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Abstract

Emotional content is known to enhance memory in a content-dependent manner in healthy

populations. In middle-aged and older adults, a reduced preference for negative material, or

even an enhanced preference for positive material has been observed. This preference seems

to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis

for emotional memory processes is, however, not well understood in middle-aged and older

healthy people. Previous research on local gray matter correlates of emotional memory in older

populations has mainly been conducted with patients suffering from various neurodegenerative

diseases. To our knowledge, this is the first study to examine regional gray matter correlates of

immediate free recall and recognition memory of intentionally encoded positive, negative, and

emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-

year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in

recognition memory, but not in immediate free recall. No associations with memory perfor-

mance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal

volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analy-

ses showed statistically significant associations between immediate free recall of negative

words and volumes in various frontal regions, between immediate free recall of positive words

and cerebellar volume, and between recognition memory of positive words and primary visual

cortex volume. The findings indicate that the neural areas subserving memory for emotion-

laden information encompass posterior brain areas, including the cerebellum, and that memory

for emotion-laden information may be driven by cognitive control functions.
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Introduction

The emotional enhancement effect of memory (EEM) entails the augmentation of the forma-

tion and strength of memory traces for emotion-laden information [1–3]. The EEM is pre-

served over the life span in healthy adults [4], even though the general level of working

memory and episodic memory functioning may decline [5]. However, with increasing age,

qualitative changes in the preferences for emotion-laden information have been observed [6–

8]. The preferences relate to the two basic bidirectional dimensions of emotion according to

the circumplex theory of emotion [9]: emotional valence, or whether a stimulus is perceived as

positive or negative, and emotional arousal, or whether a stimulus is perceived as calming or

exciting. The age-related shift in preferences has been coined the positivity effect [10]. In youn-

ger adults, a negativity bias, indicating a relative preference for negative over positive informa-

tion, has been commonly observed [8, 11–13]. In middle-aged and older adults, the negativity

bias has been found to be reduced [13–14], if not replaced by a positivity bias, i.e., a relative

preference for positive over negative information [8, 12]. The positivity effect seems to be

modulated by arousal, as the age-related valence-specific differences in memory were observed

for low-arousing stimuli, but not for high-arousing stimuli [12]. However, the positivity effect

has not been consistently demonstrated. In a recent meta-analysis of 100 studies, Reed et al.

(2014) showed that it was most likely to be found in studies with wider age comparisons and

in studies that did not impose experimental constraints on cognitive processing, such as using

intentional encoding instructions as opposed to an incidental encoding paradigm [8].

Much effort has been devoted to behavioral studies on the EEM and the positivity effect,

but studies on the neuroanatomical correlates of memory for emotion-laden stimuli in mid-

dle-aged and older healthy adults are very few. In the present study, we sought to examine

associations between immediate free recall and recognition memory of emotion-laden words

and regional gray matter volume in a sample of 50-79-year-old cognitively intact adults. There-

fore, the literature review on age-related neural correlates of memory for emotion-laden sti-

muli will focus on this particular age range.

Lesion studies [15–16] and functional neuroimaging studies [17–22] on the neural under-

pinnings of emotional memory processes have so far identified an extensive network of corti-

cal and subcortical brain areas that are involved in general as well as specific task performance.

The main function of this neural network appears to be to link emotions to stimulus events

[23]. The network is commonly thought to comprise the amygdalae, the hippocampi, the

medial and lateral prefrontal cortices (PFC), and the basal ganglia [23]. These brain areas are

extensively interconnected [24–25], and also linked to the sensory cortices [25–26]. The func-

tional implications of the connections and projections are not yet fully understood, but it is

clear that the brain areas involved in processing emotion-laden information are also involved

in processing non-emotion-laden information [27–28].

The memory modulation hypothesis by McGaugh (2000) states that amygdalar activation

during memory processing of emotion-laden information exerts a modulatory effect by boost-

ing the processing of information with survival value [29]. The amygdalae modulate the activ-

ity in other brain areas subserving cognitive processing especially via interaction with the

adrenergic system [1–2, 21, 29–30]. This takes place through the extensive anatomical connec-

tions that the amygdalae have with many parts of the brain, such as the orbitofrontal cortex

(OFC), the anterior cingulate cortex (ACC), the ventral striatum, the hippocampi, and the

occipital cortex [1–2, 21, 24–26]. Amygdalar modulation of the activity of the hippocampal

formation during memory formation of emotional events is seen as a necessary prerequisite

for memory consolidation [2, 29], as patients with amygdalar damage have failed to produce

EEM [15]. Amygdalar activation has been observed during encoding [13, 17, 19–22, 30] as well
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Sohlberg Foundation (FIN) http://www.pss-saatio.

fi/english.htm (CS). The Miina Sillanpää Foundation
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as retrieval of emotion-laden stimuli [18, 31], indicating that the amygdalae mediate the EEM

not only during encoding through increased attention and elaboration, but also during consol-

idation and retrieval, by enhancing the consolidation of memory traces [2]. Alternatively, the

retrieval-related activation may be interpreted as a part of the contextual information associ-

ated with an event, which then functions as a cue to enable the successful retrieval of that event

[23]. However, the amygdalae are not considered the loci of the EEM, as the enhancement

effect in itself is thought to occur within or be mediated by the hippocampi [29].

Several prefrontal areas have been associated with functionally specific contributions to the

EEM [13, 17–21]. These areas mainly include the orbitofrontal cortex (OFC) and the ventro-

medial PFC [28], but also the dorsolateral PFC [32–33]. The ventromedial PFC involves the

medial OFC and the ventral and rostral ACC [34]. The prefrontal brain areas have reciprocal

connections with virtually every sensory system, with cortical and subcortical motor systems,

and with limbic and midbrain structures involved in memory and emotion [35]. Furthermore,

the various areas of the PFC are extensively interconnected [35].

Whereas the role of the amygdalae in the EEM is to help boost memory for emotion-laden

stimuli through bottom-up automatic processing of their survival value in terms of the emo-

tional arousal that they evoke, the PFC seems to contribute via top-down controlled processing

of their value in terms of emotional valence [21, 36], specifically in relation to the self [37]. The

OFC is assumed to take part in the EEM by integrating exteroceptive and interoceptive sensory

information to guide behavior [27]. The OFC and the medial PFC engage together in the pro-

cessing of value in stimuli [33, 35, 38] and the computation of outcome expectancies [28]. The

ventromedial and dorsomedial PFC participate in the detection of self-relevant stimuli [38–39]

and in self-reflection [34, 38]. The lateral PFC, particularly the dorsolateral part, contributes to

the cognitive control of emotion [32–33, 40–41] through its engagement in top-down, goal-

directed selection of responses [32–33, 35, 41], the explicit evaluation of stimuli [27], working

memory [42], and control of attention [43], mainly accomplished by its reciprocal connections

with the OFC and the medial PFC [24]. Because of its involvement in these higher-order cog-

nitive functions, the role of the dorsolateral PFC in emotional processing is suggested to be of

a general nature [28].

