentially support any of them, whereas a sequence position differen-

tially supports one quartet split/tree if two taxa have the same character state and the other two

taxa have some other character state(s). Thus, sites with the character state distribution

{XXYY} (symmetric) or {XXYZ} and {YZXX} (two possible asymmetric) split-supporting site-

patterns are counted as differential split-support for the quartet tree AB|CD (Fig 1a and 1b).

We denote the polarity of (i.e., the direction of character transformation along) the internal

branch of a given quartet tree AB|CD using parentheses, e.g. AB(CD) and (AB)CD which indi-

cate the direction is towards CD and towards AB respectively. This distinction enables a classi-

fication of split-supporting site-patterns into potentially phylogenetic informative

(apomorphic) and uninformative (plesiomorphic) site-patterns [83] contingent on the

assumed polarity. Thus, the asymmetric split-supporting site-pattern {XXYZ} is interpreted as

supporting the polarized quartet tree (AB)CD because the shared character state similarity of

A and B appears apomorphic but as uninfomative for the polarized quartet tree AB(CD)

because the similarity of A and B appears plesiomorphic (Fig 1c). Because the PhyQuart algo-

rithm assumes no a priori knowledge of polarity (placement of the root) each possible polarity

for each of the three quartet trees is evaluated separately for each quartet of taxa (for a total of

six evaluations) to find the best supported quartet tree based exclusively on putative synapo-

morphic character states.

Putative synapomorphy can be phylogenetically misleading if the similarity is not homolo-

gous but rather evolved convergently. For example, given a polarized quartet tree (AB)CD,

similarity would be present in split-supporting site-patterns with characters shared between

taxon C and D: {XXYY} and {XZYY}. However, observed split-supporting site-patterns for

(AB)CD can be either synapomorphic (inherited from a common ancestor of C and D) or con-

vergently evolved along the terminal branches of C and D. Suppose that given polarized quar-

tet trees (AB)CD and AB(CD) of quartet tree q1 are incorrect and thus the correct quartet tree

is one of the two alternative topologies (q2 or q3). PhyQuart uses ML to estimate how much

apomorphic support for each polarization (number of split-supporting site-patterns {XXYY}

and {XZYY} for (AB)CD and {XXYY} and {XXYZ} for AB(CD)) would have evolved with the

branch lengths of the underlying data if q2 were the correct tree, or if q3were the correct tree.

These values are equivalent to the number of parallel substitutions on unrelated branches that

are expected if q1 is the correct tree. We take the mean of these two values as the estimate of

expected convergently-evolved, misleading support for each polarized quartet tree of q1
(Fig 1d). The ML inference of expected convergence for each polarized quartet tree is imple-

mented using the P4 package [84] with individually optimised branch length and model

parameters for each of the alternative quartet trees. The estimated number of misleading sites

is then subtracted from the observed number of supporting positions to get an estimate of the

synapomorphic support for each polarized quartet tree.

Multiple substitutions among longer branches may lead to underestimation of the support

for the correct quartet tree. To reduce the effects of such underestimation we use correction

factors (ω) based on the frequencies of the four singleton patterns (i.e. {XXXY}, {XXYX},

{XYXX}, {YXXX}) that are intended to make the corrected support values closer to what

would be expected if external branches were of equal length. Correction factors are applied to

both observed (ωobs) and ML inferred expected (ωexp) frequencies of site-patterns. In each

Quartet analyses combining maximum likelihood estimation and Hennigian logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0183393 August 25, 2017 4 / 24

https://doi.org/10.1371/journal.pone.0183393


Fig 1. Flowchart of the PhyQuart algorithm. Simplified flowchart showing a) each of the three possible quartet relationships for

a set of 4 sequences (q1, q2, q3), b) the site-pattern classification of observed (Nobs) symmetric (xqi ) and asymmetric (sqi ) support

(tqi ), c) the determination of plesiomorphic (old) split-supporting site-patterns given two different polarities of character
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case, the correction factor reduces the split-supporting site-patterns in proportion to the com-

plement of four times the frequency of the least frequent singleton pattern (observed or

expected) divided by the sum of the frequencies of all four singleton patterns. The frequencies

of observed singleton site-patterns and the corresponding correction factor (ωobs) are constant

for all quartet trees and polarities, whereas ωexp can differ for ML expected frequencies. Thus

by itself ωobs has no effect on relative support for different quartet trees, rather it is ωexp that

drives the effect of the correction. When there are strong branch length asymmetries ωexp and

thus the corrected estimate of convergent split-supporting site-patterns will be high. Thus, the

correction is important in cases of unequal branch lengths (as evidenced by differences in sin-

gleton frequencies) such as can produce LBA.

Let P be a polar quartet tree. Let Sobs be the sum of the observed numbers of symmetric and

asymmetric site-patterns supporting P and let Mobs be the smallest number (the minimum)

taken over all four singletons, and Tobs be the total number of observed singleton site-patterns.

