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Abstract

Losing a species from a community can cause further extinctions, a process also known as

coextinction. The risk of being extirpated with an interaction partner is commonly inferred

from a species’ host-breadth, derived from observing interactions between species. But

observational data suffers from imperfect detection, making coextinction estimates highly

unreliable. To address this issue and to account for data uncertainty, we fit a hierarchical

N-mixture model to individual-level interaction data from a mutualistic network. We predict

(1) with how many interaction partners each species interacts (to indicate their coextinction

risk) and (2) how completely the community was sampled. We fit the model to simulated

interactions to investigate how variation in sampling effort, interaction probability, and animal

abundances influence model accuracy and apply it to an empirical dataset of flowering

plants and their insect visitors. The model performed well in predicting the number of interac-

tion partners for scenarios with high abundances, but indicated high parameter uncertainty

for networks with many rare species. Yet, model predictions were generally closer to the

true value than the observations. Our mutualistic plant-insect community most closely

resembled the scenario of high interaction rates with low abundances. Median estimates of

interaction partners were frequently much higher than the empirical data indicate, but uncer-

tainty was high. Our analysis suggested that we only detected 14-59% of the flower-visiting

insect species, indicating that our study design, which is common for pollinator studies, was

inadequate to detect many species. Imperfect detection strongly affects the inferences from

observed interaction networks and hence, host specificity, specialisation estimates and net-

work metrics from observational data may be highly misleading for assessing a species’

coextinction risks. Our study shows how models can help to estimate coextinction risk, but

also indicates the need for better data (i.e., intensified sampling and individual-level obser-

vations) to reduce uncertainty.
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Introduction

A major driver of biodiversity loss is secondary extinction or coextinction, which is the loss of

a one species resulting from the loss of an interaction partner. Due to the significance of coex-

tinctions, it is important to estimate how many species are at risk. Until now, coextinction risk

estimates were based on the strength of interactions between species using museum records

(e.g., [1]), presence-absence data (e.g., [2, 3]), or species interaction networks from empirical

studies [4]. Interaction data has also been increasingly used to investigate the structure of com-

munities [5], their stability [6], their function [7] and the role of individual species in networks

[8]—factors that are thought to influence coextinction risk.

Like any other observational data, interaction data are prone to sampling bias, which results

from limited sampling effort, imperfect detection of species and other sources of variability [9,

10]. Species may remain undetected when they are cryptic, rare or when their phenology and

study period misalign. Interactions between species are even harder to detect than the species

themselves [11]. Species abundance has been shown to explain most of the variation in net-

work metrics [12, 13] and predicts various network metrics such as connectance, nestedness,

interaction evenness, and interaction asymmetry [12]. Network metrics that are commonly

used to assess the structure and stability of interaction networks and the coextinction risk of

species are degree distribution, network specialisation H0
2
, weighted nestedness and modularity

[14]. Further, species abundances and community composition vary spatially [15] and tempo-

rally [16], causing species to appear as specialists in one study season and as generalists in

another [17]. Thus, observed interaction networks are biased towards abundant species and

hence inaccurate representations of true networks.

Although imperfect detection has been widely acknowledged in species occupancy models

and other biodiversity studies (e.g., [9, 18]), analyses of interaction networks largely ignore the

problem ([19, 20], but see [21–23]). Some studies have attempted to overcome the problem of

imperfect sampling by increasing sampling intensity. These studies show that detecting species

and links accurately requires intensive sampling effort [11, 24]; even after four years of inten-

sively sampling a pollinator community, new interactions and species continued to emerge

[17]. Uncovering the true network by increasing sampling effort is costly [24], and for species-

rich habitats, probably infeasible [9, 18]. To mitigate imperfect sampling effects in interaction

networks, network analysis has, therefore, turned towards modelling approaches, including

null models [25] and quantitative niche models [23]. These approaches show that sampling

intensity influences most network metrics, in particular those related to the specialisation of

species [22, 23, 25, 26]. Despite the importance of uncertainty in ecology (e.g., [27]) and con-

servation [28], none of the studies have reported uncertainty in network metrics.

Uncertainty in network data arises for several reasons. Firstly, interaction frequencies are

mostly condensed into species-by-species matrices, which leads to the loss of crucial informa-

tion about the variability of interactions across individuals, and confounds abundances and

interaction preference [21]. Some have tried to disentangle abundances from species prefer-

ences, by assessing the eigenvalues of species adjacency matrices to identify system stability

(i.e., negative eigenvalues identify stable systems) [29]. Yet, they did not go as far as to look at

the distribution of interactions among individuals.