There is an abundance of functional neuroimaging studies on the neural underpinnings of

the emotional memory processing in younger adults, but only a few studies have been pub-

lished regarding age-related functional or structural brain differences in younger versus older

healthy adults concerning the EEM and valence-specific memory performance. The functional

neuroimaging studies have revealed age-related differences in the strength of activation in

areas consistently implicated in the EEM in younger adults, and also in the activation loci [13,

19], even in a valence-specific manner [13]. This suggests some degree of age-related specificity

in the neural substrates of memory for emotion-laden stimuli. Whereas functional neuroimag-

ing studies typically focus on the most reliable activation loci across individuals, thus removing

variability in behavior and brain functionality by averaging, structural neuroimaging studies

reveal how variability in structure is related to inter-individual differences in behavior [44].

Studying the regional gray matter volumetric correlates of memory performance in middle-

aged and older adults should therefore be especially fruitful, as increasing age seems to bring

increased variability in both measures [45–47]. Naturally, limiting the age range to the later

years of adulthood precludes the study of age-related specificity of the structural brain corre-

lates of memory for emotion-laden stimuli. It is known that gray matter volumetric correlates

of behavior reflect the age of the participants [48]. This has been taken to indicate that the

microstructural mechanisms underlying regional gray matter volume as measured by voxel-

based morphometry (VBM) may be age-specific [44, 48]. Therefore, it is plausible to assume
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that the gray matter volumetric correlates of memory for emotion-laden words may be differ-

ent in young adults.

Most of the structural neuroimaging studies on regional gray matter correlates of memory

for emotion-laden stimuli or events have focused on the amygdalae and the hippocampi [49–

53]. Whole-brain volumetric correlates have been examined to a lesser extent, and so far only in

combined groups of normally aged adults and patients suffering from amnestic mild cognitive

impairment [54], Alzheimer’s disease [54–56], and variants of frontotemporal dementia [55–

56]. Findings pertaining to associations between amygdalar volume and memory for emotion-

laden stimuli in middle age and older age have been mixed. Some studies have demonstrated no

associations in middle-aged and older healthy adults [49–50, 51] or in patients suffering from

Alzheimer’s disease [49], while others have demonstrated the expected positive correlations in

combined groups of patients and healthy controls [54–56] or in patients with neurodegenerative

diseases [50–52]. Interestingly, associations between memory for neutral stimuli and amygdalar

volumes have also been reported [53–54], although not consistently [50].

A slightly different pattern can be discerned for hippocampal volumetric associations with

memory for emotion-laden stimuli in middle age and older age. Positive correlations with

memory for emotion-laden stimuli have been observed in normal aging [49], in neurodegener-

ative diseases [49–50, 52–53], and in combined groups of patients and healthy controls [49, 54,

56], albeit not consistently [50, 55]. Similarly, mixed findings can be seen for the associations

with memory for emotionally neutral stimuli [50, 53–54].

The studies examining whole-brain gray matter correlates of memory for emotion-laden

stimuli in combined groups of patients with neurodegenerative disorders and normally aged

controls have revealed that larger gray matter volume in the OFC and ventromedial and ven-

trolateral PFC was correlated with better memory for negative stimuli [54–55]. Mistridis et al.

(2014) also included positive stimuli in their study, and found immediate free recall of positive

words to be related to gray matter volume in one cluster centered in the left angular gyrus,

extending into the middle temporal gyrus [54]. Delayed free recall of positive words was asso-

ciated with gray matter volume in a cluster centered in the left hippocampus, extending into

the amygdala, the perirhinal, entorhinal and parahippocampal cortices, and the lingual gyrus

[54].

All in all, previous studies on regional gray matter correlates of memory for emotion-laden

stimuli in middle and older adulthood have either focused on amygdalar and hippocampal vol-

umetric associations [49–53], or—when examining whole-brain associations—studied these

correlates in heterogeneous groups including both patients with neurodegenerative disorders

and normally aged controls [54–55]. The studies on amygdalar volumetric associations have

found no correlations in middle-aged and older healthy adults, which may be due to a lack of

sufficient statistical power to detect subtle associations as the samples have included 20 partici-

pants at the most [50, 53]. Age-related decline in amygdalar volume is considered to be rela-

tively less notable than in other brain regions, such as the hippocampi [57], although the

findings are mixed. For example, Fjell et al. (2009) demonstrated a similar rate of age-related

decline in both structures [58]. In the present study, the sample consisted of 46 individuals and

the age range was wider than in previous studies, enabling more variance in both volumetric

and memory measures. Also, this study is to our knowledge the first one to examine these asso-

ciations in middle-aged and older healthy adults using word stimuli, and to examine whole-

brain regional gray matter correlates of memory for positive and negative stimuli, respectively,

in healthy adults only. A different pattern of results compared to the previous studies on

whole-brain gray matter correlates is to be expected, as Kumfor et al. (2013) demonstrated

condition-related differences in the neural contributions to recognition memory of negative

stimuli in groups of patients suffering from Alzheimer’s disease or variants of frontotemporal
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dementia [55]. Together with the fact that the behavioral results for emotional memory also

differed between the patient groups, it seems likely that different neurobiological mechanisms

were responsible for the divergent behavioral profiles in the patient groups [55]. It may thus be

that different structural brain correlates may underlie memory for emotion-laden stimuli in

middle-aged and older healthy individuals without neurodegenerative disorders. This possibil-

ity is also suggested by functional neuroimaging studies revealing age-related specificity in the

neural underpinnings of memory for emotion-laden stimuli [13, 19]. Furthermore, as func-

tional neuroimaging studies [13] and regional gray matter volumetric studies [50, 54] using

both negative and positive stimuli have demonstrated valence-specific neural correlates of

memory for emotion-laden stimuli in older adults, we wanted to study the neuroanatomical

contributions to memory for emotion-laden stimuli as a function of valence.