Let ωobs = 1 − (4Mobs/Tobs). Similarly, using ML estimation for the two contrary quartet trees

(that conflict with P), let Sexp1 and Sexp2 each be the sum of the expected number of symmetric

and asymmetric site-patterns supporting P and let Mexp1 and Mexp2 be the smallest numbers

and let Texp1 and Texp2 be the total numbers respectively of expected singleton site-patterns. Let

Sexp = (Sexp1 + Sexp2)/2 and let ωexp = 1 − (4Mexp1/Texp1 + 4Mexp2/Texp2)/2. Then the PhyQuart
score for any P is (Sobs − (Sobs � ωobs)) − (Sexp − (Sexp � ωexp)) and the score for each quartet is

the highest of the scores for its polarized quartets normalised so that the scores for all three

alternative quartets sum to one.

1.2 Algorithm

1.2.1 Observed split support of each quartet tree. First, the algorithm counts the total

number of observed split-supporting site-patterns (τ) in a given set of four aligned sequences

of length L for each of the three possible quartet topologies x 2 Q≔ {q1, q2, q3}. All site-pat-

terns (s) with symmetric (ξ) and asymmetric (σ) split-support for a given quartet relationship

are taken into account (Fig 1a and 1b).

Q≔fq1; q2; q3g ð1Þ

tx≔
XL

i¼1

1fsi2ðxx_sxÞg;x2Q
ð2Þ

1.2.2 Determination of plesiomorphic split signal. To identify potentially plesiomorphic

split-supporting site-patterns of a given quartet tree (x 2 Q), two different polarities are speci-

fied: Qpolar≔f
!x;  xg. Each polarity defines one of the two possible directions of character trans-

formation along the internal branch of a given quartet tree. Quartet-supporting positions

based on symplesimorphic split-supporting site-patterns are counted separately for each polar-

ized quartet tree z 2 Qpolar.

The right pointing direction of a quartet tree (z ¼ !x) defines asymmetric z split-supporting

site-patterns (σz) as apomorphic (%z) whenever identical character states are only shared

between taxa A and B in quartet tree z≔AB(CD).

transformation along the internal branch of each possible quartet tree, r!q1
and r q1

, and d) estimation of expected convergent split-

supporting site-patterns (k!q1
;k q1

) supporting quartet q1 in ML split pattern estimations using branch length and model optimization on

constraint topologies of the other two possible quartet relationships (q2, q3).

https://doi.org/10.1371/journal.pone.0183393.g001
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For example, site-pattern s≔ {XXYZ} contains asymmetric split-supporting site-patterns

(s = σz) based on a plesiomorphic character state (σz = %z) if polarity z≔AB(CD). Otherwise,

with the left pointing direction of a quartet tree (z ¼  x, z≔ (AB)CD, site-pattern s = σz, but σz
6¼ %z, and the site-pattern is interpreted as apomorphic.

The total number of observed %z sites of a split-supporting site-pattern for a given polarized

quartet relationship z (given a sequence length L) is defined as ρz (Fig 1c).

Qpolar≔f
!q1 ;

 q1 ;
!q2 ;

 q2 ;
!q3 ;

 q3g ð3Þ

rz≔
XL

i¼1

1fsi2%zg;z2Qpolar ð4Þ

1.2.3 Determination of convergent split signal. Contrary to the identification of plesio-

morphic split-supporting site-patterns observed in a given alignment of sequence length L, the

total amount of potentially convergent split-supporting site-patterns (κz) for a given polarity

z (z 2 Qpolar≔f
!q1 ;

 q1 ;
!q2 ;

 q2 ;
!q3 ;

 q3g) of a quartet tree x (x 2 Q≔ {q1, q2, q3}) is determined by

ML estimation of symmetric (xexppðzÞ
) and asymmetric (sexpz

) split-supporting site-pattern fre-

quencies, which support tree x based on constraint topologies of the other two possible

quartet relationships y (y 2 Q \ {π(z)}). Thereby, π is defined as the projection of Qpolar onto

Q (π: Qpolar! Q), saying that pð
!qiÞ ¼ qi ¼ pð

 qiÞ for i = 1, 2, 3. Note that polarity is not rele-

vant for ML inferences, but ML estimated site frequencies depend on branch lengths.

Site-pattern frequencies of each constrained topology y are calculated by ML using branch

length and model parameter optimization on the basis of the original quartet alignment and a

defined substitution model. Estimated frequencies of each possible site-pattern are multiplied

by the original alignment length L to get the expected number of sites for a pattern in a given

alignment.

For each polarity of a given quartet z (z 2 Qpolar), the ML expected number of the poten-

tially convergent split-supporting site-patterns (chance similarities) (κz) is defined by the

mean number of ML estimated split symmetric (xexppðzÞ
) and asymmetric site-patterns (sexpz

),

supporting polarized tree z.
Given tree z, the expected number of chance similarities (e.g. for (CD)) is estimated

with the number of characters (μz) shared by C and D in the two other quartet-topologies

y (y 2 Q \ {π(z)}), where they are not adjacent and thus cannot be sister-taxa. We use for each

split-group the average (κz) of these two values (Fig 1d).

