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Abstract

Pathological cardiac hypertrophy used to be elucidated by biomechanical, stretch-sensitive

or neurohumoral mechanisms. However, a series of hints have indicated that hypertrophy

process simulates senescence program. However, further evidence need to be pursued. To

verify this hypothesis and examine whether cardiac senescence is a novel mechanism of

hypertrophy induced by isoproterenol, 2-month-old male Sprague Dawley rats were sub-

jected to isoproterenol infusion (0.25mg/kg/day) for 7 days by subcutaneous injection). Key

characteristics of senescence (senescence-associated β-galactosidase activity, lipofuscin,

expression of cyclin-dependent kinase inhibitors) were examined in cardiac hypertrophy

model. Senescence-like phenotype, such as increased senescence-associated β-galactosi-

dase activity, accumulation of lipofuscin and high levels of cyclin-dependent kinase inhibi-

tors (e.g. p16, p19, p21 and p53) was found along the process of cardiac hypertrophy.

Cardiac-specific transcription factor GATA4 increased in isoproterenol-treated cardiomyo-

cytes as well. We further found that myocardial hypertrophy could be inhibited by resvera-

trol, an anti-aging compound, in a dose-dependent manner. Our results showed for the first

time that cardiac senescence is involved in the process of pathological cardiac hypertrophy

induced by isoproterenol.

Introduction

Pathological cardiac hypertrophy is the cellular response to biomechanical or neurohumoral

stimuli. The defining features of hypertrophy are increased cardiomyocyte size, enhanced pro-

tein synthesis and reinduction of the so-called fetal gene program. Although hypertrophy has

traditionally been considered as an adaptive response required to sustain cardiac output, in the

long term, hypertrophy predisposes individuals to heart failure, arrhythmia and sudden death

[1, 2]. Despite the recent advances in understanding the molecular and cellular processes that

contribute to cardiac hypertrophy [2–4], there remains large unknown and the need for fur-

ther investigation.
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Cellular senescence was first introduced by Hayflick and Moorhead [5] to describe the per-

manent form of cellular proliferative arrest. Senescent cells are characterized by phenotypic

changes[5–9]; for example, increased cell size, enhanced senescence-associated β-galactosidase

(SA-β-gal) activity at pH 6 and high levels of cyclin-dependent kinase inhibitors (CDKIs), e.g.

p16INK4a, p21, p53 et, which block the cell cycle. The mammalian heart has long been consid-

ered a quiescent organ. Although there are a few studies suggesting that cardiomyocytes can

divide at a low rate under certain conditions [10, 11], it is widely believed that the majority of

cardiomyocytes, if not all of them, are out of cell cycle shortly after born. Therefore, the ques-

tion that has been raised is whether cardiomyocytes can undergo senescence. Previous studies

[12, 13] have revealed that cardiomyocytes from old mice show certain senescence-associated

properties, including high SA-β-gal activity, increased CDKIs expression, accumulated lipofus-

cin and decreased telomerase activity. Senescence-like features have also been reported for

post-mitotic neurons from old C57Bl/6 mice [14] and adipocytes of mice on a high-fat diet

[15], suggesting that post-mitotic cell senescence might be a broader phenomenon.

Aging is an independent risk factor of cardiovascular diseases. Hearts of aged mice and

human showed hypertrophy and fibrosis [12, 16, 17]. Besides, cellular senescence and cardiac

hypertrophy share certain features [1, 18]: an increase in cardiomyocyte size and enhanced

protein synthesis. In addition, activation of β-adrenergic receptor (β-AR) signaling is one of

the most important pathophysiological mechanisms of cardiac hypertrophy. Interestingly,

recent researches established a role for β-AR signaling in mammalian longevity. Yan et al.

reported that mice lacking ADCY5, encoding type 5-adenylyl cyclase (AC5) which activates

the signaling transduction of β-AR, are stress resistant and have experienced a 30% increase in

median lifespan [19]. On the other hand, transgenic mice engineered to overexpress β2-AR in

cardiac tissue have reduced lifespan. In support, enhanced production of β2-AR caused by

genetic variants is inversely associated with human lifespan [20]. Based on the fact that cardiac

senescence and hypertrophy share defining features and signaling pathways, the aim of our

study is to find out whether cardiac senescence is involved in the process of pathological car-

diac hypertrophy and what could be the specific biomarkers for evaluating cardiac aging.