In the present study, we examined regional gray matter correlates of immediate free recall

and recognition memory of intentionally encoded positive, negative, and emotionally neutral

words, respectively, in a larger group of middle-aged and older healthy adults. We conducted

both region-of-interest (ROI) analyses for amygdalar and hippocampal volumes as well as

whole-brain voxel-based morphometry (VBM) for examining possible associations between

regional gray matter and emotional memory performance. Based on previous findings [54–

55], we expected regional gray matter volume in the OFC and the ventromedial and ventrolat-

eral PFC to be correlated with memory for negative words, when controlling for performance

on positive and neutral words. As for behavioral results, based on previous findings [8], we did

not expect to find a positivity bias in the memory tasks, because the present task required

intentional memory encoding.

Materials and methods

Participants

The ethics committee of the Hospital District of Southwest Finland approved the study protocol.

All participants gave written informed consent for participation in keeping with the Declaration

of Helsinki and its later amendments. Altogether 49 monolingual native Finnish-speaking com-

munity dwellers aged 50 to 79 years with normal hearing, normal-to-corrected vision (eye glasses

were permitted), and normal color vision took part in this study. They were recruited via an

advertisement in a Finnish regional newspaper. To check for fulfilment of the inclusion criteria,

a telephone interview was conducted prior to taking part in the study. Exclusion criteria included

earlier or current neurological illness, a history of traumatic brain injury involving concussion,

loss of consciousness, and/or post-traumatic cognitive dysfunction, current psychiatric diagno-

sis, current use of psychotropic medication, a history of psychoactive substance abuse, and hav-

ing a close relative suffering from schizophrenia.

A further inclusion criterion was normal cognitive functioning, defined as a Clinical

Dementia Rating memory box score of 0 (CDR) [59], a Mini-Mental State Examination score

of at least 25/30 (MMSE) [60], and performance equal to or less than one standard deviation

below the age-appropriate norms within a cognitive domain on a battery of standardized

neuropsychological tests. The neuropsychological tests included Wechsler Adult Intelligence

Scale-III subtests Similarities, Block Design, Digit Span, and Digit Symbol [61], Object Memory

Test (naming, immediate and delayed free recall) [62], Wechsler Memory Scale-Revised sub-

tests Logical Memory I and II, and Verbal Paired Associates I and II [63], Boston Naming Test

[64], Controlled Oral Word Association Test (letter fluency, category fluency) [65], Trail Mak-

ing Test [66], Stroop Color and Word Test [67], copy of Rey-Osterrieth Complex Figure Test

[68], Clock Drawing Test (from the Consortium to Establish a Registry for Alzheimer’s Disease,

CERAD) [69], and drawing of three-dimensional figures [70]. A minor decline on an individual
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subtest was allowed as a sign of intra-individual variation, as long as performance within that

cognitive domain as a whole fulfilled the criterion [71]. Three participants were excluded due to

a failure to fulfil this criterion.

Data from 46 participants were included in this study. The final sample included 29 women

(63.0%) and 17 men (37.0%) with a mean age of 62.54 years (SD = 8.15 years) and mean years

of education of 13.55 years (SD = 2.79 years). All participants but one were self-reported right-

handers, as determined by a cut-off score of at least 87 on a modified version of the Edinburgh

Handedness Inventory [72]. For none of the participants did next-of-kin report cognitive

impairment in everyday life.

None of the participants received monetary compensation, but they were provided with

written clinical feedback based on their individual neuropsychological performance by an

experienced clinical psychologist (Carina Saarela) and on the magnetic resonance imaging

(MRI) scan by a neuroradiologist (Riitta Parkkola).

Memory tasks and procedure

All participants underwent a neuropsychological assessment, an electroencephalogram (EEG)

experiment, and a MRI scan. The behavioral data (memory performance) for the analyses in

the present study were gathered by an immediate free recall task and a recognition memory

task employed in the EEG experiment that was conducted within a week of neuropsychological

testing. EEG was recorded during the administration of both tasks. The EEG results will be

reported elsewhere.

The participant was seated in a comfortable armchair about 1.2 m from a TV screen. In the

immediate free recall task the participant was instructed to silently read and memorize a total of

150 Finnish nouns that were presented in fifteen 10-word lists varying in emotional valence, i.e.,

five word lists of each word valence group, and to freely verbally recall the previous word list

while a question mark was displayed on the screen. The 150 Finnish nouns were chosen from a

pool of 420 nouns [73]. The word valence groups were created as follows: negatively valenced

words (mean valence< 3.00 on a Likert scale ranging from 1 to 7); emotionally neutral words

(mean valence = 3.60–4.30); positively valenced words (mean valence> 5.00). The word valence

categories differed significantly with respect to their mean valence ratings (positive> neutral>

negative, all p-values< 0.001). To be able to control for possible effects due to the emotional

arousal elicited by these words, we attempted to match the valence categories in the encoding task

for this variable using the estimates in Söderholm et al. (2013) [73]. However, the positive and

neutral words were matched for arousal, t(71) = 1.19, p = .237, but the negative words were on

average significantly more arousing, M = 4.48, SD = 0.64, compared to the positive, M = 3.81,

SD = 0.73, t(96) = 4.94, p< 0.001, and the neutral, M = 3.67, SD = 0.36, t(77) = 7.84, p< 0.001,

words. As this arousal-related bias originated from the original pool of 420 words [73], it could

not be amended. All words were nouns in nominative singular, which is the morphologically sim-

ple dictionary form in Finnish. The valence categories were matched for word length in letters,

surface frequency, lemma frequency, bigram frequency, initial trigram frequency, and final tri-

gram frequency. The mean values per item can be found in the supplementary material to Söder-

holm et al. (2013) [73]. They were originally taken from an unpublished extensive database of

written Finnish (the Finnish newspaper Turun Sanomat published between 1st March 1994 and

30th June 1996, including 22.7 million words) using the computerized WordMill Lexical Search

Program [74]. The selected 150 nouns had a surface frequency value of 0.04–83.96 per million,

indicating low to medium frequency range. The word length of the nouns had already in the

420-word pool been limited to a range of 5 to 9 letters, because word length has been shown to

affect memory performance [75].
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The immediate free recall task consisted of a short practice run to familiarize the participant

with the experimental procedure and a study run. The study run included 15 trials with ten

words each. The words were presented only once. The presentation order of the words within

each study run list and the presentation order of the lists were pseudorandomized using a 3 by 3

format to avoid any order effects. The only restriction during the randomization procedure was

that there could be no more than two word lists of the same emotional valence presented in suc-

cession. The nine presentation orders were alternated on a participant-by-participant basis. The

words were shown for 2000 ms followed by a 3000 ms interval. After each study run list, a prompt

for the immediate free recall of the previous word list appeared on the screen for 60 s. The resea-

rcher documented the order in which the participant recalled the words and possible errors.