Secondly, uncertainty in interaction networks arises from the natural excess of zero-obser-

vations [19]. Zeros occur when a particular species pair does not interact (true negatives), and

due to imperfect sampling (false negatives, [30]). We can deal with this zero-inflation in the

data by maintaining the original data structure (on the level of observed individual organisms)

and analysing them with hierarchical, mixture models [30]. Studies have applied mixture mod-

els to estimate uncertainty in network data, revealing considerable uncertainty in predictions
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of network specialisation [21] and host-specificity [31]. Although some studies have predicted

that sampling effort does indeed influence network metrics [21, 23], no study has ever evalu-

ated how uncertainty changes under varying interaction probabilities and species abundances.

Here, we investigate how variations in sampling effort, interaction probability between

plant and animal species, and the abundance of animal species influence the inferences from

mutualistic interaction networks. Specifically, we are interested in how these parameters influ-

ence estimates of 1) the number of mutualistic interaction partners of each species and 2) the

total species richness of the animal community. We fit a model to individual-level interaction

data to estimate two parameters: the probability that a mutualistic interaction between a plant

individual and an animal species occurs, and the abundance of the animal species. We then

use these parameters to estimate the number of interaction partners for each species, and the

overall species richness of animals, including those species that are missed by the observation

process. We apply the model to simulations and an empirical pollinator data set. By addressing

imperfect detection and sampling completeness in such a framework, we ultimately derive

coextinction risk estimates that better capture the uncertainty in our predictions.

Material and methods

Here we assessed the question of how bias in interaction network data influences coextinction

risk estimates. Although we focused on mutualistic interactions between plant and animal spe-

cies, the same principal applies to antagonistic systems, such as herbivore-plant networks. Our

method included several steps:

1. First, we developed a model drawing upon two previously published hierarchical models:

one predicts the host plant use of herbivore insect species [31] and another that accounts

for observation bias by estimating the probabilities of occupancy and detection [18]. Both

models are Bayesian and account for uncertainty in parameter estimates.

2. Our model contained two submodels: one for the probability that two species interact

(hereafter interaction probability) and another that estimated the abundance of animal

species.

3. The interaction probability allowed us to predict the number of partner species that each

species interacted with and the species richness of the animal community.

4. We tested the performance of our model on twelve simulated networks. The simulations

had different values for the following parameters 1) interaction probability, 2) animal abun-

dance and 3) sampling effort.

5. Finally, we applied the model to an empirical interaction network of flower-visiting insect

species on a threatened community of flowering plants.

The model

For each network, we modelled a matrix of interaction frequencies Yij between plant individual

i and animal species j as random realisations of a zero-inflated Poisson distribution. The inter-

action matrix elements consist of discrete, non-zero interaction frequencies between animal

species and plant individuals, and of zeros where no interaction was observed. Thereby, we

preserved information about the spread of interactions of an animal species across all sampled

individuals of a plant species. This contrasts with conventional bipartite network analyses,

where interaction frequencies are aggregated in species by species matrices [21], and allows us

to estimate uncertainties in interaction frequency [31]. To deal with the large amount of
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unobserved plant-animal interactions, we applied a zero-inflated N-mixture model [32]. Since

we were further interested in how well a network study captures the species richness of the ani-

mal community, we applied a method from occupancy and detection studies; a method ini-

tially developed to estimate the number of undetected species in a community based on

temporally replicated counts of species at different sampling sites [18]. Combining the two

approaches allowed us to estimate the number of available, but unobserved, animal species,

and thereby the total number of species in the community.

In our model, interaction frequencies Yij were modelled as a function of two parameters: 1)

an indicator variable θk[i]j that described if an interaction between an animal species j and a

plant species k (that plant individual i belongs to) occurred and 2) the animal species ‘abun-

dance λj.

Yij � Poissonðyk½i�j � ljÞ ð1Þ

The interaction frequencies Yij were conditional on the occurrence of an interaction

between plant species k and animal species j. The interaction indicator θk[i]j took values of

either 1, for plant-animal pairs that interact, or 0 when no interaction occurred. The modelling

framework was hierarchical because the two parameters, the interaction indicator θk[i]j and the

animals’ abundance λj are derived from distributions with their own hyperparameters, drawn

from overarching hyperdistributions [33].

Modelling animal abundance

We estimated the abundances of an animal species λj in a Poisson regression with an intercept

term for the average abundance β0 across all animal species and a random effect coefficient β1j

for a particular animal species j.

log ðljÞ ¼ b0 þ b1j: ð2Þ

Hence, we modelled the expected abundance of an animal species j regardless of which

plant species it interacted with. Varying the abundance with each plant species would have

been possible, but would have hampered model fitting and increased computational costs sub-

stantially. Further, empirical mutualistic networks are usually obtained by observing an

(immobile) plant individual and sampling all its (mobile) animal visitors, making it difficult to

collect information about the movements of individual animals or (as in our study) even

impossible when animals are collected for later identification in the lab.