Materials and methods

Animals

2-month-old (300-350g) and 24-month-old (700-850g) male Sprague Dawley rats were pur-

chased from the Animal Center of Tianqin, Changsha. Rats were raised in SPF environment at

room temperature (25±2)˚C and provided with a standard diet and water in compliance with

the Institutional Animal Care and Use Committee of Peking University Health Science

Center.

Isoproterenol-induced cardiac hypertrophy model

Cardiac hypertrophy induced by isoproterenol (ISO) was generated as previously described [21,

22]. ISO (0.25mg/kg/day) was administered to 2-month-old rats for 7 days by subcutaneous

injection). Identical volume of saline was administered to age-matched rats as control. All pro-

tocols were approved by the Institutional Animal Care and Use Committee of Peking University

Health Science Center.

Echocardiography

24h after the last administration, trans-thoracic echocardiography was performed on rats with

2.0% isoflurane using a Vevo 770 ultrasound machine (VisualSonics, Toronto, Canada) with a
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30 MHz probe (RMV707B). Two-dimensional echocardiography was captured by a short axis

view at the level of the papillary muscles for the largest LV diameter. The diastolic left ventricu-

lar posterior wall thickness (LVPW;d) was measured from M-mode tracings. The average of

three consecutive cardiac cycles was taken for each parameter. Echocardiography procedures

were operated in accordance with the guideline of American Society of Echocardiography.

Histology analysis

For histological analysis, part of heart tissues were fixed in 4% paraformaldehyde (PFA) at 4˚C

overnight, then dehydrated and embedded in paraffin for preparation of 5-μm histological sec-

tions. Rehydrated slides were stained with haematoxylin and eosin (HE) staining to evaluate

cardiomyocyte area and picric-sirius red staining to measure fibrosis area. Another part of

heart tissues were fixed in 20% sucrose solution at 4˚C overnight and embedded in O.C.T.

compound for preparation of 8-μm frozen sections. Detection of senescent cells was deter-

mined in cells and frozen sections with the senescence β-galactosidase staining kit (GenMed

Scientifics Inc.U.S.A) and lipofuscin staining kit (GenMed Scientifics Inc.U.S.A). Samples

were analyzed by two independent investigators in a blind fashion.

Protein analysis

Total protein was extracted from frozen heart, resolved and electrotransferred as described.

Antibodies used for western blot were as follows: anti-p16 (Abcam), anti-p19 (MBL Inter-

national Corporation), anti-p21 (MBL International Corporation), anti-p53 (MBL Interna-

tional Corporation), anti-GATA4 (Santa Cruz Biotechnology), and anti-eif5 (Santa Cruz

Biotechnology).

Quantitative RT-qPCR

Total RNA was extracted from heart tissue using Trizol1 Reagent (Invitrogen), and cDNA

was synthesized using M-MLV reverse transcriptase (Takara Bio) and random primers

(Takara Bio) according to manufacturer instructions. Quantitative PCR was performed in trip-

licate using the Gene Expression Assay (Applied Biosystems) on an Applied Biosystems Fast

7500 machine with GAPDH as an endogenous normalization control. Primer sequences are

available upon request.

Cell culture and treatment

Neonatal cardiomyocytes (NRCM) from 1- or 2-day-old SD rats were isolated as described

previously. Cardiomyocytes were incubated in DMEM supplemented with 10% FBS for 36 h at

37˚C. After subjected to serum free culture for 12h, NRCM were pre-incubated with 10−6, 10−5

and 10−4 mol/L resveratrol for 30min. Then 10-6mol/L ISO was added to the culture medium

containing resveratrol for 48h [23, 24]. To visualize cardiomyocyte borders, fixed cells were

incubated in wheat germ agglutinin conjugated to Alexa Fluor 488 (Invitrogen) at 1 mg/ml in

PBS. Nuclei were stained blue by DAPI. All experiments were performed in accordance with

the Guide for the Care and Use of Laboratory Animals and approved by the Institutional Ani-

mal Care and Use Committee of Peking University Health Science Center University.