After the immediate free recall task, two tasks were administered to prevent the participant

from rehearsing the stimuli. First, the participant was asked to count backwards aloud starting

from 150. Counting was interrupted after 30 s. Second, a five-minute 0-back task with conso-

nants was administered. The function of the 0-back task was also to familiarize the participant

with the response pad. The time lag between the immediate free recall and recognition mem-

ory tasks was approximately ten minutes.

After the 0-back task, memory for the words in the immediate free recall task was investi-

gated using an old-new recognition task that included making yes-no confidence judgments.

The task was to identify the 150 target words from the immediate free recall task from among

300 randomly presented words, half of which were the target stimuli from the immediate

free recall task, half new distractor stimuli. The 150 distractors were chosen from the same

420-word pool as the target stimuli [73]. The targets and distractors were matched on all emo-

tional and psycholinguistic variables: valence, arousal, word length, surface frequency, lemma

frequency, bigram frequency, initial trigram frequency, and final trigram frequency. Moreover,

the distractors were chosen based on semantic relatedness, in that words that were closely

semantically related to the target words were preferred. Matching of the distractor words on

emotional and psycholinguistic features for the distractor valence categories was equally suc-

cessful as for the targets, apart from the arousal variable due to the reasons stated above. The

three valence categories differed significantly with respect to their mean valence ratings

(positive > neutral> negative, all p-values < 0.001). However, none of the distractor valence

categories were matched for arousal: the neutral words were on average more arousing,

M = 3.74, SD = 0.48, than the positive words, M = 3.42, SD = 0.57, t(98) = 3.01, p = 0.003,

whereas the negative words were again significantly more arousing, M = 4.69, SD = 0.53, than

both the positive, t(98) = 11.50, p< 0.001, and the neutral words, t(98) = 9.46, p< 0.001.

In each recognition memory trial, a word was displayed on the screen and the participant

was instructed to make an old-new discrimination using a response pad. After each old-new

discrimination, the prompt for the yes-no confidence judgment appeared on the screen. The

participant was instructed to respond as swiftly and accurately as possible. The recognition

task also consisted of a practice run to familiarize the participants with the experimental proce-

dure and a study run. The study run included 300 trials. A word was shown up to 2000 ms,

and then a black screen was displayed for 2100 ms, followed by the confidence judgment for a

maximum time of 1500 ms.

MRI image acquisition

MRI scanning was conducted within 21 weeks of the EEG experiment (mean interval = 13.4

weeks, SD = 5.8 weeks). MRI was performed with a 3T scanner (Verio, Siemens Medical Imag-

ing, Erlangen, Germany) at the Department of Radiology, Turku University Hospital. The par-

allel acquisition technique (GRAPPA) was used in all sequences. A routine 12-channel head

Gray matter correlates of emotional memory in middle and older age

PLOS ONE | https://doi.org/10.1371/journal.pone.0182541 August 3, 2017 7 / 26

https://doi.org/10.1371/journal.pone.0182541


coil was used. T2-weighted images had TR (Repetition Time) of 5210 ms, TE (Echo Time) of

96 ms, FOV (Field-Of-View) 220 mm x 165 mm, 4 mm slice thickness, and a 30% gap between

images. FLAIR sequence had TR of 5000 ms, TI (Inversion Time) of 1800 ms, TE of 395 ms,

FOV 250 mm x 250 mm, voxel size 1 mm x 1 mm x 1mm, and 160 slices in total with go gap

between slices. 3DT1 sequence had TR of 2300 ms, TI of 900 ms, TE of 3 ms, FOV of 256 mm

x 240 mm, and FA (Flip Angle) of 9 degrees.

MRI analyses

ROI analyses. The left and right amygdalae and hippocampi were a priori selected ROIs.

The volumetric segmentation was performed with the Freesurfer image analysis suite (http://

surfer.nmr.mgh.harvard.edu). Briefly, this processing included motion correction and averag-

ing [76], removal of non-brain tissue using a hybrid watershed/surface deformation procedure

[77], automated Talairach transformation, and segmentation of the subcortical white matter

and deep gray matter volumetric structures [78–79]. The automatic labelling technique limits

the analysis to regions specific to the hippocampus, excluding cortical areas, and identifies the

amygdalae using the hippocampi as anatomical landmarks [78].

Voxel-based morphometry (VBM). VBM analysis was conducted using the VBM8

toolbox (Christian Gaser, University of Jena, Jena, Germany; http://dbm.neuro.uni-jena.de/

vbm/) implemented in Statistical Parametric Mapping software (SPM8, Wellcome Department

of Cognitive Neurology, London, UK) running in Matlab 2011a (Mathworks Inc., Natick,

MA) [80–83]. Briefly, the processing included high-dimensional DARTEL normalization to

Montreal National Institute (MNI) space, image intensity non-uniformity correction, and seg-

mentation to gray matter, white matter, cerebrospinal fluid, and three non-brain partitions.

The gray matter images were modulated using Jacobian determinants derived from the nor-

malization procedure and smoothed using an 8 mm Full-width-at-half-maximum (FWHM)

isotropic Gaussian kernel. Total gray matter, white matter, cerebrospinal fluid, and total intra-

cranial volumes were calculated from the native space images.

Statistical analyses. Two repeated measures analyses of variance (ANOVA) with valence

as the within-subject factor (three levels) were performed separately for immediate free recall

and recognition memory performance (S1 Dataset). The analyses were conducted using pro-

portional scores for correctly recalled words at immediate free recall (number of correctly

recalled words divided by the maximum score of 50) and for correctly recognized targets (i.e.,

hits) at recognition (number of hits divided by the maximum score of 50). The recognition

memory scores comprised pooled responses regardless of confidence judgment. Preliminary

correlational analyses showed that age was significantly correlated with immediate free recall

scores only. Thus, age was included as a covariate solely in the immediate free recall ANOVA.

Further preliminary correlational analyses revealed no statistically significant correlations

between any of the memory measures and the positive affect or negative affect scores on a

Finnish unpublished adaptation (Saarela et al. unpublished manuscript) of the Positive and

Negative Affect Schedule (PANAS) [84]. The equality of variances at different levels of the

repeated factor was tested using Mauchly’s test of sphericity. Post hoc-analyses comparing dif-

ferent levels of the within-subjects factor were performed using paired samples t-tests. The t-
tests were Bonferroni-corrected for the number of comparisons conducted (αcorrected = 0.05 / 3

(valence)] = 0.017). All statistical analyses of the behavioral data were performed with SPSS

version 21 (SPSS Inc. IBM Company, 2012).