Modelling interactions between animal and plant species

The interaction indicator θk[i]j derived from a Bernoulli trial with an interaction probability

Θkj between an animal species j and a plant species k.

yk½i�j � BernoulliðYkjÞ: ð3Þ

We derived the interaction probability Θkj from a logistic regression with a probability that

an animal species interacted with a plant species, ψkj, and a latent variable ωj. This latent vari-

able ωj indicated if an animal species occurred in the community or not and was randomly

drawn from a Bernoulli distribution. We modelled the interaction probability between a plant

species and an animal species, ψkj, with a linear regression including an intercept term α0 for

the average interaction probability of the animal species j across a plant species k, and a
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(random) effect coefficient α1jk,

logitðYkjÞ ¼ ckj � oj; ð4Þ

oj � BernoulliðOjÞ; ð5Þ

ckj ¼ a0 þ a1kj: ð6Þ

Vesk et al. (2010) assumed that interaction probabilities are influenced by phylogenetic

relationships (i.e., an animal species had a higher chance of interacting with plant species of

the same family). While such relationships are certainly possible (e.g., [34]), we did not include

it here because the plant species in our case study belong to very few families (one in 2012 and

three in 2013). One could also assume that a plant species is visited more often by dependents

of the same family, but we omitted such a potential relationship due to ambiguous evidence in

the literature (e.g., [35]).

Similarly to Dorazio et al (2006), who predicted species richness in a community of birds

and butterflies, we estimated the unknown species richness N of animals in our case study.

When the total number of species is unknown, the Markov Chain Monte Carlo (MCMC)

approach struggles to fit the model because the dimensions of the parameter vectors change

with each draw of the parameter N [18]. We therefore augmented the observed community of

animal species n with an arbitrary (but large enough) number of unobserved species m to cre-

ate a “supercommunity” S, with fixed dimensions. The species richness N was not directly esti-

mated as a parameter, but indirectly as the sum of all available species ωj.

N ¼
XS

j¼1

oj: ð7Þ

To check if our model was sensitive to the size of the supercommunity, we fitted it to the

sampled networks of the HILA scenario with low sampling effort and checked for three differ-

ent supercommunity sizes: 250, 300 and 450 species. A different size for the supercommunity

did not affect the parameter estimates (see S1 Fig), but we have to ensure that the supercom-

munity is large enough to contain the estimates community size.

To estimate the number of interaction partners for each species (i.e., the number of plant

species for each animal species NPj and the number of animal species of each plant species

NAk), we summed the interaction indicator θkj for each animal species j across all its plant spe-

cies k and vice versa for each plant species across all animal species.

NPj ¼
X

k

ykj; ð8Þ

NAk ¼
X

j

yjk; ð9Þ

Bayesian model fitting and prior specifications

We fitted the model in a Bayesian setting with vague prior distributions for all model parame-

ters. The regression coefficients α1kj, which modelled variation in the interaction probability

between plants and animals, were drawn from a normal distribution centred on zero with a

standard deviation σα for the variation among plant-animal pairs. Similarly, the variation in

the average abundance among animal species β1j was drawn from a normal distribution with a
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mean zero and a standard deviation σβ. We specified half-Cauchy priors for the standard devi-

ations σα and σβ [36] which we truncated at a lower bound of zero, σ * half-Cauchy(0, 10).

As per Eq 5, ωj were randomly drawn from a Bernoulli distribution, with hyperparameter

O * U(0, 1). We used MCMC sampling to estimate the posterior probability distributions of

parameters using rjags [37] in R [38]. For simulated data, we modelled four chains with

200,000 iterations each and checked for model convergence. For observed data, we ran four

chains each for 1,000,000 iterations with a burn-in of 100,000 and a thinning rate of 100. We

discarded the first 10,000 iterations as burn-in and thinned the chains by a factor of 100. If

some parameters were not converged, we updated the chains for another 200,000 iterations

with a thinning rate of 100 and no burn-in. We checked for convergence visually by examining

the four chains, and analytically with the Rhat statistic. Parameters were judged to have

approximately converged below an Rhat = 1.1 [36]. We provided the code for the Bayesian

model in the supplement (S1 Code).

Simulation study

We simulated twelve interaction network scenarios to explore how different parameterisations

affected model performance and uncertainty. These networks contained ten plant species and

150 animal species. The parameter scenarios were a combination of low and high values for

the average interaction probability and the average animal abundance, and three different

sampling sizes. The values of these parameters were chosen to encompass a wide parameter

space (Table 1). In low-interaction scenarios, we assumed an interaction to occur in approxi-

mately 1% of species pairs, whereas in high-interaction scenarios, an interaction was assumed

to occur in approximately 80% of species pairs. In low-abundance scenarios, one animal

occurred in approximately 20 observations, whereas in high-abundance scenarios there was

approximately one animal in every observation. We sampled from each simulated network

with three different sampling intensities with 20, 40 and 60 samples per plant species. The low-

est sampling intensity represents a medium to high sampling effort in a field study (around

five observation hours per species; e.g., [24]). Sampling intensities of 40, or even 60 are unusual

for empirical studies. We chose these efforts here to investigate the required sampling size for

interaction networks.