For example, the asymmetric split-supporting site-pattern σz≔ {YZXX)} shares identical

character states only between taxa C and D in z≔ {AB(CD)}, therefore: σz = μz. Otherwise, if

σz≔ {XXYZ)}, then: σz 6¼ μz.

kz≔
1

2

X

y2QnfpðzÞg
ðx

y
exppðzÞ

þ my
zÞ; z 2 Qpolar ð5Þ

1.2.4 Further noise reduction using correction factor ω. Singleton site-pattern frequen-

cies can be used as an approximation for terminal branch lengths. Fast evolving sequences will

have more of these than slower ones. Four different singleton site-patterns are possible,

{YXXX}, {XYXX}, {XXXY}, and {XXYX}, each of them contributing to one of the four terminal

branch lengths.
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To further reduce the impact of noise upon the identified number of split-supporting

site-patterns for a given polarity z (z 2 Qpolar≔f
!q1 ;

 q1 ;
!q2 ;

 q2 ;
!q3 ;

 q3g) of a quartet tree

x (x 2 Q≔ {q1, q2, q3}), the algorithm reduces for each polarity (z) of a given tree (x) the total

number (τx) of counted symmetric (ξx) and asymmetric (σx) split-supporting site-patterns as

well as the number of plesiomorphic (ρz) and convergent split-supporting site-patterns (κz).
The correction factor (ω) is defined as one minus the ratio of four times the smallest num-

ber of the singleton site-patterns (ϕ) to the total number of singleton site-patterns (N). The

total number of tree x supporting split signal (τx) as well as the the number of plesiomorphic

split-supporting site-patterns (ρz) for a given polarity z of tree x (z 2 Qpolar) are reduced in rela-

tion to single substituted site-pattern frequencies of the original quartet alignment (ωobs).

oobs≔1 �
4�

N

� �

ð6Þ

The correction factor (oexpz
) for convergent split-supporting site-patterns (κz) of a given

polar quartet tree (z) is specified by the mean of the two single correction factors (ωz), which

are derived (in the same manner as described in Eq 7) from the ML-estimated singleton site-

pattern frequencies of the other two quartet topologies y (y 2 Q \ {π(z)}).

oexpz
≔

1

2

X

y2QnfpðzÞg
oy

z; z 2 Qpolar ð7Þ

1.2.5 Determination of potential apomorphic split signal (θ). Only the actual number

of potentially synapomorphic, split-supporting site-patterns is counted as phylogenetic signal.

To identify the number of potentially synapomorphic split-supporting site-patterns for each

possible polarized quartet tree (z), the total number of observed split-supporting site-patterns

(τz) as well as the number of potentially plesiomorphic (ρz) and convergent (κz) split-support-

ing site-patterns are adjusted by the correction factor ωobs and oexpz
. Afterwards, the remaining

(synapomorphic) split signal is calculated for each polar quartet tree by subtracting the cor-

rected phylogenetic uninformative plesiomorphic and convergent split-supporting site-pat-

terns from the corrected number of observed split-supporting site-patterns.

yz≔ðtPðzÞ � oobsÞ � ðrz � oobsÞ � ðkz � oexppðzÞ
Þ; z 2 Qpolar ð8Þ

1.2.6 Final quartet weighting (λ) for polarized topologies based on best polar quartet

tree support values. After the assignment of the actual, potentially synapomorphic split sup-

porting site-patterns all three quartet topologies x (x 2 Q≔ {q1, q2, q3}) are scored (δx) related

to their higher number of split-supporting site-patterns given both possible polarities

(ya; yb 2 Qpolar≔f
!x;  xg; x 2 Q). For example, if the obtained score of polarity θ(AB)CD> θAB(CD),

then δAB|CD≔ θ(A, B)CD.

dx≔

(
ya if ya � yb

yb if ya < yb

; ðya; yb 2 Qpolar≔f
!x;  xg; x 2 QÞ ð9Þ

Finally, each quartet tree x (x 2 Q≔ {q1, q2, q3}) is weighted (λx) equal the difference

between the actual number of split-supporting site-patterns (δx) and the lowest number of

split-supporting site-patterns given all three quartets (dlowestx ), normalised by the sum of single

Quartet analyses combining maximum likelihood estimation and Hennigian logic
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quartet weights. For example, if dlowestx ¼ dACjBD, then λAB|CD≔ δAB|CD − δAC|BD.

lx≔
dx n dlowestxP

i2Qli
; x 2 Q ð10Þ

1.3 Software implementation

The algorithm introduced in this study is implemented in a new software tool called PEN-

GUIN, a command line driven PERL script that runs on Windows PCs, Mac OS and Linux

operating systems and can be easily implemented into automatic process pipelines. A PERL

interpreter must be present in order to execute the software. PENGUIN is freely available (i.e.,

open-source) and released under the terms of the GNU General Public License (GPL) 3.0. The

software script as well as the corresponding manual and example files can be downloaded

from https://github.com/PatrickKueck/Penguin.