The associations between memory performance and amygdalar and hippocampal volumes,

respectively, were tested using hierarchical linear regression analyses (S1 Dataset). In the first

step, whole brain total gray matter, gender, and age were used as covariates to control for the
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variability in head size and overall cortical volume, and the potential confounding effects of

gender and age, respectively. In line with Kumfor et al. (2013) [55] and Mistridis et al. (2014)

[54], the second step introduced the proportional scores for opposite valence and neutral

words (when valenced words acted as dependent variables) or for positive and negative words

(when neutral words acted as the dependent variable) as covariates to control for “baseline”

episodic memory performance. The third step introduced left and right amygdalar or hippo-

campal volumes as predictors for memory performance. The amygdalae and hippocampi were

not included in the same regression analyses to avoid multicollinearity. Statistical analyses

using the ROI data were performed with SPSS version 21 (SPSS Inc. IBM Company, 2012).

Age, gender, and total intracranial volume were included as nuisance variables to all the

voxel-wise multiple regression analyses. In the analyses conducted separately for the valence

categories, memory performance with the two other valence categories were used as additional

covariates to account for “global” episodic memory performance, in a manner akin to that

employed in the hierarchical regression analyses above and in line with Kumfor et al. (2013)

[55] and Mistridis et al. (2014) [54]. An absolute voxel value threshold of 0.1 was used to

restrict the analyses to the brain gray matter regions. Statistical significance was set at family-

wise error (FWE) corrected P less than 0.05 at cluster level. Anatomical regions included to

clusters were defined using the Automated Anatomical Labeling (AAL) toolbox (http://ww.

gin.cnrs.fr/AAL) [85]. The peak coordinates are presented in MNI standard space. The results

were visualized using Mango software (version 4.0.1; Lancaster, Martinez, http://rii.uthscsa.

edu/mango/).

Results

Participant characteristics

MRI visual rating score data for the group are provided in Table 1. No focal white matter

lesions were observed in 39.1% of the participants [86]. Focal lesions were found for 52.1% of

Table 1. MRI visual rating scores.

MRI measure Description Older adults (n = 46)

Age-related white matter changesa M (SD) 0.70 (0.63)

Score/number of cases 0/18, 1/24, 2/4

Hippocampal atrophy (left)b M (SD) 0.02 (0.15)

Score/number of cases 0/45, 1/1

Hippocampal atrophy (right)b M (SD) 0.04 (0.21)

Score/number of cases 0/44, 1/2

General atrophyc M (SD) 0.04 (0.21)

Score/number of cases 0/44, 1/2

Frontal atrophyd M (SD) 0.13 (0.40)

Score/number of cases 0/41, 1/4, 2/1

The age-related white matter changes and degrees of atrophy were visually evaluated by a single rater (R.

P.) on scales ranging from 0 to 3 or 4.
a White matter lesions. Score 0 = no white matter lesions; 1 = focal lesions; 2 = beginning confluence of

lesions; 3 = diffuse involvement of the entire region, with or without involvement of U fibers. Basal ganglia

lesions. Score 0 = no lesions; 1 = 1 focal lesion (�5 mm); 2 = > 1 focal lesion; 3 = confluent lesions. Wahlund

et al. Stroke.2001; 32: 1318–1322. [86]
b Scheltens et al. J Neurol Neurosurg Psychiatry. 1992; 55: 967–972. [88]
c Victoroff et al. Neurology. 1994; 44: 2267–2276. [87]
d Jokinen et al. Parkinsonism and Related Disorders. 2009; 15; 88–93. [89]

https://doi.org/10.1371/journal.pone.0182541.t001
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the participants. 8.7% of the participants exhibited beginning confluence of lesions. General

atrophy was found in one participant [87]. Also, one participant exhibited age-related left hip-

pocampal atrophy and two exhibited age-related right hippocampal atrophy (score 1) [88].

Frontal atrophy with a score of 1 [89] was seen in 8.7% of the participants, whereas one partici-

pant had a score of 2 [89].

Effects of emotional content on memory performance

Means and standard deviations for the proportional scores for each valence category at imme-

diate free recall and recognition are reported in Table 2. Two repeated measures ANOVAs

were performed to compare the effect of valence on immediate free recall and recognition

memory performance, respectively. At immediate free recall, Mauchly’s test indicated no viola-

tion of the assumption of sphericity, χ2(2) = 0.96, p = 0.400. Thus, uncorrected ANOVA results

are reported for this analysis. There was no main effect of valence, F(2,88) = 0.32, p = 0.726, η2

= .007. The covariate age significantly predicted memory performance overall, F(1, 44) = 5.44,

p = 0.024, η2 = .11, such that increasing age was associated with poorer free recall performance.

At recognition, Mauchly’s test indicated a violation of the assumption of sphericity, χ2(2) =

0.85, p = 0.025. As estimated epsilon (ε) was greater than 0.75, the Huynh-Feldt correction was

used. The main effect of valence was significant, F(1.795, 80.768) = 22.23, p< 0.001, η2 = .33.

Follow-up paired samples t-tests revealed that recognition memory performance for positive

words was significantly higher than for either negative, t(45) = 2.53, p = .015, or neutral words,

t(45) = 5.60, p< 0.001 (Table 2). Recognition memory performance for negative words was

also significantly higher than for neutral words, t(45) = 4.52, p< 0.001.

Associations between emotional memory performance and amygdalar

or hippocampal volumes

Hierarchical regression analyses were performed using the volumes of each ROI to predict

immediate free recall and recognition performance separately for each valence category to

determine whether amygdalar and hippocampal volumes were associated with memory per-

formance. Taking into account whole brain total gray matter, age, gender, and memory perfor-

mance in the two other valence categories, these analyses yielded a single significant positive

association between right amygdalar volume and recognition memory performance for nega-

tive words, β = .317, t(45) = 2.51, p = 0.017. However, as the simple bivariate Pearson correla-

tion was non-significant and of decidedly lower magnitude than the standardized beta-value, r
= .03, p = 0.422, the presence of suppression was suspected. In this regression model, introduc-

ing step 1 with the control variables age, gender, and total brain volume explained 10.8% of the

variance in recognition memory scores for negative words, Fchange (3, 42) = 2.82, p = 0.051. In

step 1, only the association with the control variable gender approached significance, β = .318,

t(45) = 1.94, p = 0.060. Adding the control variables of recognition memory performance for

positive and neutral words in step 2 increased the amount of variance explained to a sizable

71.9%, Fchange (2, 40) = 46.77, p< 0.001. Both control variables had significant positive

Table 2. Means and standard deviations for proportional scores separately by valence category at

immediate free recall and recognition.