With these different parameter combinations and three different sampling intensities, we

simulated twelve scenarios of interaction networks between animal species and plant individu-

als. We generated hyperparameter distributions for each interaction probability between a

plant-animal pair and an animal species’ abundance from predefined distributions. We used

these hyperparameters as scale parameters for sampling binary interactions from binomial dis-

tributions, and expected abundances of animals from Poisson distributions. The observed

interaction frequencies between each plant individual and animal species are the product of

Table 1. Values for the mean and standard deviation of the two hyperparameters, the interaction probability and the abundance.

abundance (log scale)

high

0

low

-3

sd

interaction probability (logit scale) high 1.5 high interaction,

high abundance

high interaction,

low abundance

1.5

low -2.5 low interaction,

high abundance

low interaction,

low abundance

sd 2.5

https://doi.org/10.1371/journal.pone.0183351.t001
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the binary interaction and the expected counts. We provided the code for these simulations in

the supplement (S2 Code).

Evaluation of model performance

Firstly, we evaluated how well our model recovered the simulated data by visually comparing

simulated parameters (“true”) with model predictions (“estimated”) for the following

parameters:

• the interaction probability,

• the realised interactions between a plant and an animal species, and

• the abundance of animals.

We calculated receiver operator statistics to assess the performance of the binary interaction

parameter and summarised these with the area under the curve statistic (AUC) to compare the

performance of the model for different parameter scenarios (see S1 Table).

To evaluate how well the model predictions reflected the simulated networks, we

compared:

• the number of interaction partners of each plant and animal species, and

• four common network metrics (degree distribution, specialisation H 02, weighted nestedness

and modularity)

between simulated networks (“true”), networks that were sampled from simulations (“sam-

pled”), and networks that were predicted by the model (“predicted”). To account for parameter

uncertainty, we generated 1,000 random networks based on the model predictions.

Network metrics

Several network metrics are commonly used to assess the structure and stability of interaction

networks: degree distribution, specialisation H 0
2
, weighted nestedness and modularity [14]. For

simulated and sampled networks, we were only able to calculate point measurements, while

for the 1,000 predicted networks, we report mean and 95% confidence intervals for each met-

ric. We compare the metrics of simulated, sampled and predicted networks to check how sen-

sitive network metrics are to imperfect detection and sampling effort.

The number of links of a species is the species’ degree and the degree distribution reflects

the probability distribution of all degrees over the whole network [39]. Animal-plant mutualis-

tic networks often exhibit truncated power-law distributions: some species have many interac-

tion partners while most species only interact with few others [39].

Nestedness measures the departure of a matrix from being perfectly nested. Species interact

with a subset of those species that the most linked interaction partner interacts with [25]. Since

networks are described not only by their topology but also by their differences in the frequency

of interactions, we calculated the weighted version of nestedness (WNODF) for quantitative

networks. WNODF is based on overlap and decreasing number of interactions [40] and shows

values range from 0 (not nested) to 100 (highly nested).

The number of interaction partners per species can be a measure of a species’ coextinction

risk. We calculated network specialisation (H 0
2
) to see how many of the potential network

interactions were realised [41]. Network specialisation H0
2

combines the specialisation of spe-

cies across the entire community and thereby quantifies the niche redundancy of animal spe-

cies across different plant species, and vice versa [41]. It ranges from 0 (no specialisation) to 1

(perfect specialisation) [25].
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Finally, we calculated the modularity of networks. Species in animal and plant networks

have been found to interact mainly with other species within the same module thereby form-

ing subnetworks of interacting species [42]. Modularity measures how compartmentalised a

network is and may have a slight stabilising effect on networks [42]. Recently several algo-

rithms have been proposed to detect modularity in quantitative interaction networks. We used

the LPAwb+ algorithm because it is the fastest for large networks [43].

Case study: Observed interactions in a community of flower visitors and

their plant plants

We observed flower-visiting insect species on a community of threatened plants from the Stir-

ling Ranges National Park in south-west Australia (S2 Fig). The region is species-rich with

approximately 3,600 endemic plant species, of which 1,909 are threatened [44]. Due to the

high numbers of endemic plant species within the region, and the level of anthropogenic dis-

turbance, it was identified as one of the original hotspots of biodiversity [45]. There are poten-

tially many threatened invertebrate species associated with the threatened flora [46]. Several

plants in our focal community are managed because they are highly threatened. Managers are

also interested in identifying those insect species that have a high chance of coextinction.

The observed plant community consisted of a total of eleven plant species (six in 2012 and

ten in 2013) mainly from the family Ericaceae, but also from the Myrtaceae and Fabaceae

(Table 2). The focal species are part of the “Eastern Stirling Range Montane Heath and Thicket

Community”—a plant community identified as critically endangered under the International

Union for the Conservation of Nature’s Red List Criteria for Ecosystems [47]. This dense

shrub thicket community is only found on the highest peaks of the Stirling Ranges, which are

distinctively montane with skeletal organic soils, low temperatures, high humidity and light

exposure, and occasional snowfalls [46].