PENGUIN reads files of multiple sequence alignments in FASTA and PHYLIP format. If

the alignment consists of more than four sequences, a clan input file comprising four prede-

fined clans (sensu [85]) of one or more taxa must be provided in plain TEXT format. If speci-

fied, PENGUIN analyses all possible quartet combinations of one taxon from each predefined

clan. PENGUIN does not allow multiple records of the same taxon name within given input

file(s) and mismatches between taxa included in a predefined clan file and a multiple sequence

alignment are just left unanalysed. The script can handle both nucleotides and amino-acid

sequences. Sequence sites with indels (gap or ‘-’), ambiguity or missing characters are always

excluded from the analysis. Under default, PENGUIN excludes all forbidden site positions sep-

arately for each quartet of sequences drawn from a given multiple sequence alignment. This

has the advantage that sequence positions do not have to be deleted from the full alignment

and can be used in cases of other quartets that do not have such ambiguities in these positions.

Alternatively, site exclusion can be performed on the complete sequence alignment in advance

of the quartet establishment. However, the performance of our algorithm has only been tested

on nucleotide data without simulated indels, ambiguities, or missing data.

PENGUIN writes information on split support for each possible quartet relationship

between four taxa or clans in plain TEXT files. Obtained discrepancies in topological split sup-

port of the three possible quartet topologies of a set of four clans are also presented as split net-

work and triangle graphs. A further vector network shows the distribution of best, second best,

and third best resolved quartet trees.

Detailed information about single analysis output is provided by the PENGUIN script

manual.

2 Performance

The PhyQuart algorithm was tested and its performance compared with ML using 172,800

simulations. Varying amounts of nucleotide sequence data was simulated using INDELible

v.1.03 [86] on quartet trees with different combinations of fixed (at 0.1), alternative internal

(BL1 = {0.01, 0.02}), and more (BL2) or less highly varied (BL3) terminal branch lengths

(Fig 2) under the GTR model of sequence evolution. Among site rate variation (ASRV) was

modelled using a continuous Γ-rate distribution with different shape parameters and a fixed

proportion of invariant sites (0.3). Simulations did not include indels. Table 1 summarises the

parameters employed in the analyses. ML trees were inferred from simulated data with

PhyML_3.0_linux64 [87, 88], using a mixed-distribution model (GTR+Γ+I) with the model

parameters (α, I) used in the simulation but with the simulated continuous gamma
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distribution approximated by a discrete gamma with four relative substitution rate categories

and the relative rates and base compositions estimated from the data. This difference in

gamma (continuous or discrete) and any small differences in the simulated and estimated rela-

tive rates and base compositions are the only model misspecifications involved in the ML

inference. Thus we expect ML to perform well in most cases. The ML estimation of split site-

Fig 2. Quartet simulation setups. Simulation setups for quartet analyses testing effects of given a very short

internal branch (BL1) with a) stepwise elongation of two adjacent (Farris-topology, left) and non-adjacent

(Felsenstein-topology, right) terminal long branches (BL2), b) elongation of one terminal branch (BL2) using

different lengths for one of the three short branches (BL3), and c) stepwise elongation of three terminal

branches, with different lengths of the remaining short terminal branch (BL3).

https://doi.org/10.1371/journal.pone.0183393.g002

Table 1. Defined model parameters for data simulation (INDELible) and ML analyses used in PhyQuart and PhyML.

Simulation Setup Seq. Length I Γ (α Shape Parameter)

1-elongated branch (BL2) = 250 kbp 0.3 0.1 0.3 0.5 0.7 1.0 2.0

2-elongated branches (BL2) = 250 kbp 0.3 0.1 0.3 0.5 0.7 1.0 2.0

2-elongated branches (BL2) < 250 kbp 0.3 0.5 1.0 2.0

3-elongated branches (BL2) = 250 kbp 0.3 0.1 0.3 0.5 0.7 1.0 2.0

GTR Substitution Rates

INDELible: C$T: 0.3; T$A: 0.8; T$G: 0.6; C$A: 0.5; G$C: 0.4; G$A: 1.0

PhyQuart: Estimated

PhyML: Estimated

Nucleotide Frequencies

INDELible: T: 0.35; C: 0.15; A: 0.35; G: 0.15

PhyQuart: Estimated

PhyML: Estimated

https://doi.org/10.1371/journal.pone.0183393.t001
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pattern frequencies in the PhyQuart algorithm used the same model but with all parameters

estimated from the underlying data. All analyses were performed and evaluated with a Perl

pipeline. We generated 100 multiple sequence alignments for each combination of internal

and terminal branch lengths and recorded the frequencies of correct and incorrect tree recon-

structions from these replicates.

