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Abstract

A decline in β-cell function is a prerequisite for the development of type 2 diabetes, yet the

level of β-cell function in individuals at risk of the condition is rarely measured. This is due, in

part, to the fact that current methods for assessing β-cell function are inaccurate, prone to

error, labor-intensive, or affected by glucose-lowering therapy. The aim of the current study

was to identify novel circulating biomarkers to monitor β-cell function and to identify individu-

als at high risk of developing β-cell dysfunction. In a nested case-control study from the

Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) cohort (n =

1157), proteomics and miRNA profiling were performed on fasting plasma samples from 43

individuals who progressed to impaired glucose tolerance (IGT) and 43 controls who main-

tained normal glucose tolerance (NGT) over three years. Groups were matched at baseline

for age, gender, body mass index (BMI), insulin sensitivity (euglycemic clamp) and β-cell

glucose sensitivity (mathematical modeling). Proteomic profiling was performed using the

SomaLogic platform (Colorado, USA); miRNA expression was performed using a modified

RT-PCR protocol (Regulus Therapeutics, California, USA). Results showed differentially

expressed proteins and miRNAs including some with known links to type 2 diabetes, such

as adiponectin, but also novel biomarkers and pathways. In cross sectional analysis at year

3, the top differentially expressed biomarkers in people with IGT/ reduced β-cell glucose

sensitivity were adiponectin, alpha1-antitrypsin (known to regulate adiponectin levels),

endocan, miR-181a, miR-342, and miR-323. At baseline, adiponectin, cathepsin D and

NCAM.L1 (proteins expressed by pancreatic β-cells) were significantly lower in those that

progressed to IGT. Many of the novel prognostic biomarker candidates were within the epi-

thelial-mesenchymal transition (EMT) pathway: for example, Noggin, DLL4 and miR-181a.

Further validation studies are required in additional clinical cohorts and in patients with type

2 diabetes, but these results identify novel pathways and biomarkers that may have utility in

monitoring β-cell function and/ or predicting future decline, allowing more targeted efforts to

prevent and intercept type 2 diabetes.
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Introduction

Type 2 Diabetes is a heterogeneous disease caused by insulin resistance, β-cell insufficiency or

a combination of both but the specific pathophysiology of the disease in the individual patient

is usually unknown.

Currently, methods of measuring β-cell function are inaccurate, prone to error, labor-

intensive, or affected by glucose-lowering therapy. For example, in the ADOPT study, the β-

cell function parameter HOMA-B was biased by the acute effects of glyburide, a sulfonylurea

that increases insulin secretion, in that a large apparent “improvement” in β-cell function in

the first year was followed by a sharp decline. During years 4 and 5 of the study, overall HbA1c

deteriorated much faster with glyburide than with metformin or rosiglitazone therapy while

HOMA-B remained stable [1].

Progression to type 2 diabetes is associated with a decline in β-cell function usually on a

background of long-standing insulin resistance [2–5]. Using current methodology it is not

possible to identify with an acceptable degree of certainty which prediabetic individuals have

the highest risk of progression. Whether they are classified as having impaired fasting glucose

(IFG) or impaired glucose tolerance (IGT), such individual have a definite impairment in β-

cell function, detected as a reduced acute insulin response to intravenous glucose or reduced

insulinogenic index in an oral glucose tolerance test (OGTT) [6, 7].

An important index of β-cell function is β-cell glucose sensitivity (the change in insulin

secretion rate for any given change in plasma glucose concentration), calculated by mathemat-

ical modeling of C-peptide concentrations following an oral glucose load [8]. This parameter

tracks quite accurately with β-cell function in longitudinal [9] as well as intervention studies

[10]; however, the requirement for a glucose challenge and multiple blood draws over a two-

hour period make it unsuitable for population studies or large scale trials of new drugs.

Novel prognostic biomarkers are therefore required to identify individuals at high risk of

decline in β-cell function. A validated set of novel biomarkers could enhance the accuracy of

disease prediction, provide novel insights into pathophysiology and contribute to future pre-

vention and interception of cases of the type 2 diabetes.

In the current study, we performed an unbiased screen of proteins and miRNAs in an estab-

lished longitudinal cohort (RISC) in which both insulin sensitivity and β-cell function were

well characterized at baseline [9, 11]. We compared individuals who developed IGT and exhib-

ited a decline in β-cell glucose sensitivity over three years of observational follow up with those

who remained NGT with stable β-cell glucose sensitivity. The aim was to identify proteins

and miRNAs that could potentially track β-cell function and predict future changes in β-cell

function.