Two plant species within the community, the Stirling Range Beard Heath (Leucopogon gna-
phalioides) and the Giant Andersonia (Andersonia axilliflora), are critically endangered under

both Australian state and federal legislation because their naturally small populations are

threatened by increasing recreational activity, disease (Phytophthora cinnamonii) and wildfire

[48, 49]. The few remaining populations are restricted to only a few mountain peaks 900 m

above sea level [48, 49]. The largest population occurs on Bluff Knoll, the highest peak of the

Table 2. Observed plant species and the number of observed individuals per species and study year.

Family Genus Species 2012 2013

Ericaceae Andersonia axilliflora* 27 56

Andersonia echinocephala 28 46

Andersonia sp. “Stirling Range” 4 2

Dielsiodoxa tamariscina 32 –

Leucopogon atherolepis – 8

Leucopogon gnaphalioides* 101 56

Sphenotoma sp. “Stirling Range” 49 40

Myrtaceae Calothamnus crassus – 16

Kunzea montana – 35

Taxandria parviceps – 33

Fabaceae Aotus genistioides – 37

*critically endangered species

https://doi.org/10.1371/journal.pone.0183351.t002
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mountain range at 1090 m above sea level [48]. We restricted our study to the population on

Bluff Knoll, because it was the largest and most accessible.

In 2012, we observed the two focal plant species and four non-threatened plant species in

the same family (family Ericaceae, Table 2). In 2013, we broadened our observations to include

three additional species, which were important flowering plants in the previous year (Table 2).

We did not repeat sampling on Dielsiodoxa tamariscina, because we did not detect visitors in

2012 other than one highly abundant ant species. L. artherolepis was not detected flowering in

2012, but a few individuals were found in 2013. Each study season started slightly before and

ended slightly after the peak flowering time of the two focal species, which was strongly depen-

dent on climatic conditions (4th—17th December 2012, 22nd November—10th of December

2013).The number of observed plant individuals differed every year due to availability

(Table 2). The observation time was standardised to 15 min for each plant individual. We cap-

tured all insects that we detected foraging on the focal plant‘s flowers. Between observations

we moved to the next plant and allowed 5 min for potentially disturbed insects to return to the

flowers, before starting another observation. We only conducted our sampling on dry days

with a temperature above 15˚C, because insect activity was extremely low in wet and cold

conditions.

Results

Model performance

To evaluate how well the model recovered the interaction and abundance parameters, we com-

pared simulations with their predicted counterparts θkj and β1j. Estimated abundances of animal

species β1j most closely resembled true abundances in the HIHA scenarios (S3a–S3c Fig). For

low-abundance scenarios (HILA and LILA), abundance estimates exhibited a wider spread than

in high-abundance scenarios (S3g–S3l Fig). The simulation generated animal species without

any plant interactions in each but the HIHA scenarios. Animals without plant interactions were

assumed to have abundances equal to the modal estimates, which lead to the horizontal lines of

points (with large deviations) in the LIHA and LILA scenarios (S3d–S3f and S3j–S3l Fig).

We also compared simulated binary interactions with the mean estimated interactions.

This revealed increasing model accuracy for larger sampling efforts in high-abundance scenar-

ios (HIHA and LIHA). For lower sampling efforts in HIHA and LIHA scenarios, unobserved

interactions (i.e., false positives) were estimated to occur with a probability of 0.38 (S4a and

S4d Fig). For high observation effort all true interactions and true non-interactions were cor-

rectly estimated (S4c and S4f Fig). In low-abundance scenarios (HILA and LILA), the model

struggled to predict some non-interactions and interactions correctly (S4g–S4l Fig): some true

non-interactions were falsely identified as interactions with a mean probability of up to 0.61 in

HILA and 0.15 in LILA scenarios. In contrast, some true interactions showed mean estimated

probabilities of 0.01-0.60. In the HILA and LILA scenarios, increasing the sampling effort had

little effect on the accuracy of model estimates.

The receiver operator statistics, summarised in the area under the receiver operator curve

(AUC) values were close to 1, which indicated that the model performed well in correctly

identifying the simulated true positives and had a comparatively low rate of false positives

(S1 Table). We received higher AUC values with increasing sampling effort, indicating

improved performance with increasing data availability.

Number of interaction partners in simulated networks

We compared model estimates to simulated (true) numbers of interaction partners and to

sampled numbers to evaluate model performance and verify whether estimates represented an

Coextinction risk under imperfect detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0183351 August 28, 2017 9 / 22

https://doi.org/10.1371/journal.pone.0183351


improvement over the observations. Overall, our model predicted the number of interaction

partners (i.e., diet breadths) of species as well as, or better than simple observations (Figs 1, 2, 3).