2.1 Elongation of two terminal branches

Our first quartet simulations test the classical quartet LBA problem [50] with two alternative

topologies in which two terminal long branches were either adjacent (termed “Farris” topolo-

gies), or non-adjacent (termed “Felsenstein” topologies) (Fig 2a). We examined the stepwise

elongation of the long terminal branches (BL2 = {0.1! 1.5} in steps of 0.2) with the other two

terminal short branches kept constant (length = 0.1) and two alternative internal branch

lengths (BL1 = {0.01, 0.02}) analysing a wide range of sequence lengths (0.5, 1, 2, 5, 10, 20, 50,

100, 250 thousands of base pairs (kbp)). For data sets of 250 kbp, we simulated sequences with

six different rate heterogeneity parameters (α = {0.1, 0.3, 0.5, 0.7, 1.0, 2.0}) whereas for shorter

sequences we analysed three different heterogeneties (α = {0.5, 1.0, 2.0}).

With the longest simulated sequences (250 kbp), ML mostly performs very well in recon-

structing Farris topologies, but as the ratio of long to short branches increases reconstruction

success for Felsenstein topologies decreases precipitously (Fig 3). In contrast, PhyQuart success-

fully reconstructs Felsenstein topologies in the majority of replicates, independent of simulated

model parameter and branch length conditions and, except for strongly heterogeneous data

sets (α = 0.1), PhyQuart outperforms ML especially with the shortest internal branches (BL1 =

{0.01}) (Fig 3a). While not as successful as ML in reconstructing simulated Farris topologies,

PhyQuart successfully reconstructs these in a majority of cases when α> 0.1, while both recon-

struction methods often failed in cases of high branch length heterogeneity for data sets simu-

lated with α = 0.1 (Fig 3b). Except for very strong heterogeneous data simulations (α = 0.1), ML

outperformed PhyQuart in identifying correct Farris topologies if terminal branches exceeded a

length 70 times higher as the internal branch (BL2� {0.7}). Contrary to ML, the PhyQuart algo-

rithm consistently recovered correct Farris and Felsenstein topologies in the majority of the

(250 kbp long) replicates, even in simulations with very low internal branch signal of the correct

tree (BL1 = {0.01}) if α> 0.1 (Fig 3). Reconstruction successes for all Felsenstein and Farris

topology simulations based on sequence lengths of 250 kbp are given in the supplementary file

S1 Fig. Comparison of the PhyQuart reconstruction results of this setup with and without

implementation of the correction factor ω are given in the supplementary information S2 Fig.

Reconstruction success decreases with sequence length when branch lengths are heteroge-

neous. ML and PhyQuart correctly recovered Felsenstein and Farris topologies in the majority

of data replicates given a wide range of internal and terminal branch conditions if sequence

length exceeds 50 kbp (Fig 4). Considering the reconstruction success for different rate hetero-

geneities and for Farris as well as Felsenstein topologies, ML slightly outperforms PhyQuart in

cases of strong branch length differences if sequence are shorter than 50 kbp for longer internal

branch lengths (BL1 = {0.02}) whereas PhyQuart outperfoms ML with the shorter internal

branch (BL1 = {0.01}). PhyQuart often outperforms ML if sequences are longer than 50 kbp

(Fig 4). Detailed summaries of our analyses with sequence lengths shorter than 250 kbp are

given in the supplementary information S3 Fig.

2.2 Elongation of one terminal branch

Our second quartet simulation experiments (Fig 2b) investigate reconstruction success when

there is one long and three short terminal branches. These experiments also used two

Quartet analyses combining maximum likelihood estimation and Hennigian logic
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Simulated: GTR Sequence Length: 250 000 bp
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Fig 3. Quartet reconstruction success given stepwise elongation of two terminal branches if sequence

lengths equal 250 kbp. Plots visualizing the reconstruction success of PhyQuart (blue) and ML (green) given

stepwise elongation of two terminal branches (BL2, x-axis) and a fixed, very short internal branch length (BL1 =

{0.01}) for 100 (250 kbp long) data replicates (y-axis). The plots present the summarized reconstruction success for

(a) Felsenstein-, and (b) Farris-topologies of given α = {0.1, 0.3, 0.5, 0.7, 1.0, 2.0} and an invariable site proportion (I)

of 0.3. A detailed overview of all simulation results of this setup is given as supplementary information S1 Fig.

https://doi.org/10.1371/journal.pone.0183393.g003
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Simulated: GTR Sequence Length: 20,000 bp

0.01 0.1 - 1.50.1 - 1.5

0.10.1

0.01

0.1 - 1.5

0.1 - 1.5

0.1

0.1

α=1.0
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

α=0.5
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

0.0 0.5 1.0 1.5
0

50

100

S
uc

ce
ss

elongation of BL2

α=2.0
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

Simulated: GTR Sequence Length: 50,000 bp

0.01 0.1 - 1.50.1 - 1.5

0.10.1

0.01

0.1 - 1.5

0.1 - 1.5

0.1

0.1

α=1.0
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

α=2.0
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

α=0.5
I =0.3

PhyQuart
PhyML

PhyQuart
PhyML

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

elongation of BL2
0.0 0.5 1.0 1.5

0

50

100

S
uc

ce
ss

b)

a)