Materials and methods

Cohort

We studied samples from the European RISC (Relationship between Insulin Sensitivity and

Cardiovascular Disease) cohort [7, 9, 11]. In brief, RISC is a longitudinal study of nondiabetic,

normotensive adults (n = 1384) characterized for both insulin sensitivity (hyperinsulinemic

euglycemic clamp) and β-cell function (multiple sampling OGTT with mathematical model-

ling) at baseline. Written consent was provided by all participants for their information to be

stored in the RISC database and used for research purposes, including exploratory biomarker

work. The study underwent appropriate review by the European Commission research pro-

gram and its ethics committee. The current retrospective analysis described did not require

additional review due to prior approval of future biomedical analyses at the time of initiation.
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At follow-up (3 years), multiple sampling OGTTs with mathematical modelling were com-

pleted, but the hyperinsulinemic euglycemic clamp was not repeated and insulin sensitivity

was calculated from the OGTT-derived parameter Oral Glucose Insulin Sensitivity index,

(OGIS) [12]. Among participants with normal glucose tolerance (NGT) at baseline (n = 1,157),

8% (n = 90) developed IGT at follow-up, which was associated with an average 40% decline in

β-cell glucose sensitivity and a 30% decline in insulin sensitivity. For our study, we selected 43

IGT individuals with the largest decline in β-cell glucose sensitivity at follow-up (cases) and 43

individuals experiencing no decline in β-cell glucose sensitivity (controls). Both groups were

matched at baseline for age, gender, BMI, waist-hip ratio, insulin sensitivity, family history of

diabetes, β-cell glucose sensitivity (Table 1).

Proteomics

1,129 proteins were measured from 75 μl of plasma using the multiplexed SomaLogic technol-

ogy according to SomaLogic’s proprietary method [13]. Briefly, DNA aptamers called SOMA-

mers (slow off-rate modified aptamers) were developed for each of the 1,129 proteins and

quantified using DNA microarray methodology. SOMAmers are protein recognition reagents

with high binding affinities and stable chemical structures. The plasma samples were incubated

with a mixture of SOMAmers to generate SOMAmer-protein complexes. Samples were then

cleared of unbound SOMAmers and proteins by two steps of stringent washing and bead-

based immobilization. SOMAmers were then eluted under high pH-denaturing conditions

and quantified by hybridizing to a DNA microarray. The SOMAmer mixture quantitatively

reflects the original protein concentration and results were provided in relative fluorescence

units (RFU).

miRNA profiling

RT-PCR based miRNA high-throughput detection according to Regulus Therapeutics’ propri-

etary method was used (http://regulusrx.com/) to measure 754 micro-RNAs. Briefly, 200 μl of

plasma is added to Qiagen spin columns and after an initial QC using specific miRNAs, the

solution is reverse transcribed using Megaplex RT primers, cDNA is amplified with Megaplex

preamp primers and loaded onto Open Array microRNA card and run using QuantStudio

Real Time PCR system. Data quality control and filtering were done by Regulus; for example,

miRNA assays with less than 20% detected values across samples were excluded. This left 203

miRNA for further analysis with values log-transformed to account for their non-normal

distribution.

Statistical analysis

Potential relationships with classification status, univariate statistics were initially calculated

between each predictor and responder classification. Specifically, the predictors were ranked

on their ability to distinguish cases from controls in order of ascending p-values on the basis of

unequal variance t-tests. While this approach can identify individual predictors that are associ-

ated with an outcome, it has the weakness of missing sets of predictors that may work in con-

junction with each other for outcome classification. A predictive modeling approach was

therefore used for predicting outcome classification.

Prior to modeling the data, several pre-processing steps were taken to avoid characteristics

that lead to model failure. These included the removal of near-zero variance predictors,

removal of highly correlated predictors, mean-centering and scaling of each predictor, and

imputation of missing predictor values as described in Kuhn and Johnson (2013) [14]. Several

predictive models were built to uncover relationships between predictors and cases and
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controls. The models used for this data were: partial least squares, support vector machines,

recursive partitioning, and random forests. These models were specifically selected to be able

to uncover linear or complex non-linear separation between the outcome classes. Each of these

models has one or more tuning parameters. To select the optimal value of the tuning parame-

ters and to assess model classification performance, 5 repeats of 10-fold cross-validation were

used. Furthermore, because there were many more predictors than samples, recursive feature

elimination was used to eliminate predictors that were not associated with classification status

[14]. Recursive feature elimination prevents over-fitting to the data and selects only those pre-

dictors that are important for true hold-out sets.

The rank ordering of strength of each of the predictors for each of the models was aggre-

gated across models to generate a consensus view of predictor importance. We combined pre-

dictor importance information with the univariate statistics to identify predictors that were

not independently useful, but appeared to have utility when viewed in conjunction with other

predictors.