For high abundances (HIHA and LIHA), the information in sampled interactions network

is adequate for estimating the number of interaction partners and the model did not provide a

great improvement over the sampling, even at low sampling sizes (Figs 1 and 3a–3f). The

model underestimated the true number of interaction partners only in a few cases for low

observation efforts (Fig 1a and 1d), yet it was still captured within the credible interval. When

simulated abundances were low, our model performed better in predicting the number of

interaction partners than the sampling and included the true value in its uncertainty range in

most cases. The median estimates represented a better approximation than sampled values,

especially in HILA scenarios (Fig 2a–2c). If true values differed to median estimates they were

mostly captured in the 95% credible interval, and estimates became more certain with increas-

ing sampling effort.

For the number of animal species that each plant species interacted with, we retrieved simi-

lar patterns. In high-abundance scenarios, true sampled and estimated values were closely

Fig 1. Number of plant partner species of each animal species in high-abundance scenarios (HIHA a-c and LIHA d-f). Blue represents the true

number of plant partner species, purple shows the sample and green gives the median estimates. Thick and thin black lines give the 50% and 95%

credible intervals, respectively. To improve readability, we have jittered the circles slightly (observed slightly to the left, estimated slightly to the right),

which causes the points to appear to be away from their discrete number.

https://doi.org/10.1371/journal.pone.0183351.g001
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aligned (Fig 3a–3f). In low-abundance scenarios, the estimates represented a much better

approximation of the true values than the sampled values (Fig 3g–3l). The sampled values were

furthest from the true values in the HILA scenarios (Fig 3g–3i). As before, the uncertainty

around median estimates decreased with increasing sampling effort.

Network metrics

The degree distribution for simulated, sampled and predicted interaction networks exhibited

scenario-specific responses. While simulated, sampled and predicted degree distributions

exhibited similar trends in high interaction scenarios (HIHA and LIHA), the model provided

better estimates when interaction rates were low. Increasing the sampling size decreased the

uncertainty around predicted degree distributions of plant species especially for low interac-

tion rates and slightly for high interaction rates (S5 Fig). At low interaction rates, sampled

degree distributions consistently decayed much faster than degree distributions from simu-

lated and predicted networks.

Fig 2. Number of plant partner species of each animal species in low-abundance scenarios (HILA a-c and LILA d-f). Blue represents the true

number of plant partner species, purple shows the sample and green gives the median estimates. Thick and thin black lines give the 50% and 95%

credible intervals, respectively. To improve readability, we have jittered the circles slightly (observed slightly to the left, estimated slightly to the right),

which causes the points to appear to be away from their discrete number.

https://doi.org/10.1371/journal.pone.0183351.g002
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Fig 3. Number of animal partner species of each plant species in simulated scenarios (HIHA a-c, LIHA d-f, HILA

g-i, LILA j-l). Blue represents the true number of plant partner species, purple shows the sample and green gives the

median estimates. Thick and thin black lines give the 50% and 95% credible intervals, respectively.

https://doi.org/10.1371/journal.pone.0183351.g003
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WNODF of simulated networks was high for scenarios with high interaction rates (*65)

and lower for scenarios with low interaction (*20, Fig 4a). Sampled and predicted WNODF

was always lower than simulated data: *25-35 for high interaction and *5-10 for low interac-

tion. While we found no difference between sampled and predicted WNODF in high abun-

dance scenarios, predicted metrics were often closer to the simulation than the observation in

low abundance scenarios.

Network specialisation H 0
2

ranged from *0.17 for simulated high-interaction scenarios

to *0.4 for low-interaction scenarios (Fig 4b). The specialisations of sampled and predicted

networks were very close to the simulations only for HIHA scenarios, but furthest for HILA

scenarios. In the latter case the predictions served as a considerable improvement over the

observations, which were around 0.1 more specialised than the simulated dataset. Modularity

of quantitative networks showed very similar patterns to network specialisation: high interac-

tion scenarios showed a low modularity, whereas modularity was high when interactions were

low (Fig 4c). As for network specialisation, observed and predicted metrics were very close to

the simulation for high-abundance scenarios and overlapped for all but the HILA scenarios. In

the latter case the predictions again exhibited an improvement over the observation. The

uncertainty around the estimated metrics was low in HIHA and LIHA scenarios and relatively

small in HILA and LILA scenarios. Increased sampling effort did not lead to improvements in

recovering simulated metrics.

Case study: The flower visitors of a threatened ecological community

We observed insect visitations at 241 plant individuals in 2012 and 329 plant individuals in

2013, resulting in 60.25 and 81.5 hours of observation, respectively. In 2012, we sampled 217

foraging insects representing 41 species, and in 2013 we sampled 948 foraging insects from

105 species. While Coleoptera and Hymenoptera were the most abundant and species-rich

orders in both years, Diptera were also highly represented in 2013. The most abundant species

in 2012 was the true bug Spilostethus pacificus (Hemiptera, Lygaeidae) with 30 individuals. In

2013 the European honey bee, Apis mellifera (Hymenoptera, Apidae) was highly abundant,

closely followed by a native bee species, Lasioglossum sp26 (Hymenoptera, Halictidae).