Fig 4. Quartet reconstruction success given stepwise elongation of two terminal branches if

sequence lengths < 250 kbp. Reconstruction success of PhyQuart (blue) and ML (green) for different rate

heterogeneities and for Farris as well as Felsenstein topologies under different lengths of two elongated

terminal branches (BL2, x-axis), given a fixed internal branch length (BL1 = {0.01}), and 100 data replicates (y-

axis). Reconstruction success for data sets of sequences <250 kbp are summarized for α = 0.5, 1.0, and 2.0:

a) 20 kbp, b) 50 kbp. A detailed overview of all simulation results of this setup is given as supplementary

information S3 Fig.

https://doi.org/10.1371/journal.pone.0183393.g004
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alternative internal branch lengths of BL1 = {0.01, 0.02}, stepwise elongation of the single long

terminal branch (BL2 = {0.1! 1.5} in steps of 0.2) with two of the remaining terminal

branches kept constantly short (= 0.1) and the third branch also stepwise elongated (BL3 =

{0.1, 0.3, 0.5}). Sequence lengths were 250 kbp with six alternative rate heterogeneities (α =

{0.1, 0.3, 0.5, 0.7, 1.0, 2.0}). Both PhyQuart and ML performed well in all analyses independent

of simulation parameters with sometimes slightly better performance of ML and vice versa. Fig

5a shows the similar reconstruction success of both methods given three equal short terminal

branches. Detailed result plots of all “single long branch” simulation analyses are given in the

supplementary information S4 Fig.

2.3 Elongation of three terminal branches

Our third quartet simulation experiments (Fig 2c) involve stepwise elongation of three termi-

nal branches (BL2 = {0.1! 1.5} in steps of 0.2) with a stepwise increase of the fourth terminal

branch (BL3 = {0.1, 0.3, 0.5}), two alternative internal branch lengths (BL1 = {0.01, 0.02}), six

rate heterogeneities (α = {0.1, 0.3, 0.5, 0.7, 1.0, 2.0}) and sequences of 250 kbp. As with other

experiments, success decreases with increasing length differences between internal and termi-

nal branches for both methods (Fig 5b). With the exception of data simulated with high

among site rate variation (α = {0.1}), ML typically slightly outperformed PhyQuart. Detailed

result plots of all performed analyses for cases with three long branches are given in the supple-

mentary information. Reconstruction success of both methods was not strongly uninfluenced

by the length of the shorter fourth terminal branch (BL3), but the shorter this branch (BL3)

and the longer the internal branch length (BL1), the better the performance of both methods

given three strongly elongated terminal branches. Detailed result plots of all “three long

branch” simulation analyses are given in the supplementary information S5 Fig.

3 Discussion

Not without good reasons, modern molecular phylogenetics is dominated by the probabilistic,

model-based ML and Bayesian methods. However, although these approaches have much to

recommend them, they can fail to recover the correct tree and may instead recover the wrong

tree with misleading high support when available models do not adequately represent underly-

ing evolutionary dynamics. The robustness of ML to variation in evolutionary processes and

the extent to which model misspecification results in systematic biases and statistical inconsis-

tency are far from fully understood. However, we know that when evolutionary signal is

eroded to the extent that is not, or is barely, distinguishable from confounding noise in the

data, then phylogenetic methods are more susceptible to yielding biased estimates [79]. There-

fore, we should be alert to potential errors when internal branches are short (and thus may

have limited signal) and deep (and thus may have much signal erosion). Phylogenomic scale

studies often address such cases, and through the application of large amounts of sequence

data also run a greater risk of being substantially mislead by any systematic bias in the inade-

quately modelled data. Therefore, a major problem of phylogenomics is to determine if seem-

ingly well-supported relationships are the result of systematic bias [16]. PhyQuart is motivated

by this problem. Our results demonstrate that conventional ML inference can fail when there

is strong branch length heterogeneity even when there is only seemingly very minor ML

model misspecification. They also provide proof of concept for the idea that (at least for our

simulated data and for long alignments) it is possible to design methods that can outperform

conventional ML inference in those cases where ML does not perform well. These are the cases

where accurate phylogenetic inference is most difficult and additional tools are most needed.