All relevant data are within the paper and its Supporting Information files.

Results

At baseline, cases and controls were well-matched for all anthropometric, clinical, and meta-

bolic characteristics (Table 1). At year 3, by design, cases had higher 2-hr OGTT plasma glu-

cose and lower β-cell glucose sensitivity; they also had higher fasting plasma glucose levels,

higher insulin concentrations, and significantly lower insulin sensitivity.

Diagnostic protein biomarkers of β-cell dysfunction

Cross-sectional analysis was performed at the 3-year time-point to identify differentially

expressed proteins reflective of current β-cell function. Following quality control procedures,

Somalogic data were available from 40 cases and 40 controls for 1,025 proteins. Univariate sta-

tistics identified 41 proteins differentially expressed (p<0.05) between cases and controls at

year 3 (Table 2 and S1 Table). In addition, a multivariate classification approach was used to

identify predictors that best separated cases from controls. Fourteen proteins were identified

Table 1. Demographic and clinical characteristics of the RISC cohort*.

Baseline p-value Follow-up p-value

Controls Cases Controls Cases

NGT/IGT 43/0 43/0 - 43/0 0/43 -

Familial diabetes 16/43 12/43 0.359 17/37 14/35 0.610

Age (years) 45.2 ± 7.5 44.8 ± 8.0 0.813

Sex (M/F) 17/26 18/25

BMI (kg/m2) 26.2 ± 3.7 26.2 ± 4.0 0.955 26.5 ± 3.6 26.8 ± 4.6 0.692

Waist-hip ratio 0.87 ± 0.07 0.87 ± 0.10 0.645 0.90 ± 0.07 0.90 ± 0.08

Fasting [G] (mmol/L) 4.93 ± 0.43 5.05 ± 0.36 0.186 5.13 ± 0.70 5.42 ± 0.53 0.036

2-hr [G] (mmol/L) 5.82 +/-1.00 6.20 +/-0.92 0.071 5.46 +/-1.12 8.57 +/-0.82 <0.001

Fasting [I] (pmol/L) 35 ± 18 39 ± 19 0.373 39 ± 19 49 ± 39 0.166

2-hr [I] (pmol/L) 196 ± 136 250 ± 244 0.248 195 ± 136 438 ± 378 <0.001

Insulin sensitivity (M) 114 ± 43 113 ± 56 0.906 ND ND -

OGIS (ml.min-1.kg-1) 11.1 ± 2.3 10.9 ± 1.9 0.666 11.6 ± 2.6 8.7 ± 2.6 <0.001

Glucose sensitivity 110 ± 41 110 ± 47 0.943 151 ± 74 83 ± 30 0.0000

* Entries are mean ± SD. [G] = plasma glucose concentration; [I] = plasma insulin concentration.

https://doi.org/10.1371/journal.pone.0182932.t001
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by all four predictive models; another 18 were identified by three of the four models. Low adi-

ponectin, a well-known biomarker linked with insulin resistance and β-cell function [15–18],

was a top diagnostic protein reflecting decline in β-cell glucose sensitivity by both multivariate

and univariate analysis (Fig 1). Histidine-rich glycoprotein (HRG), also highly ranked and

identified with lower plasma levels in cases in our analysis, is complexed with adiponectin in

human serum [19]. Endocan, a dermatan sulfate proteoglycan expressed in endothelial cells

and adipocytes and usually associated with inflammation [20], was highly ranked with

decreased plasma levels in cases at both baseline and at follow-up. Other proteins involved in

Table 2. Diagnostic predictors of β-cell function*.