Statistical analysis

GraphPad Prism Software was used for data analysis. All data are expressed as the mean±SEM.

Paired data were evaluated using Student’s t-test. Differences were considered statistically sig-

nificant at P<0.05.
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Results

The establishment of pathological cardiac hypertrophy model

To analyze whether cardiac senescence is involved in the process of pathological cardiac hyper-

trophy, we first induced hypertrophy in 2-month-old rat hearts by infusion with ISO. Canoni-

cal hypertrophic markers, such as heart-to-body-weight (HW/BW) and heart-weight-to-tibia-

length (HW/TL) ratio, cardiomyocytes size and expression level of atrial natriuretic peptide

(ANP), was selected to assess cardiac hypertrophy model. After subcutaneous injection of ISO

for 7 days, SD rats had higher HW/BW (Fig 1A) and HW/TL (Fig 1A) ratio compared with

controls. This data was further confirmed by HE staining, which showed enlarged cardiomyo-

cytes area. Moreover, these hearts had markedly thicker ventricular wall and expressed higher

level of ANP than controls (Fig 1B–1D). Fibrosis, as the main distinction between pathological

and physiological cardiac hypertrophy, is also found marked increase in rats upon ISO treat-

ment (Fig 1E). Taken together, these results indicate that the model of pathological cardiac

hypertrophy was successfully established by ISO in rats.

Increased number of SA-β-gal positive cardiomyocytes and amount of

lipofuscin in ISO-treated cells

To verify our hypothesis that whether senescence is involved in the hypertrophy process, key

characteristics of senescent cells were examined in the cardiac hypertrophy model described

above. We first examined SA-β-gal activity in cultured neonatal rat cardiomyocytes incubated

with 10−6 mol/L ISO for 48h. The percentage of SA-β-gal positive cells increased significantly

compared with that of the control cells (control: 0.133%±0.043%; ISO: 1.533%±0.367%; n = 3,

p<0.05, Fig 2A and 2B). We further detected SA-β-gal activity in tissue sections from ISO

induced hypertrophy rat model and found the positive staining cardiomyocytes were rarely

observed in the myocardium of vehicle group, whereas the ratio of SA-β-gal positive cardio-

myocytes was significantly increased upon ISO treatment (vehicle: 0.013%±0.005%; ISO:

1.514%±0.101%, n = 6, p<0.001; Fig 2C and 2D). As the parallel positive control, SA-β-gal

staining was also assessed in old rats without any treatment (Fig 2C). SA-β-gal positive cells in

young (2-month-old) rats comprised 0.064%±0.036%, in aged (24-month-old) rats comprised

2.163%± 0.193% (n = 6; P< 0.001; Fig 2D) which is comparable to the cardiomyocytes in ISO-

induced hypertrophy model. These results indicate that the standard aging biomarker, SA-β-

gal activity, is enhanced in ISO-treated cardiomyocytes.

Another highlight for cellular senescence is the intracellular accumulation of lipofuscin,

especially for post-mitotic cells which are not capable to degrade or get rid of it. Lipofuscin

is known as an autofluorescent, nondegradable, and polymeric substance composed pri-

marily of cross-linked protein and lipid residues [25, 26]. Previous studies showed that car-

diomyocytes of aged hearts accumulate a large amount of lipofuscin due to imbalance

between protein damage and clearance of damaged proteins[25]. To investigate whether

cardiac hypertrophy model induced by ISO exhibited a senescent phenotype, the amount

of lipofuscin was examined. Compared with age-matched (2-month-old) vehicle group,

frozen sections of rats treated with ISO accumulated a large amount of lipofuscin (vehicle:

2.533%±0.533%; ISO:11.880%±1.747%; n = 6, p<0.001, Fig 2E and 2F). This phenomenon

was also observed in lipofuscin staining of aged (24-month-old) rats as the positive control

(2-month-old rats: 2.583%±0.354%; 24-month-old:15.900%±1.309%, n = 6; p<0.001; Fig

2E and 2F). These results indicate that lipofuscin, another senescent marker, accumulated

in ISO-treated cardiomyocytes.
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Fig 1. Pathological cardiac hypertrophy induction. (A) HW/BW and HW/TL ratio in ISO-treated rats and controls

(B) The gene expression of ANP was examined with the use of quantitative RT-PCR. (C) Cardiomyocyte area was
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Expression of CDKIs and GATA4 increased in ISO-treated cells

Increased level of CDKIs, which block the cell cycle is one of the most classic mechanisms of

mitotic cell senescence [7, 8, 27, 28]. Since Diana Jurk et al[14] for the first time testified that

post-mitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA

damage response in vivo, the role of CDKIs in post-mitotic cell senescence has got more and

more attention. The gene expression of CDKIs was evaluated to confirm the involvement of

cardiac senescence in hypertrophy process. The results of western blot demonstrated that gene

expression of p16, p19 and p21 significantly increased in ISO-treated rats compared with that

of age-matched (2-month-old) vehicle group, as well as p53 (Fig 3A and 3B). Higher protein

level of CDKIs in aged (24-month-old) rats as positive control was consistent with previous

reports [12, 13, 29]. The similar expression pattern of high expressed CDKIs in cardiomyocyte

not only showed the senescent phenotype, but also indicated that CDKIs might have some

other potential function beyond the cell-cycle regulation in hypertrophy.

Besides applying canonical aging biomarkers, we are trying to find some cardiac-specific

hints. GATA4 plays a key role in cardiac specification, development and function. Perturba-

tion of transcription factor expression and regulation disrupts normal heart structure and

function [30–32]. The recent research described that GATA4 is stabilized in cells undergo-

ing senescence and in turn activates the transcription factor NF-κB to initiate the SASP and

facilitate senescence. Therefore, GATA4 might be considered as a positive senescence regu-

lator [33]. To examine whether GATA4 functions in cardiac senescence, western blot was

performed to detect the expression of GATA4 in cardiomyocytes. The results showed the

expression of GATA4 was up-regulated in hearts of aged (24-month-old) rats compared

with 2-month-old rats (Fig 3C and 3D). This phenomenon was also observed in ISO-treated

cardiomyocytes (Fig 3C and 3D). SASP genes were also examined by realtime PCR. The

mRNA level of interleukin-6(IL-6) and tumor necrosis factor-α (TNF-α) both increased in

ISO-treated group (Fig 3E and 3F). These results not only present the similar phenotype

between hypertrophy and cardiac senescence, but also indicate that the transcription factor

GATA4 might be actively involved in heart aging and hypertrophy. The novel function of

GATA4 in aging need to be further explored.

Resveratrol prevents pathological cardiac hypertrophy induced by ISO

Resveratrol, a phytoalexin, obtained from grape skin possesses diverse biochemical and physi-

ological properties, including antioxidant, antiplatelet, and anti-inflammatory properties as

well as a wide range of health benefits ranging from chemoprevention to extending life span

[34, 35]. One of the highlights is that resveratrol can mimic the effect of caloric restriction and

anti-aging. In order to further confirm the involvement of cardiac senescence in the process of

hypertrophy, resveratrol, a widely recognized anti-aging regent was used to verify whether

hypertrophy could be intervened upon ISO treatment. It showed that cardiomyocytes treated

by ISO possesses the enhanced SA-β-gal activity, while the positive staining percentage

decreased in the cardiomyocytes treated by resveratrol in a dose-dependent manner (S1 Fig).