PhyQuart is based on consideration of the evidential significance of observed site-patterns and
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Simulated: GTR Sequence Length: 250,000 bp
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Fig 5. Quartet reconstruction success given stepwise elongation of one or three terminal branches if sequence lengths

equal 250 kbp. Reconstruction success of PhyQuart (blue) and ML (green) for different rate heterogeneities under different

lengths of a) a single long terminal branch (BL2, x-axis) and b) three long terminal branches (BL2, x-axis), given 100 data

replicates (y-axis) of 250 kbp length and a fixed alternative internal branch length of BL1 = {0.01}, summarized for α = {0.1, 0.3, 0.5,

0.7, 1.0, 2.0}. A detailed overview of all simulation results of both setups is given as supplementary information S4 and S5 Figs.

https://doi.org/10.1371/journal.pone.0183393.g005
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combines ML estimation (to help correct for convergence) with Hennigian logics which are

disregarded in conventional ML analyses, together with a simple approach to reducing appar-

ent support in proportion to branch length asymmetries.

Our quartet simulations, show that PhyQuart and ML are either very successful or, if

branch length heterogeneity is very high, are moderately successful (i.e., in 50% of simulations)

in identifying correct topologies if either one or three terminal branches are long. In the classic

LBA problem, with two long and two short terminal branches in a quartet, PhyQuart is quite

successful in inferring correct topologies from very heterogenous sequence data if the align-

ment is large (more than 50 kbp) and can outperform ML, overcoming both long branch

attraction and repulsion, independent of the chosen simulation assumptions. In the simula-

tions, rate heterogeneity is rather less important for reconstruction success using PhyQuart
than using ML. Except with very heterogenous sequence data (α = 0.1), PhyQuart was success-

ful in the majority of simulated cases even when internal branches were kept very short. The

simulations show that the reconstruction success of ML decreases with increasing branch

length differences even when there is only very minor model misspecification, whereas the

performance of PhyQuart is only slightly affected by more extreme branch length conditions.

It might be expected then that estimated ML models will often be much more inadequate with

real, strongly heterogeneous data whereas the PhyQuart site-pattern analysis would be less

affected by strongly heterogeneous rates of substitution and branch length inequalities. Cer-

tainly that possibility is worth investigating. The overall reconstruction success of PhyQuart is

worst when if the substitution rate heterogeneity of underlying data is extremely high (α = 0.1)

and two adjacent-group sequences have very long branches compared to the internal branch.

However—as shown by our simulation studies—the observed phylogenetic reconstruction

success of ML is even worse for such data. Of course, despite conducting almost 173,000 simu-

lations we have only considered a limited range of possible simulations on just four taxa and

we have not taken into account the possibility of other sources of error that may result in or

exacerbate model misspecification in real data, such as substantial alignment errors (e.g.

[10, 89–94]), non-randomly distributed missing data (e.g. [95–98]), and compositional hetero-

geneity (e.g. [48, 84, 99–104]).

It must be stressed that the restriction of our comparison of PhyQuart with ML to quartet

analysis is a substantial one given that quartet analysis is considered to exacerbate LBA. Thus

we cannot generalise from our results to say that PhyQuart will ever outperform conventional

ML applied, as it usually is, to larger phylogenetic trees, but this merits investigation if Phy-
Quart is to be of any practical use and further simulation studies investigating this are under

way. Despite its potential drawbacks, the benefit of the the computational simplicity of quartet

analyses is two-fold, allowing consideration of the evidential significance and calculation of

expected frequencies of a small number of site patterns in the development of the PhyQuart
score, and the ability to obtain and compare these scores for all three quartet tees and thereby

get an indication of the strength of the signal detected by PhyQuart. Thus, PhyQuart support

for possible quartet trees can be used directly as a quality measure for how good a data set fits

to alternative quartet relationships before ML tree inference or for existing/published tree

topologies. Based on our simulations, we suggest that in cases where, for any quartet of taxa,

there are two long and two short terminal branches (and thus the potential for classical LBA)

and ML and PhyQuart both provide good support the same relationship we can be more confi-

dent that the ML inference is not the result of LBA. Conversely, where PhyQuart and ML pro-

vide good support for conflicting relationships or in cases in which PhyQuart shows strong

contradictory split support for at least one of the other two alternative quartet trees, then we

should be more concerned that ML might be being misled by LBA. This does not directly

imply that PhyQuart supports the correct quartet topology, but it should be seen as an
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indication that the initially ML-reconstructed topology should be handled with caution. Fur-

thermore, it can be stated that the higher the conflict of PhyQuart support for a given quartet

tree, the more suspicious is the phylogenetic value of the data.

However, PhyQuart is likely to be useful only with large alignments such as in phylogenomic

supermatrices and some next generation data types such as RADseq, and is not recommended

for shorter sequences such as single gene analyses where stochastic errors in the split split-sup-

porting site-pattern estimation are expected to dominate when trying to infer short internal

branches. However, there is probably substantial room for improving the PhyQuart approach.