Proteins miRNAs

Univariate FC Multivariate FC Univariate FC Multivariate FC

Adiponectin 0.76 FCG2A/B 1.44 miR-181a 0.18 miR-181a 0.18

kallikrein.5 1.14 Adiponectin 0.76 miR-323-3p 0.36 miR-323-3p 0.36

CHRDL1 0.88 Carbonic anhydrase III 1.38 miR-222 0.12 miR-342-3p 0.22

Endocan 0.85 sLeptin R 1.20 miR-483-5p 0.31 miR-151-5P 0.44

K.ras 1.14 Endocan 0.85 miR-454 0.34 miR-330 0.34

HRG 0.85 KI3S1 1.35 miR-151-5P 0.44 miR-454 0.34

a1.Antitrypsin 0.86 HRG 0.85 miR-330 0.34 miR-212 0.38

FCG2A.B 1.44 kallikrein 5 1.14 miR-652 0.23 miR-451 2.02

G.CSF.R 0.86 K-ras 1.14 miR-532-3p 0.46 miR-483-5p 0.31

Cystatin.M 0.85 CRDL1 0.88 miR-212 0.38 miR-136-star 0.55

IFN.lambda.2 0.86 NCAM-L1 0.91 miR-342-3p 0.22 miR-532-3p 0.46

Layilin 0.90 FCG3B 1.12 miR-136-star 0.55 miR-636 3.34

KI3S1 1.35 NRP1 0.92 miR-142-5p 0.52 miR-7 1.03

Cadherin.12 0.74 TNF sR-II 1.08 miR-433 0.52 miR-625-star 0.40

IGFBP-1 0.72 Cadherin-12 0.74 miR-204 0.56 miR-215 0.32

Aminoacylase.1 1.36 p27Kip1 1.33 miR-432 0.48 miR-432 0.48

Angiopoietin.4 0.90 IL-1b 0.84 miR-625-star 0.40 miR-30a-5p 1.00

RUXF 1.12 Carbonic anhydrase V 0.75 miR-451 2.02 miR-134 0.49

Kallikrein.4 0.89 HIPK3 1.24 miR-636 3.34 miR-30d 0.92

OSM 1.11 NKp30 1.25 miR-27b 0.26 miR-16 1.38

* Fold change (FC) is calculated as Case—Control. Entries in italics: Identified in 2 out of 4 predictive models.

https://doi.org/10.1371/journal.pone.0182932.t002

Fig 1. Scatterplot of diagnostic protein biomarkers. Circulating levels of top-ranked diagnostic biomarkers in IGT subjects (case, left)

compared to healthy controls (right).

https://doi.org/10.1371/journal.pone.0182932.g001

Novel biomarkers of β-cell function

PLOS ONE | https://doi.org/10.1371/journal.pone.0182932 August 28, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0182932.t002
https://doi.org/10.1371/journal.pone.0182932.g001
https://doi.org/10.1371/journal.pone.0182932


inflammation such as sTNFR2 (increased), CD30 (TNF family, decreased), and kallikrein 5

(increased) were also differentially expressed. Carbonic anhydrase 3 (CA3) was highly ranked

in multivariate analysis, although only borderline significant in the univariate analysis with

reduced protein levels in cases. CA3 catalyzes the reversible hydration of carbon dioxide to

bicarbonate and is abundantly found in adipocytes, muscle, and liver [21].

Diagnostic miRNA biomarkers of β-cell dysfunction

miRNAs are important regulators of protein expression and are valuable as biomarkers due to

their stability in plasma. At year 3 in cross-sectional analysis, data were available from 40 cases

and 40 controls: 27 miRNAs were differentially expressed using univariate statistics (p�0.05)

in cases vs. controls (Table 2 and S1 Table). Using multivariate analysis, 6 miRNAs were iden-

tified in all four predictive models and 9 miRNAs were identified in three models (S1 Table).

Thirteen of the 15 top diagnostic miRNAs identified in multivariate testing were in common

with the univariate list.

Full data were available from 38 cases and 38 controls for all measured protein biomarkers

and miRNAs for combined analysis with clinical covariates. Predictive models identified the β-

cell function parameter glucose during OGTT (gluO120, gluO90, gluO60), as the top predictor

(S3 Table). The top ranked non-OGTT predictors across the multivariate models were adipo-

nectin, kallikrein 5, CA3, sTNFR2, cadherin12, endocan, CRDL1 and miR-181a among others.

Prognostic protein biomarkers of β-cell dysfunction

Data were available at baseline and follow-up from 36 cases and 36 controls. Univariate statis-

tics identified 60 proteins differentially expressed (p�0.05) between cases and controls at base-

line (Table 3 and S2 Table). A multivariate analysis with recursive feature elimination using

several different statistical methods allowed for the ranking of these proteins according to

importance. This analysis resulted in four proteins (adiponectin, noggin, DLL4, sialoadhesin)

ranking as important across all four models, while another 26 proteins were highly ranked in

three out of four models (Table 3 and S2 Table). We identified several proteins relevant to dia-

betes among the top ranked proteins at baseline. Adiponectin, was the highest ranked bio-

marker (by both multivariate and univariate analysis) of decline in β-cell glucose sensitivity

(Fig 2). Cathepsin D was also a top ranked predictor in both analyses, with protein levels

reduced in cases. Cathepsin D was shown in a recent prospective study using two other cohorts

to have a strong association with insulin resistance [22]. Other well-known diabetes-associated

molecules such as fibrinogen, IL-1 β and IL-6 were among other very highly ranked predictors.

NCAM-L1, Factor D (adipsin), CDK5-p35, endocan, noggin, DLL4 were identified as novel

potential prognostic biomarkers of β-cell function and were among the top ranked proteins.