Valence Immediate free recall Recognition

Positive 0.51 (0.12) 0.75 (0.13)

Negative 0.49 (0.11) 0.72 (0.13)

Neutral 0.51 (0.12) 0.65 (0.15)

https://doi.org/10.1371/journal.pone.0182541.t002
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associations with recognition memory for positive words, as could be expected: recognition

memory for negative words, β = .539, t(45) = 4.93, p< 0.001; recognition memory for neutral

words, β = .378, t(45) = 3.51, p = 0.001. In the final step, adding the predictors left and right

amygdalar volumes to the analysis explained merely additional 2.9% of the variance in recogni-

tion memory performance for negative words, Radj
2 = .748, Fchange (2, 38) = 3.23, p = 0.051. In

the final step, the squared semi-partial correlation (sr2) showed that the amount of unique vari-

ance in memory performance explained by right amygdalar volume was quite modest, sr2 =
.035, compared to that explained by, e.g., recognition memory for negative words, sr2 = .154.

We attempted to identify which variables acted as suppressors using the method of rerunning

the regression analyses leaving out the various predictors one at a time, as suggested by

Tabachnick and Fidell (2007) [90]. As none of these reruns resulted in the size of the omitted

predictor’s beta-value approaching that of the Pearson correlation coefficient more clearly

than the beta-value of some other predictor, a specific suppressor or suppressors could not be

pinpointed. According to Tabachnick and Fidell (2007) [90], the inability to identify the sup-

pressors is quite common in multiple regression analyses. These results indicate that there

were no statistically significant associations between left and right amygdalar volumes and

immediate free recall performance in any valence category or recognition memory perfor-

mance for positive and neutral words. Furthermore, hippocampal volumes did not predict

memory performance on any measure.

Whole brain VBM results

The anatomical labeling of the clusters is presented in Table 3. Immediate free recall of nega-

tive words, taking into account memory performance for positive and neutral words, was neg-

atively associated with regional gray matter volume in the frontal lobe, encompassing a large

cluster in the dorsomedial PFC comprising the premotor and primary motor cortices in the

superior frontal and precentral gyri, and a cluster in the left dorsolateral PFC (Fig 1A; Table 3).

Higher immediate free recall performance for positive words, accounting for memory perfor-

mance for negative and neutral words, was correlated with larger local gray matter volume in

the cerebellum, specifically in a cluster centered mainly in bilateral Crus II in the mediolateral

hemispheres of the posterior lobe (Fig 1B; Table 3). There was no statistically significant asso-

ciation between immediate free recall of neutral words and local gray matter volume.

No statistically significant associations between recognition memory of either negative or

neutral words and regional gray matter volume were observed. However, a significant negative

association between recognition memory of positive words and local gray matter volume was

found in the occipital lobe mainly in the cuneus, extending into the lingula and primary visual

cortex (Fig 2; Table 3).

Discussion

The present study sought to examine the associations between regional gray matter volume

and memory performance for emotion-laden and emotionally neutral words on immediate

free recall and recognition memory tasks in a sample of cognitively intact 50-79-year-old

adults. Behaviorally, we found no effect of emotional content on immediate free recall perfor-

mance, but the participants exhibited both the EEM and a positivity bias in recognition mem-

ory. In other words, recognition memory of both positive and negative words surpassed that

of neutral words, and positive words were better recognized than negative words. In the hierar-

chical multiple regression analyses using ROI volumes, there were no statistically significant

associations between hippocampal or amygdalar volumes and memory performance in any

valence category after accounting for age, gender, whole brain total gray matter, and memory

Gray matter correlates of emotional memory in middle and older age

PLOS ONE | https://doi.org/10.1371/journal.pone.0182541 August 3, 2017 11 / 26

https://doi.org/10.1371/journal.pone.0182541


performance in the other valence categories. In contrast, the whole-brain VBM analyses,

accounting for age, gender, total intracranial volume, and memory performance in the other

valence categories, produced some novel statistically significant associations. Firstly, higher

immediate free recall of negative words was associated with smaller regional gray matter vol-

ume in the frontal cortex, encompassing clusters in the dorsomedial and left dorsolateral PFC.

Secondly, better immediate free recall of positive words was correlated with larger local gray

matter volume in the mediolateral hemispheres of the posterior lobe of the cerebellum.

Thirdly, higher recognition memory of positive words was associated with smaller regional

gray matter volume in the occipital cortex, encompassing a large area in the cuneus, extending

into the lingula, and thus comprising the primary visual cortex. No statistically significant

associations were found for memory for emotionally neutral words or recognition memory of

negative words.

Table 3. Anatomical region, %cluster, cluster size in voxels, peak coordinates (MNI), and significance level of all significant associations between

local gray matter volume and memory for emotion-laden words.

Anatomical region Laterality %Clustera kb Peak (x, y, z)c Sig.d

x y z

Immediate recall: negative words

Supplementary motor area Right 20.4 15015 6 3 57 < 0.001

Superior frontal gyrus Right 13.7

Supplementary motor area Left 9.3

Paracentral lobule Right 9.0

Medial frontal gyrus Right 8.1

Precentral gyrus Left 7.1

Medial frontal gyrus Left 5.8

Paracentral lobule Left 4.9

Middle frontal gyrus Right 4.6

Middle frontal gyrus Left 66.4 2681 -27 50 25 0.037

Superior frontal gyrus Left 28.5

Immediate recall: positive words

Cerebellum Crus II Right 27.7 3627 4 -75 -47 0.008

Cerebellum Crus II Left 24.7

Cerebellum lobule VIII Right 6.1

Cerebellum lobule IX Left 5.8

Cerebellum lobule IX Right 4.4

Recognition: positive words

Calcarine sulcus Right 25.0 8109 21 -49 -5 < 0.001

Lingual gyrus Right 22.3

Cuneus Right 11.9

Superior occipital gyrus Right 9.6

Cuneus Left 8.6

Calcarine sulcus Left 5.2

Fusiform gyrus Right 4.4

a Percentage of total cluster size.
b Cluster size in voxels.
c Peak coordinates in MNI space.
d Family-wise error (FWE) corrected P.

https://doi.org/10.1371/journal.pone.0182541.t003
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Effects of emotional content on immediate free recall and recognition

memory

Contrary to expectations, the EEM was demonstrated only for recognition memory, but not for

immediate free recall. This pattern for the EEM was somewhat surprising in light of a meta-

analysis showing a medium EEM for free recall compared to a small EEM for recognition mem-

ory in older age [4]. Methodological differences may explain this discrepancy. For instance, the

meta-analysis included both immediate and delayed conditions in free recall studies, such that

delayed recall was included whenever immediate recall measures were unavailable.