In addition, cardiomyocytes stimulated by ISO exhibited typical features of myocyte hypertro-

phy: enlarged cell area, a higher protein /DNA ratio and highly expressed ANP. While all these

phenotypes mentioned above (Cell area, protein/DNA ratio and expression level of ANP) were

evaluated by H&E staining and quantified. (D) Wall thickness was measured from M-mode tracings as described in

the methods and calculated. (E) The percent area of myocardial fibrosis was examined by picric-sirius red staining.

Data are means ± SEM (n = 6; **P < 0.01, ***P < 0.001 vs. vehicle group).

https://doi.org/10.1371/journal.pone.0182668.g001
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Fig 2. Increased number of senescence associated β-galactosidase (SA-β-gal)-positive cardiomyocytes and amount of

lipofuscin in aging and treated cells. (A) Cardiomyocytes were incubated with 10−5 mol/L ISO for 48h. Cells were then stained

for the presence of SA-β-gal as described in the Methods. Data are means ± SEM (n = 3; *P < 0.05 vs. vehicle). (B) The

percentage of SA-β-gal-positive cells was calculated. (C) Frozen heart tissue sections were analyzed for SA-β-gal staining, and

(D) the number of SA-gal-positive cells was counted. (E), Frozen heart tissue sections were analyzed for lipofuscin and (F) the

Senescence mediated cardiac hypertrophy
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attenuated by resveratrol in a dose-dependent manner (Fig 4), which suggested cardiomyocyte

hypertrophy could be inhibited by resveratrol, thus indicating the senescence mechanism

might be involved in this pathological process.

Discussion

Cellular senescence has been considered as the intrinsic mechanism for tumor suppression.

Recently, the emerging evidence shows that senescence progress might be involved in multiple

percentage of lipofuscin-positive cells was calculated. Data are means ± SEM (n = 6; ***P < 0.001 vs.vehicle group;

###P < 0.001 vs. 2 months.).

https://doi.org/10.1371/journal.pone.0182668.g002

Fig 3. Expression of CDKIs and GATA4 increased in ISO-treated cells. (A) The protein level of cell cycle inhibitors and Eif5 (loading control) was

examined by western blotting. (B) The protein level was quantified by densitometry. (C) The protein level of GATA4 and Eif5 was examined by western

blotting and (D) quantified by densitometry. The gene expression of SASP factors (E) and (F) was examined with the use of quantitative RT-PCR. Data are

means ± SEM (n = 6; *P < 0.05, ***P < 0.001 vs. vehicle; # P < 0.05, ## P < 0.01,###P < 0.001 vs. 2 months. The mean value for 2-month-old rats was

expressed as 1 unit).

https://doi.org/10.1371/journal.pone.0182668.g003

Senescence mediated cardiac hypertrophy

PLOS ONE | https://doi.org/10.1371/journal.pone.0182668 August 4, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0182668.g002
https://doi.org/10.1371/journal.pone.0182668.g003
https://doi.org/10.1371/journal.pone.0182668


physiological and pathological process besides tumor, such as atherosclerosis and inflammation.

Therefore, senescence could be a wider mechanism rather than its phenotype. Moreover,

whether senescence also exists in post-mitotic cells such as cardiomyocytes still remains debate.

Our present results show for the first time that cardiac senescence phenotype occurs in ISO-

induced pathological cardiac hypertrophy by analysis of a wide range of senescence markers.

The similar results were also reported in angiotensin II-induced cardiac hypertrophy model

and dilated cardiomyopathy caused by cardiac-specific Bmi1 deletion [36] manifested by the

increased ratio of SA-β-gal positive cells. It suggested that not only the cardiac senescence does

exist in heart but also is involved in multiple hypertrophy models. Increased accumulation of

lipofuscin in heart is one of the most consistent features of aging across species of mammals,

which is also seen in ISO-treated rats. The mechanism by which lipofuscin accumulates in ISO-

induced cardiac hypertrophy model is currently unclear. It was reported that β-AR stimulation

provokes cardiac oxidative stress. Especially, in the chronic phase of ISO infusion, ROS may