A pathway analysis of baseline proteins with p-values< 0.05 using GeneGo (https://portal.

genego.com/) identified the epithelial-mesenchymal-transition (EMT) pathway as an impor-

tant differentially regulated pathway in cases vs. controls, and included proteins such as nog-

gin, DLL4, FGF12, GDF2 (BMP-9), and E-cadherin. Further down the prognostic list was

IGFBP-2, whose circulating levels were lower in cases at baseline. In men, low levels of IGFBP-

2 have been reported to be associated with metabolic syndrome [23].

Prognostic miRNA biomarkers of β-cell dysfunction

Data were available at baseline and follow-up from 40 cases and 40 controls. Differential

expression of 17 miRNAs with p-values at or below 0.05 in an unequal variance t-test compar-

ing controls to cases at baseline was identified (Table 3). Individuals that progressed to predia-

betes and reduced β-cell function exhibited a decrease in 16 of these 17 miRNAs, while
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miR-497 was increased. Top differentially expressed miRNAs included miR-342-3p, miR-

181a, miR-590-3p, miR-497, and miR-25, whereas most abundant differentially expressed

miRNAs were miR-223, miR-483-5p, miR-375, miR-27b, and miR-222. Multivariate tests with

four predictive models identified two miRNAs (miR-181a and miR-590-3p) as important

across all four models with nine miRNAs in total identified as important in at least three of

these. All of these miRNAs were common between the univariate and multivariate list but the

rank ordering was different. miR-27b, miR-222 and miR-142-5p, among others, were ranked

higher in the multivariate list.

Table 3. Prognostic predictors of β-cell function*.

Proteins miRNAs

Univariate FC Multivariate FC Univariate FC Multivariate FC

Adiponectin 0.75 Adiponectin 0.75 miR-342-3p .25 miR-181a 0.21

Cathepsin.D 0.91 Noggin 0.82 miR-181a 0.21 miR-590-3P 0.55

NCAM.L1 0.87 DLL4 0.83 miR-590-3P 0.55 miR-27b 0.26

Factor.D 0.91 Sialoadhesin 1.20 miR-497 1.49 miR-222 0.23

CDK5.p35 0.91 CDK5/p35 0.91 miR-25 0.14 miR-323-3p 0.46

Endocan 0.85 COLEC12 0.89 miR-323-3p 0.46 miR-151-5P 0.53

Coagulation.Factor.XI 0.89 FGF-12 1.08 miR-151-5P 0.53 miR-142-5p 0.61

Cystatin.M 0.84 Cathepsin D 0.91 let-7c 0.67 miR-625-star 0.42

MIS 0.90 P-Cadherin 0.91 miR-27b 0.26 miR-205 0.66

Fibrinogen 0.91 NCAM-L1 0.87 miR-483-5p 0.37 miR-342-3p 0.25

CHL1 0.91 C1QBP 0.93 miR-625-star 0.42 miR-223 0.11

SCF.sR 0.89 TNFSF18 0.96 miR-205 0.66 miR-331 1.41

Carbonic.Anhydrase.IV 0.91 Coagulation Factor XI 0.89 miR-532-3p 0.53 miR-497 1.49

MM1 1.39 TCCR 0.89 miR-375 0.53 let-7g 0.39

PAK3 0.92 IL-11 0.87 miR-223 0.11 miR-211 0.56

ARGI1 0.93 Layilin 0.91 miR-222 0.23 miR-652 0.38

Noggin 0.82 IL-1b 0.80 miR-142-5p 0.61 miR-375 0.53

GDF2 0.77 Endocan 0.85 miR-125b 0.83

DLL4 0.83 Factor D 0.91 miR-378-1 1.52

IL.6 1.27 Semaphorin 3A 0.83 miR-532-3p 0.53

* Fold change (FC) is calculated as Case—Control. Entries in italics: Identified in 2 out of 4 predictive models.

https://doi.org/10.1371/journal.pone.0182932.t003

Fig 2. Scatterplot of prognostic protein biomarkers. Circulating levels of top-ranked prognostic biomarkers in IGT subjects (case, left)

compared to healthy controls (right).

https://doi.org/10.1371/journal.pone.0182932.g002
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Prognostic protein and miRNA biomarkers of β-cell dysfunction

Combined data were available from 35 cases and 35 controls for all measured protein biomark-

ers and miRNAs for combined analysis with clinical covariates Predictive models identified

2-hr plasma insulin levels and potentiation as the highest rank predictors of future β-cell func-

tion (S3 Table). Potentiation is a time-dependent factor that characterizes an aspect of β-cell

function aspect distinct from β-cell glucose sensitivity [24]. The top protein predictors were

adiponectin and then FGF12, cathepsin D, STK16, DLL4 and CD30. The top miRNA biomark-

ers were miR-342-3p, miR-181a, and miR-590-3p (S3 Table). The top prognostic biomarkers

between the univariate analysis and multivariate analyses were very similar with mainly differ-

ences in the rank order.