The parameter predictions for the case study were most similar to the HILA scenario, with

interaction probabilities of 0.40 (hereafter 95% credible intervals appear in brackets thus:

(0.18, 0.65) and 0.55 (0.17, 0.48) in 2012 and 2013, respectively. The standard deviation of

the interaction probability, σα, was large and right skewed, 0.999 (0.5, 1) in 2012 and 0.996

(0.5, 0.999) in 2013. Model estimates of mean abundance β0 were very low with 0.0009

(0.0004, 0.002) in 2012 and 0.002 (0.001, 0.004) in 2013, corresponding to a mean abundance

of one animal species in 445-2850 observations in 2012 and one in 235-775 observations in

2013. The standard deviation of the abundance σβ was normally distributed around a value of

10.91 (7.39, 16.12) in 2012 and 9.58 (7.24, 12.68) in 2013.

The augmentation of empirical networks with 250 additional insect species resulted in

supercommunities of 291 species in 2012 and 355 species in 2013. The model predicted a

mean total species richness of 179 (85, 285) in 2012 and 262 (178, 349) species in 2013

(S1 Table). Since, the credible interval did not include the maximum available number of spe-

cies, the actual community is likely to be smaller than the supercommunity.

Comparison of Stirling Range networks and network simulations

The number of plant species that each insect species interacted with appeared most similar to

the HILA scenario for low sampling effort. While the observed number of plant species was

always lower than the median estimates their ranges are similar, ranging from one to five plant
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Fig 4. Network metrics for simulated networks. Network metrics a) weighted nestedness, b) network specialisation

and c) modularity for simulated networks (blue cross), networks sampled from simulated data (purple star), predicted and

sampled networks for different parameter scenarios (green boxplot). Boxplots give the median (black line), the

interquartile range (green box) and the range of 1.5 of the interquartile box (whiskers) for predicted networks.

https://doi.org/10.1371/journal.pone.0183351.g004
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species per insect in 2012 and zero to eight in 2013 (Fig 5). Yet, observed numbers of plant

partner species were mostly located at the lower end of the 95% credible interval, with one to

three plant species per animal less than estimated (Fig 5). The 95% credible intervals of esti-

mated plant partner species were large for most species (Fig 5)—one to five plant partner spe-

cies in 2012 and one to seven in 2013—implying that estimates were very uncertain for some

insect species. Other species, however, exhibited very narrow uncertainty ranges; for example,

Spilothethus pacificus, the most abundant flower-visitor in 2012, was predicted to interact with

three plant species (3.0, 3.0). Likewise, in 2013 Lasioglossum sp.101 was observed to interact

with seven plants and its median estimate confirmed this. Some species, such as the native bee

Lasioglossum sp26 exhibited considerable temporal variation: while it was only observed and

predicted to interact with one plant species (1.0, 2.0) in 2012, its observed and median number

of plant partners was eight (8.0, 9.0) in 2013. The observations and median estimates aligned

for only nine insect species in 2012 (from a total of 41) and ten insect species in 2013 (from

105).

The number of insect species that visited plant species was always estimated to be higher

than in the observations (Fig 6). While median estimates ranged from 75-90 (95% CI 35-140)

in 2012 and 101-127 (60-160) in 2013, observed numbers were much lower, 2-23 in 2012 and

4-47 in 2013. The credible intervals around the median estimate never included the observed

number of animal species.

Discussion

Here, we presented a modelling framework that accounted for imperfect detection and uncer-

tainty to estimate the coextinction risk of species in mutualistic plant-animal networks and

assess network structure. Interaction network studies are usually based on the crude assump-

tions of networks being static, well-represented through observed links, and reflecting true

diet breadths of species [11, 19]. Our approach, using matrices of counts of animal species on

individual plants, maintained the information about the distribution of interactions across

plant individuals—information which is usually lost in aggregated species-by-species networks

[21, 31]. In maintaining this information, we were able to separate the influences of an animal

species ‘abundance and its preference for a plant species.

We applied our model to simulated networks and a case study network of flower-visiting

insects and flowering plants, and found that model predictions were always as good as or better

than observations, particularly for communities with high interaction rates and low abun-

dances. We also predicted that a large number of visiting insects was missed in the sampling

process and thereby provided additional evidence to previous concerns about the sampling

completeness of communities [19, 21–23]. Even after a second field season with a larger

observed species richness (factor of 2.5), the model predicted that 73-244 species remained

undetected—a plausible result given that our study site was situated in a biodiversity hotspot

with very high insect richness [50]. Finally, we showed that the model predictions improved

with increasing sampling effort for low animal abundance.

Our case study network appears most similar to the HILA scenario with low sampling effort

and is common for mutualistic networks [51]. Consequently, predicted numbers of interaction

partners were predominantly higher than observed ones and exhibit considerable uncertainty.