In contrast to the expectation that no positivity bias would emerge here due to the fact that

an intentional encoding paradigm was used [8], a positivity bias was seen in recognition mem-

ory. In a meta-analysis, a positivity bias in older age surfaced in studies using unconstrained

processing instructions, such as free viewing in an incidental encoding paradigm, but not in

Fig 1. Immediate free recall and local gray matter volume. Association between local gray matter volume and (a)

immediate free recall of negative words (negative association, height threshold T = 2.43, peak at 6 3 57 mm, cluster

size 15015 voxels, PFWE < 0.001, and peak at -27 50 25, cluster size 2681 voxels, PFWE = 0.037), and (b) immediate

free recall of positive words (positive association, height threshold T = 2.43, peak at 4–75–47 mm, cluster size 3627

voxels, PFWE = 0.008). The statistically significant clusters are overlaid on the average normalized T1-weighted image

of the studied sample.

https://doi.org/10.1371/journal.pone.0182541.g001

Fig 2. Association between recognition memory of positive words and local gray matter volume. The

statistically significant cluster (negative association, height threshold T = 2.43, peak at 21–49–5 mm, cluster

size 8109 voxels, PFWE < 0.001) is overlaid on the average normalized T1-weighted image of the studied

sample.

https://doi.org/10.1371/journal.pone.0182541.g002
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studies using constrained processing instructions, such as intentional encoding [8]. However,

the effect size for that finding was small. There are previous studies using intentional encoding

instructions that have demonstrated preferential memory performance for positive words in

healthy older adults [11–12, 91]. Furthermore, Kensinger (2008) reported a positivity bias for

both incidentally and intentionally encoded words, but only for low-arousing words [12].

Taken together, these findings indicate that the mechanisms driving the positivity effect in

memory in middle-aged and older adults are complex and not yet fully understood.

No association between amygdalar or hippocampal volume and memory

for emotion-laden words

In line with previous work with middle-aged and older healthy adults [49–50, 53], no associations

between amygdalar volume and memory performance were found in the present study, save

from the positive association with recognition memory of negative words that stemmed from sta-

tistical suppression. We could not identify which covariates acted as suppressors, which is quite

common when suppression is encountered in multiple regression analyses [90]. Still, as the asso-

ciation emerged as a result of suppression, it will not be discussed further. Most earlier studies on

amygdalar volumetric correlates of memory for emotion-laden stimuli reporting positive findings

have used mixed samples of dementia patients and healthy controls [54–56], leading to greater

variance in measures, and thus increasing the statistical power to detect correlations [92]. Indeed,

the scatterplots representing the statistically significant relationships between memory perfor-

mance and amygdalar volume in the supplementary material in Mistridis et al. (2014) suggest

restricted variance for both measures when looking at the separate groups [54]. Furthermore,

there are mixed findings regarding the existence of age-related decline in amygdalar volume [45–

46, 57–58, 93], which may inadvertently affect variability in measures in different studies.

Studies on the association between hippocampal volume and memory for emotion-laden

stimuli in middle-aged and older adults have produced mixed results. In line with Landré et al.

(2013) [50] and Schultz et al. (2009) [53], but in contrast to Guzmán-Vélez et al. (2015) [49],

hippocampal volume did not predict emotional memory in the present study. The inconsis-

tency of the hippocampal volumetric associations may be explained by methodological differ-

ences between studies, such as group composition, stimulus type, memory measures, and

methods of analysis. A positive relationship might have been expected, as a meta-analysis on

the relationship between hippocampal volume and memory performance in healthy individu-

als over the lifespan did demonstrate a weak positive relationship in older age [47]. However,

the main finding for the older age groups was increased variability in both hippocampal vol-

ume and memory performance. Also, the choice of statistical methods pertaining to adjusting

for age and brain size was shown to impact on the results particularly in the older group [47].

Null findings on the relationship between hippocampal volume and memory performance are

not uncommon in normal aging [94]. These null findings have been explained in terms of little

or no functional effects of the small volumetric changes in the hippocampi accompanying

healthy aging, as the changes may have non-pathological developmental origins [95]. By com-

parison, the positive relationships seen in neuropathology have been taken to imply that larger

hippocampal volumes equate to larger remaining segments of functional neural tissue, leading

to better performance, also called the ‘bigger is better’ hypothesis [95].

Immediate free recall of negative words is associated with local frontal

gray matter volume

Contrary to previous research [54–55], our findings pertaining to frontal lobe volumetric associa-

tions for memory for negative words were not localized to the OFC and ventromedial and
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ventrolateral PFC. Instead, immediate free recall of negative words was negatively correlated with

regional gray matter volume in the dorsomedial PFC and the left dorsolateral PFC. A possible

explanation for the different localization may be that previous studies have been conducted with

mixed samples of patients with neurodegenerative conditions and healthy older adults, and the

present study has focused on healthy middle-aged and older adults. We propose that the negative

correlation could be construed as reflecting of the involvement of these frontal areas in the cogni-

tive control of emotion [32–33, 40–41] and in self-referential processing [34, 38–39].

There are two main theoretical accounts for explaining the observed age-related differences

in the preferences for emotional stimulus content. One is the socioemotional selectivity theory

[96], which proposes that the preferences are driven by chronically activated motivational

goals via top-down control processes [8]. In middle and older adulthood, when the time per-

spective is more constrained, goals associated with emotional meaning and current well-being

gain importance, whereas goals associated with preparation for the future lose importance [6–

7, 96]. In middle-aged and older adults, the preference for processing positive information or

the reduced preference for processing negative information is thought to stem from a natural

inclination to use controlled processing strategies to promote emotion regulation with the aim

of achieving the goals associated with current emotional well-being [6–8, 96]. The other theo-

retical account explains the positivity effect in terms of age-related cognitive or neural deficits

[7, 97–98]. Labouvie-Vief et al. (2010) suggested that positive information is less cognitively

demanding than negative information and that age-related cognitive decline therefore may

cause the positivity bias in older age [97]. Cacioppo et al. (2011) put forth the aging-brain

model, which postulates that older adults exhibit decreasing amygdalar activation specifically

to negative stimuli [98]. This would entail the attenuation of emotional arousal to negative sti-

muli, which, by extension, would lead to worse memory for negative stimuli in older age [98].