Overlap of diagnostic and prognostic biomarkers

While only 12 of 77 protein biomarkers (16%) identified in the diagnostic list (univariate)

were also differentially expressed at baseline and identified as prognostic biomarkers (Fig 3),

this was the case for 50% of the top 20 miRNAs (Fig 4).; For example, the four top miRNAs

from the diagnostic (multivariate) list (miR-181a, miR-323-3p, miR-342-3p, and miR-151-5p)

were also differentially expressed at baseline. These miRNAs are respectively involved in

hepatic insulin sensitivity (miR-181a) [25], expressed in human β-cells (miR-323-3p) [26],

identified in PBMCs from people with diabetes (miR-342-3p) [27], and regulated by exercise

(miR-151-5p) [28]. At follow-up, miR-330, miR-454, and miR-212 among others were selec-

tively changed (Fig 4). Of the 12 proteins differentially expressed at both baseline and follow-

up, six (adiponectin, endocan, coagulation factor XI, cystatin M, CHL1, and SCF-sR) were in

the top 20 prognostic list and seven (adiponectin, CRDL1, endocan, HRG, alpha1-antitrypsin,

Fig 3. Venn diagram of prognostic and diagnostic protein predictors based on the univariate analysis with p<0.05. Twelve

proteins were identified as differentially expressed at both time-points; 48 proteins were only predictive at baseline; and 29 only at follow-

up. Proteins in bold were among top 20 in both prognostic and diagnostic lists.

https://doi.org/10.1371/journal.pone.0182932.g003
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FCG2A/B, and cystatin M) were in the top 20 of the univariate diagnostic list (Fig 3). Five pro-

teins were found in both the multivariate prognostic and diagnostic lists; adiponectin, siaload-

hesin, NCAM-L1, IL-1 β and endocan (Tables 2 and 3).

Discussion

The current study used plasma proteomics and miRNA profiling in samples obtained from the

longitudinal RISC study to identify prognostic and diagnostic protein and miRNA biomarkers

predicting or reflecting β-cell glucose sensitivity. Several protein biomarkers were identified

reflecting decline in β-cell glucose sensitivity at follow-up that also showed value to distinguish

cases from controls at baseline, even although groups were well matched for glucose tolerance,

insulin sensitivity, and β-cell glucose sensitivity (as well as standard clinical covariates). At the

top of the list of proteins identified, adiponectin, endocan, and sialoadhesin were of particular

interest as they show potential value in both monitoring and predicting future decline in β-cell

function. However, a novel finding was the implication of both proteins and miRNAs within

the EMT pathway as differentially expressed at baseline in those that progressed to IGT and

reduced β-cell function. EMT is, among other functions, prominent during formation of endo-

crine cells in the pancreas in embryogenesis [29].

Adiponectin is known to regulate glucose levels and fatty acid breakdown and to enhance

insulin sensitivity in muscle and liver [30]. Our results implicate low baseline plasma adipo-

nectin levels in healthy individuals as a predictor of future β-cell dysfunction and IGT. We

observed a 0.74-fold decrease in plasma adiponectin in individuals who progressed to worse β-

cell glucose sensitivity and IGT. These data are corroborated by a recent longitudinal study in

which individuals who progressed from NGT to prediabetes/diabetes had lower baseline adi-

ponectin (8.4±4.0 μg/mL) compared to non-progressors (9.9±5.8 μg/mL) [31]. Another recent

study in non-obese individuals at risk for diabetes demonstrated a negative association

between baseline adiponectin and change in 2-hr plasma glucose, fasting insulin, HOMA-IR

and HOMA- β [32]. In a further study, the resistin-adiponectin ratio (RA index) was strongly

associated with β-cell function—assessed by OGTT-derived indices—in two NGT cohorts

with different degrees of overweight/obesity [33]. The authors suggested that waist-hip ratio is

a strong modulator of β-cell function [33] but in the present study neither waist-hip ratio nor

Fig 4. Venn diagram of prognostic and diagnostic miRNA predictors based on the univariate analysis

with p<0.05. 11 miRNAs were identified as differentially expressed at both time-points; 6 miRNAs were

predictive of ß-cell glucose sensitivity at baseline only; and 16 only at follow-up.

https://doi.org/10.1371/journal.pone.0182932.g004
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resistin had predictive value. Previous analyses of the RISC cohort using 1017 baseline samples

showed adiponectin levels were positively associated with insulin sensitivity and HDL-choles-

terol, partly explaining how low plasma concentrations of adiponectin predict insulin resis-

tance [15, 16]. Alpha1-antitrypsin (α1-AT), another candidate biomarker found in our studies

with lower plasma levels in cases both at baseline and follow-up, is a serine proteinase inhibitor

associated with type 2 diabetes [34–36] which amongst other effects inhibits the enzymatic

activity of neutrophil elastase (NE) (which degrades adiponectin) and cathepsin G.