For insects with high abundances, observed and median predicted numbers of plant partners

were very similar (e.g., S. pacificus, Lasioglossum sp.101). For empirical datasets, doubling or

tripling the sampling effort would certainly increase model accuracy, as was visible by the

reduction of uncertainty with increasing sampling size for low abundance scenarios. While

increasing sampling effort might be possible for studies in easily accessible areas, in more
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Fig 5. Number of plant species per insects species in the Stirling Range case study. Purple stars indicate

observations and green circles represent median estimates. Thick and thin black lines give 50% and 95% credible

intervals, respectively.

https://doi.org/10.1371/journal.pone.0183351.g005
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remote areas it would be cumbersome and expensive. Extending our study threefold with the

same number of observers, would have exceeded the flowering period of the focal species and

increased the expenses considerably. Trippeling our personnel would have increased the risk

of trampling flora and spreading the plant pathogen P. cinnamomi. Observational studies

should consider combining increased sampling effort and applying predictive models like ours

to analyse interaction networks that exhibit a similar structure as in the network in situations

when interactions are common but abundance of animals is low (HILA scenarios).

Other networks might exhibit different structures: antagonistic networks, such as insect

herbivores and host plants appear to be more similar to the LILA scenario [31]. For LILA sce-

narios, the median estimates and observed numbers of plant species partners frequently

aligned, except for small sampling efforts, hence modelling should be considered when sam-

pling effort is low. For medium and higher sampling efforts, sampled observations served as

good estimates for coextinction risks. For all networks with high abundances (e.g., internal

parasites in gut systems of mammalian hosts [52]), a low sampling effort seems to be sufficient.

Our hierarchical modelling approach was flexible to different network types, which we

demonstrated by applying it to different parameter scenarios. While the current model struc-

ture was dependent on a plant individual by animal species structure several structural exten-

sions are also possible. For example, one could include covariates that may influence a species’

specialisation, such as phylogenetic information [53], species traits [22], resource availability

[15], environmental, temporal or spatial variables [53]. Phylogenetic relationships of host use

exist for parasites [53] and herbivores [54], but it is unclear if the phylogeny of flower-visitors

affects plant visitations [34] or not [22]. If available species abundances could also be incorpo-

rated into the modelling approach to increase model accuracy and precision, and to help dis-

tinguish tourists from rare species (false positive observations). Abundances can be measured

Fig 6. Number of insect species on each plant species in the Stirling Range case study. Purple stars show the observed number of insect

species and green circles represent median estimates. Thick and thin black lines give 50% and 95% credible intervals, respectively.

https://doi.org/10.1371/journal.pone.0183351.g006
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for large species (e.g., avian frugivores through mist-netting or camera traps), but for small

species this is more difficult. Further, trait information may inform the model about forbidden

links [11] by indicating if the phenology or morphology of species prevent their interaction.

While the great flexibility of our model allows various extensions, one should bear in mind

that every extension increases model complexity and computational costs.

While our model is flexible towards model extensions, it is sensitive to the data that it is fit-

ted to, yet the conclusions from our study remain robust. Firstly, the estimated numbers of

interaction partners are similar, or closer to the truth than the observations. Secondly, many

animal species remain undetected in the observation procedure and our model can estimate

the number of missed animal species (with uncertainty). Our sampling design (which is com-

mon for mutualistic studies) makes it impossible to estimate the number of plant species that

remain undetected, despite the possibility that other interaction partners may occur in the

study region or beyond [31]. Thirdly, animals may under certain circumstances shift their

interactions to other, less preferred plant species—a process known as host-switching [55, 56]

or re-wiring [57]. A species’ potential number of interaction partners is therefore likely to be

higher than what a model predicts.

Conclusion

Inferences from interaction networks may be useful for species conservation and ecosystem

management [58], but we have shown that observed interaction networks suffer from imper-

fect detection of links and species, and are usually vastly undersampled. Our results suggest

that network analysis based on observed interaction networks—even if they are quantitative—

are biased by these unobserved interactions. Conclusions about the conservation status of

communities and implications from current network studies (e.g., [59]) might therefore not be

meaningful [58]. To overcome these issues, two options emerge: we either substantially

increase our sampling effort in network studies, or apply statistical tools that approximate the

underlying structure of ecological networks. Yet, empirical studies are time consuming,

heavily dependent on weather conditions, expensive [24] and can harm threatened communi-

ties. We are confident that our model, which acknowledges sampling effort and uncertainty,

serves as a good first step towards assessing the coextinction risk of interacting species and for

investigating the use of interaction networks in conservation science.
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18. Dorazio RM, Royle JA, Söderström B, Glimskär A. Estimating species richness and accumulation by

modeling species occurrence and detectability. Ecology. 2006; 87:842–854. https://doi.org/10.1890/

0012-9658(2006)87%5B842:ESRAAB%5D2.0.CO;2 PMID: 16676528
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