For example, to estimate the amount of potentially convergent split signal for a given quartet

tree PhyQuart uses a simple mean score derived from the two alternative quartet trees. Given

that at most only one of these alternative quartet trees could be correct, this scoring function

can be expected to differ from the actual number of convergences. The correction factor ω,

which is used to reduce the counted observed and ML estimated number of positions with rele-

vant site-patterns to approach a more balanced branch-length ratio, depends on the smallest

number of observed singleton site-patterns and the total number of these. In our simulation,

this reduces the impact of systematic bias in PhyQuart, especially in reconstructing quartet

topologies with moderate and strong branch length differences (a detailed comparison of

reconstruction success with and without correction factor ω for simulations with both Felsen-

stein and Farris topologies using alignments of 250 kbp sequence length are given in the supple-

mentary information S1 Fig). However, due to varying substitution rates along branches and

differences in multiple substitutions, the number of observed singleton site-patterns is unlikely

to be linearly correlated with the number of split-supporting site-patterns and this might be

expected to leads to underestimation of ω. Additionally, PhyQuart currently ignores potentially

useful information in ambiguity states (e.g. [105–107]), or indel events (e.g. [108–110]).

Another desiderable extension is for PhyQuart to be able to handle data partitions. Clearly, Phy-
Quart is not perfect, but it points the way to new split-supporting site-pattern based methods

that allow users to investigate conflicting signals in macromolecular sequence data.

Whereas our simulations have focussed upon proof of concept using only quartets, the

PENGUIN software allows the analysis of all quartets of taxa in larger trees, or form predefined

quartets of multitaxon clans, and provides a new tool for evaluating contradicting signals that

can be used to assess the robustness of relationships within a more complex tree. Generally, it

can be stated that the higher the observed contradictory split signal, the more questionable is

the reliability of the corresponding branch in a tree and the more suspicious are any high sup-

port values for that branch. The PENGUIN software allows users to produce a graphical output

summarising signal strengths found for each sequence quartets. This may also be useful for

identifying individual rogue taxa that are difficult to place due to ambiguous or weak phyloge-

netic signal [111]. This characteristic of rogue taxa should become visible when multiple quar-

tets selected from predefined multi-taxon clans are analysed. We also see potential for

PhyQuart to be used in combination with quartet-based supertree methods (e.g. [112, 113]), of

which there are many, and for development of networks summarising conflicting signal.

Because, unlike ML, the method makes use of the distinction between plesiomorphy and apo-

morphy it may provide information on the probable location of the root in trees or networks

independent of any consideration of outgroups. The availability of split support information

for all three possible quartet relationships and two alternative directions of character evalua-

tion along the innermost branch can be seen as an advantage of the PhyQuart approach over

conventional ML quartet analyses. The information can be further used in supertree tech-

niques to improve the selection of highly informative and thus appropriate quartets (e.g.

quartet topologies without much signal conflict). New ideas on how to use the PhyQuart infor-

mation to build supertrees (e.g. through translation into pairwise support distance matrices

Quartet analyses combining maximum likelihood estimation and Hennigian logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0183393 August 25, 2017 17 / 24

https://doi.org/10.1371/journal.pone.0183393


based on quartet analyses of multiple-taxon clans) have already been successfully tested in

recent test studies and will be published soon.

Supporting information

S1 Fig. Complete results of 4-taxon simulations of 250 kbp long sequences given two elon-

gated branches. Complete results of 4-taxon simulations based on stepwise BL2 elongations of

two adjacent or non-adjacent terminal branches given 250 kbp long nucleotide alignment

data. The pdf document can be opened with pdf readers like AdobeAcrobatReader, Xpdf, or

DocumentViewer.

(PDF)

S2 Fig. Complete results of 4-taxon simulations of 250 kbp long sequences given two elon-

gated branches with and without using correction factor. Complete PhyQuart results of

4-taxon simulations with and without using correction factor ω based on stepwise BL2 elonga-

tions of two adjacent or non-adjacent terminal branches given 250 kbp long nucleotide align-

ment data. The pdf document can be opened with pdf readers like AdobeAcrobatReader,

Xpdf, or DocumentViewer.

(PDF)

S3 Fig. Complete results of 4-taxon simulations of sequences shorter < 250 kbp given two

elongated branches. Complete results of 4-taxon simulations based on stepwise BL2 elonga-

tions of two adjacent or non-adjacent terminal branches given nucleotide alignment

data< 250 kbp. The pdf document can be opened with pdf readers like AdobeAcrobatReader,

Xpdf, or DocumentViewer.

(PDF)

S4 Fig. Complete results of 4-taxon simulations of 250 kbp long sequences given a single

elongated branch. Complete results of 4-taxon simulations based on stepwise BL2 elongations

of one terminal branch given 250 kbp long nucleotide alignment data. The pdf document can

be opened with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.

(PDF)

S5 Fig. Complete results of 4-taxon simulations of 250 kbp long sequences given three

elongated branches. Complete results of 4-taxon simulations based on stepwise BL2 elonga-

tions of three terminal branches given 250 kbp long nucleotide alignment data. The pdf docu-

ment can be opened with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.

(PDF)
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Writing – review & editing: Patrick Kück, Mark Wilkinson, Peter G. Foster, Johann W.
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