Several of the top prognostic proteins and miRNA we identified are functional in pancreatic

islets [37]. In addition, our results are in keeping with those of a very recent study describing

cathepsin D as a marker of insulin resistance [22]; moreover, cathepsin D expression is

reduced in islets from people with type 2 diabetes [38]. CDK5 was another islet protein identi-

fied in our proteomics screen to predict β-cell dysfunction: when over-activated by glucose it

suppresses insulin gene expression [39, 40]. Conversely, decreased CDK5 activity enhances

glucose-stimulated insulin secretion (GSIS) [40]. With regard to the top 20 miRNAs we identi-

fied, both miR-27b and miR-375 are abundant in human islets [41–43]. ADIPOR2 is a con-

firmed target for miR-375 [44] and miR-323-3p is enriched in human β-cells compared to α-

cells [26]. miR-212 was expressed at follow-up but not at baseline. Silencing of miR-212

reduced, and overexpression increased, GSIS [45]; moreover, miR-212 was significantly up-

regulated by GLP-1 (>2-fold) in isolated rat, mouse, and human islets [46].

Noggin, which was lower in cases vs controls, is a bone morphogenetic protein (BMP)

antagonist shown to induce differentiation of embryonic stem cells into pancreatic and endo-

crine lineages [47]. DLL4 (Delta-like ligand 4) is a Notch ligand that suppresses the Delta-

Notch signaling pathway and is permissive for pancreatic endocrine development [48]. GDF2

(BMP9 is the protein encoded by GDF2), which was high on the list of proteins predictive of

decline in β-cell glucose sensitivity, has been shown to improve glucose homeostasis in both

diabetic and nondiabetic rodents by acting on hepatocytes and myotubes [49, 50]. P-cadherin

and E-cadherin, both lower in cases than controls, are modulated during EMT when epithelial

cells lose their characteristics [51]. NCAM-L1, also lower in cases, can remodel extracellular

matrix and has been found to be elevated in type 2 diabetes people with retinopathy [52].

An unexpected number of prominent prognostic predictors were in the EMT pathway, a

conserved pathway in which epithelial cells lose their characteristics and start migrating as

mesenchymal cells [29]. During EMT, tissue is remodelled via highly regulated gene expres-

sion such that epithelial cells lose their cell-cell junctions, apical-basal polarity and re-organize

their cytoskeleton. Our data implicate proteins in the EMT pathway as novel potential prog-

nostic and insulin-independent biomarkers for predicting decline in human β-cell function.

miRNAs with known functions in the EMT pathway were also differentially expressed at base-

line and correlated with a change in β-cell glucose sensitivity: miR-181a, which was top rank-

ing at both baseline and follow-up, has been shown to regulate Prox1, which also is associated

with EMT regulation [53]. In addition, Prox1 has been reported to have a strong association

with diabetes [54–56]. miR-181a is a target for Fatty Acid Desaturase 1 (FADS1), a prominent

genetic hit in AMP-Portal (http://www.type2diabetesgenetics.org). miR-205 is markedly

downregulated in cells that have undergone EMT in response to transforming growth factor

(TGF)- β or to ectopic expression of the protein tyrosine phosphatase Pez [57]. Inhibition of

the miRNAs (miR-205 and others) was sufficient to induce EMT in a process requiring upre-

gulation of ZEB1 and/or SIP1 [57]. ZEB1 represses E-cadherin [57] and induces expression of

BMP antagonists such as Noggin and chordin-like 1 (CRDL1, CHRDL1) [58], which were

highly ranked at baseline and follow-up, respectively. miR-497, the only prognostic miRNA

with higher expression in cases, has higher expression levels in type 2 diabetes Goto-Kakizaki

(GK) vs Wistar control rat islets [59]. In muscle cells, Igfr and Insr genes are direct targets of
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miR-497, which downregulates their expression [60]. Interestingly, miR-497 expression has

also been shown to inhibit EMT in breast carcinoma by targeting Slug [61].