Fig 4. Resveratrol prevents pathological cardiac hypertrophy induced by ISO. Cardiomyocyte area was evaluated

by (A) wheat germ agglutinin (WGA) staining and (B) quantified. (C) The ratio of protein/DNA was quantitated. (D) The

gene expression of ANP was examined with the use of quantitative RT-PCR. Data are means ± SEM. (n = 3,*P < 0.05,

**P < 0.01 vs. control; #P < 0.05 vs. ISO group. The mean value for control was expressed as 1 unit).

https://doi.org/10.1371/journal.pone.0182668.g004
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participate in cardiac remodeling, especially in respect to wall stiffness, based on fibrogenesis

[37, 38]. Besides, myocyte autophagy was decreased during cardiac hypertrophy, which was

associated with progressively increased cardiac oxidative stress [39, 40]. Thus, increased oxida-

tive stress and low autophagy activity lead to the disturbances of proteostasis and an impairment

of the proteasomal system which is resulted in the accumulation of highly cross-linked unde-

gradable aggregates such as lipofuscin as the final consequence. Lipofuscin may account in part

for the cardiac dysfunction in aged rats and ISO-treated rats due to deleterious effects of lipofus-

cin on cardiac cellular function. There are several researches showed that post-mitotic cell

senescence is associated with activation of inhibitory cell cycle regulators [12, 13]. It was

reported that p21 gene expression increased significantly in angiotensin II-induced cardiac

hypertrophy [36]. In our study, along the process of hypertrophy, the expression of p21 and p16

increased, as noted in other studies [13]. Notably, p21 is a necessary signal transducer between

DNA damage response and senescence-like phenotype in neurons, as in senescing fibroblasts

[14]. Increased expression of p21 in ISO-treated cardiomyocytes may due to DNA damage

response caused by oxidative stress in the process of cardiac hypertrophy.

Myocyte hypertrophy was suppressed by resveratrol in a dose-dependent manner, which

suggested hypertrophy could be inhibited by intervening aging process. In support of our

hypothesis, other anti-aging regents, such as rapamycin[41, 42] and metformin[43], are proven

to prevents cardiac hypertrophy induced by various pathological stimulants[44–47]. Rapamycin

attenuated cardiac hypertrophy mainly by three pathways (a) AKT/mTOR/S6 kinase signaling,

which is important in the regulation of protein synthesis[44, 48], (b) promoting autophagy

through a mechanism involving the modulation of Noxa and Beclin-1 expression by the MEK/

ERK signaling pathway[49] or (c) inhibiting NF-κB activation[50]. Recent studies demonstrated

that the anti-hypertrophic effects of metformin are associated with AMPK activation and pre-

vention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway [47, 51, 52]. Col-

lecting all these evidence mentioned above, it suggests that targeting anti-aging pathway might

become an effective strategy in intervening hypertrophy.

In addition, our study challenges the conventional opinion that senescence is only defined

in proliferating cells. From this point of view, we might need to revisit the concept of senes-

cence. The widely accepted category of senescence is divided into replicative senescence and

premature senescence. In this study, 2–3 month old rats were used to induce myocardial

hypertrophy, which exhibited senescence-like features. Such changes did not completely simu-

late physiological aging process. The most notable difference in our study is that cardiac sys-

tolic function did not show the difference between 2-month and 24-month old rats in

physiological aging as reported[12], while cardiac systolic function enhanced after 7 days ISO

treatment in pathological aging (S2 Fig). This phenomenon may be partially related to the

compensation in the long process of physiological aging. While, enhanced cardiac systolic

function might due to positive inotropic action of ISO at the early time point (day 7) of admin-

istration. According to our study, cardiac systolic function declined at the late time point upon

administration (day 14) in C57BL/6 mice (unpublished data). Meanwhile, there is no clear def-

inition for heart aging so far. Since the widely accepted category of senescence is divided into

replicative senescence and premature senescence, likewise, cardiac senescence might be subdi-

vided into myocardial physiological aging and pathological aging. Nevertheless, the further

investigation on mechanism of cardiac senescence is necessary.

Effective biomarkers are crucial to assess aspects of aging. SA-β-gal staining, expression of

CDKIs and SASP factors, lipofuscin and telomere foci are included in the markers which have

been applied in cardiac senescence [12, 13, 53]. Although each of these markers is related to

senescence, the effectiveness varies. For example, the percentage of SA-β-gal staining in aged

heart is extremely low compared with other tissues in the same rat (S3 Fig), such as liver, due
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to the tremendous difference in the base level of SA-β-galactosidase in each specific tissues [8].

In addition, most of SASP factors are acute phase reactants that exhibit a marked change in

expression in response to viral infection and other intercurrent illness unrelated to aging[8].

Therefore, it is valuable to explore organ-specific even cell-specific senescence biomarkers

other than conventional markers for the cardiac senescence. Previous study [33, 54] reported

that the key transcriptional factor during heart development, GATA4, plays an important role

in senescence by activating the transcription factor NF-κB to initiate the SASP and facilitate

senescence phenotype. Moreover, there is a significant spatial correlation between GATA4

and p16INK4a in oligodendrocytes, pyramidal neurons, and astrocytes from older humans, fur-

ther supporting the role of GATA4 in senescence during human aging. In our study, GATA4

is upregulated in ISO-induced hypertrophy model and 24-month old rats, which could serve

as an indicator for the heart aging. Although the specificity of GATA4 in heart aging is still

need to be further investigated, it somewhat directs the future research in exploring the mark-

ers to identify the aging and hypertrophy.

Aging is an important risk factor of cardiovascular diseases such as hypertension, cardiac

hypertrophy and heart failure. In our study, we also detected several parameters showing

hearts of aging rats present cardiac hypertrophy (S4 Fig). Accordingly, senescence mechanism

might contribute to promoting a certain diseases progress. Thus, our study might provide a

possible prospect that anti-aging might be a powerful strategy for treating cardiovascular dis-

eases, at least for pathological hypertrophy (Fig 5). Indeed, along the same lines, several studies

showed anti-aging reagent does help in certain types of diseases, such as rapamycin was proven

Fig 5. A working model for the senescence mediated β-AR induced cardiac hypertrophy.

https://doi.org/10.1371/journal.pone.0182668.g005
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to prevents cardiac hypertrophy induced by various pathological stimulants [44, 48–50]. The

more precise relationship between hypertrophy and senescence still need to be further dis-

sected, and the intensive mechanism is still required to be further explored as well, such as the

impact of microenvironment between fibroblast and cardiomyocyte, the sequential and/or

interplay effect between these two types of cell in heart during the aging process. These find-

ings will ultimately shed light on the cardiac aging and related diseases.

Supporting information

S1 Fig. SA-β-gal activity was decreased in the cardiomyocytes treated by resveratrol in a

dose-dependent manner. (A) Cardiomyocytes were stained for the presence of SA-β-gal as

described in the Methods. (B) The percentage of SA-β-gal-positive cells was calculated. Data

are means ± SEM (n = 3; �P< 0.05 vs.control group,# P< 0.05 vs.ISO group).

(TIF)

S2 Fig. (A) Ejection fraction and (B) fractional shortening in 2-month-old and 24-month-old

rats; (C) ejection fraction and (D) fractional shortening in ISO-treated rats and controls. Data

are means ± SEM, n = 6, ��P < 0.01 vs. vehicle group.

(TIF)

S3 Fig. SA-β-gal staining of different tissue samples between young and old. Frozen sec-

tions of heart, liver, spleen, lung and kidney from young (2-month-old) and old (24-month-

old) rats were analyzed for SA-β-gal staining (n = 6).

(TIF)

S4 Fig. Hearts of aged rats showed hypertrophy. (A) HW/TL ratio in 2-month-old and

24-month-old rats. Cardiomyocyte area was evaluated by H&E staining(C) and quantified (B).

The gene expression of β-MHC (D) and ANP (E) were examined with the use of quantitative

RT-PCR. Data are means ± SEM, n = 6, # P < 0.05, ###P< 0.001 vs. 2 months.

(TIF)
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