Until recently, most EMT regulation in the pancreas has been described in either the devel-

oping pancreas or regeneration models, such that β-cells become dedifferentiated and revert to

a progenitor-like stage [62]. There is also evidence that rodent β-cells can partly convert to

other endocrine cell types. By using a new marker for endocrine progenitor cells, aldehyde

dehydrogenase 1A3 (ALDH1A3), Cinti et al. [63] recently showed a three-fold increase in cells

positive for this marker and negative hormone staining in islets from type 2 diabetes donors

compared to healthy controls. Islets from those with type 2 diabetes expressed β-cell-specific

markers mislocalized to α-cells and δ-cells. Another recent study linked β-cell glucose sensitiv-

ity to insulin/glucagon bihormonal cells in nondiabetic insulin resistant humans [64].

Two other high-ranking proteins worthy of attention are endocan and carbonic anhydrase

3 (CA3). Endocan (also known as endothelial-cell specific molecule-1, ESM-1) identified here

as lower in cases at both baseline and follow-up, is a soluble proteoglycan secreted by vascular

endothelial cells. In adipocytes, endocan production is inhibited by insulin and cortisol, and

circulating endocan levels have been found to be reduced in overweight and obese women

[65], in insulin resistant [66] and in type 2 diabetes patients [67]. Endocan is also involved in

other diseases such as chronic kidney disease, hypertension, and coronary artery disease [68].

Besides CA3, we observe several carbonic anhydrases (CA4 prognostic, CA3 and CA6 diagnos-

tic) that show differential expression in cases vs controls. These enzymes regulate intracellular

pH, and decreased CA3 levels have also been proposed to play a role in muscle fatigue and to

lead to decreased ATP synthesis in mitochondria [69]. Obese animal models have decreased

CA3 activity and concentration in white adipose tissue [21, 70].

With regard to pro-inflammatory biomarkers, higher baseline interleukin-6 (IL-6) levels

have been reported to be associated with increased fasting insulin, insulin resistance, and β-

cell function in the nondiabetic Whitehall II study cohort, while higher baseline adiponectin

levels were associated with decrements in fasting glucose and insulin [71]. In our analysis, IL-6

was a univariate prognostic predictor in cases vs controls (Table 3). Other pro-inflammatory

proteins emerging from our data were sTNFR2 and CD30, which are part of the TNF family

(sTNFR2 up and CD30 down). TNFα signaling causes free fatty acid levels to rise via increased

adipocyte lipolysis and downregulation of insulin signaling [72]. Increased sTNFR2 has been

found in first-degree relatives of insulin resistant diabetic subjects [73] and in children with

IGT [74], and was independently associated with increased aortic stiffness and pulse wave

velocity in type 2 diabetes [75]. Both sTNFR1 and sTNFR2 have been shown to predict pro-

gression of kidney disease in both type 1 and type 2 diabetes [76, 77].

In summary, the current study is the first to have measured a large number of proteins and

miRNAs in a case-control cohort of nondiabetic subjects matched not only on anthropo-

metrics but also on the basis of careful physiological measurements of glucose tolerance, i.e.,

insulin sensitivity and β-cell function. Our results show that low adiponectin is strongly associ-

ated with β-cell dysfunction and is the top predictor of incident IGT. In addition, several pro-

teins and miRNAs in the EMT pathway predicted a decline in β-cell function and glucose

tolerance. While this biomarker discovery approach requires further validation in independent

clinical cohorts, our data strongly suggest that the EMT pathway may in the near future pro-

vide useful biomarkers of β-cell function (and its decline) as well as potential new therapeutic

targets. Novel circulating biomarkers that reflect or predict β-cell function could transform the

way we treat type 2 diabetes, allowing for a more targeted and personalized approach, and

potentially contribute to preventing its development entirely.
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Böhles, S Fuellert, F Baer, H Zuchhold; Geneva, Switzerland: A Golay, E Harsch Bobbioni,V.

Barthassat, V. Makoundou, TNO Lehmann, T Merminod; Glasgow, Scotland: JR Petrie, C

Perry, F Neary, C MacDougall, K Shields, L Malcolm; Kuopio, Finland: M Laakso, U Salmen-

niemi, A Aura, R Raisanen, U Ruotsalainen, T Sistonen, M Laitinen, H Saloranta; London,

England: SW Coppack, N McIntosh, J Ross, L Pettersson, P Khadobaksh; Lyon, France: M

Laville, F. Bonnet (now Rennes), A Brac de la Perriere, C Louche-Pelissier, C Maitrepierre, J

Peyrat, S Beltran, A Serusclat; Madrid, Spain: R. Gabriel, EM Sánchez, R. Carraro, A Friera, B.
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