The socioemotional selectivity theory suggests that the positivity effect is driven by top-down

control processes, whereas the deficit-based theories propose that it is driven by bottom-up

automatic processes [7]. There is still no consensus on which of these theories should be

considered dominant in explaining the positivity effect. However, an inherent confound in

functional neuroimaging research on age-specific amygdalar activation during emotional pro-

cessing to be noted in this context is the relatively slow development of the hemodynamic

response [99]. It has therefore been proposed that the amygdalar activation that has been mea-

sured in functional magnetic resonance imaging may reflect the result of top-down modula-

tion by prefrontal mechanisms rather than bottom-up arousal-driven modulation via the

visual cortex [99]. A recent study seemed to offer better support for the socioemotional selec-

tivity theory than for the deficit-based account, but neither theory received full support [100].

However, the present results cannot be used as proof for either account. As the present struc-

ture-function correlation was negative and localized to the frontal lobes, we opted for the

socioemotional selectivity theory and considered an explanation involving cognitive control

processes as being more feasible than the aging-brain model with its emphasis on degraded

amygdalar functioning and automatic processing.

The PFC areas involved in cognitive control functions influence what information one

attends to, and how the meaning of a stimulus is interpreted, thereby regulating the activity so

that it is congruent with the implicitly activated goal [41]. However, the cognitive control

hypothesis may be considered argumentative, because the PFC areas that tend to engage in

emotion regulation [32–33, 40–41] partly overlap with the PFC areas that decline with age

[57]. Also, cognitive control tends to become less efficient with advancing age [6–7]. However,

the positivity effect in memory has been shown to emerge only for older adults with high levels

of cognitive control, whereas those with low levels of cognitive control exhibited a negativity

bias akin to that of the young adults [6]. Also, age-related shifts have been demonstrated in the
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preferences for regulatory strategies towards less cognitively demanding ones that are sub-

served by more preserved brain regions [57]. This may be construed as evidence for the cogni-

tive control hypothesis. As for arousal-related processing, EEM for nonarousing information

is proposed to be based on controlled processing, and EEM for arousing information on auto-

matic processing [12]. The arousal-driven automatic processing would function as automatic

capture of attention [3], hypothesized to occur because of the evolutionary benefits of the facil-

itated or prioritized processing of arousing stimuli [2]. Controlled processing would entail

semantic elaboration or self-referential processing of the nonarousing information, which

middle-aged and older healthy individuals would use to promote a more positive emotional

state. We suggest that, provided that there is a positive correlation between the structural integ-

rity and functional efficiency of these frontal areas, this negative association between regional

frontal gray matter volume and immediate free recall of negative, relatively high-arousing

words could indicate that reduced regional gray matter volume in these areas may have served

to attenuate the cognitive control necessary to represent and actively maintain the implicitly

activated goals. Consequently, the regulatory processing needed to achieve goal-congruent

behavior was disabled and arousal-driven automatic processing was enabled, ultimately result-

ing in enhanced memory for these stimuli by virtue of their attention-grabbing effect.

Support for this hypothesis can also be found in functional brain imaging studies indicating

that older adults seem to engage more neurocognitive resources to the processing of positive

information and to down-regulate emotional responses to negative information, particularly

in frontal areas [101–103]. As for the lack of a correlation with the ventromedial PFC, Bechara

et al. (2000) showed that patients with ventromedial PFC lesions but not basal forebrain lesions

exhibited normal EEM despite abnormal reactivity to emotional stimuli [104], suggesting that

the EEM is not primarily subserved by this brain region. The negative association between

memory performance and frontal gray matter volume is not unique to our study. Gautam

et al. (2011) demonstrated that in older adults, smaller volume and cortical thickness of the lat-

eral PFC was associated with better performance on a verbal memory composite score consist-

ing of immediate and delayed free recall of a word list [95]. This suggests that this negative

structure-function relationship may apply to verbal episodic memory in general.

Immediate free recall of positive words is associated with local cerebellar

gray matter volume

Larger local gray matter volume in a cerebellar cluster centered in bilateral Crus II of the medio-

lateral hemispheres of the posterior lobe was associated with better immediate free recall of pos-

itive words. At first glance, the cerebellar localization seems unexpected, as this structure has

not been included in the neural network underpinning the EEM [2, 23, 29], or implicated in

previous studies on regional gray matter correlates of memory for emotion-laden stimuli [54–

55]. However, a closer look at some functional neuroimaging studies on memory for emotion-

laden stimuli reveals that cerebellar activations during encoding and retrieval have been

observed, but not discussed, most likely because the focus was on other brain structures [31,

105]. Still, during the past decades it has become increasingly evident that the cerebellum is an

integral part of distributed neural networks subserving higher cognitive functions and emo-

tional processes over and above the sensorimotor functions that have traditionally been attrib-

uted to it [106–113]. The cerebellum is thought to contribute to these neural networks with a

modulatory function via a number of neural pathways connecting it with cortical and subcorti-

cal cerebral structures [107, 109]. The connectivity pattern converges with clinical and neuroim-

aging evidence on cerebellar functional topography [106, 109–111]. In broad terms, the anterior

cerebellum and posterior lobule VIII are thought to be primarily involved in sensorimotor
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functions, the posterior vermis in emotional processing, and the posterior lobe, particularly lob-

ules VI and VII [Crus I, Crus II], in higher cognitive functions, such as executive functions, lan-

guage, episodic memory, working memory, and visuospatial processing [111–112].

Lesion studies [112, 114] and functional neuroimaging studies [115–117] have implicated

the cerebellum in a variety of learning and memory tasks, also including fear conditioning

[118] and recognition memory of emotion-laden stimuli in young adults [31, 119]. To the best

of our knowledge, neither functional nor structural neuroimaging studies demonstrating cere-

bellar contributions to memory for emotion-laden words in middle-aged and older adults

have been reported. This study is the first one to report an association between posterior cere-

bellar gray matter volume and immediate free recall of positive, relatively low-arousing words.

As previously stated, the preferentially enhanced memory for positive, low-arousing stimuli

that is encountered in middle-aged and older healthy adults has been hypothesized to be

driven by chronically activated motivational goals to promote emotional well-being via cogni-

tive control processes [8], such as semantic elaboration or self-referential processing of nonar-

ousing information. Provided that larger cerebellar volume indicates stronger functional

efficiency, it may be that larger regional gray matter volume in the mediolateral hemispheres

of the posterior cerebellum is related to better memory for positive, low-arousing stimuli

through the conjoint effect of the involvement of these areas in cognitive control [107–108,

113, 120–121], inhibitory control on arousal [122], facilitation of reward system functioning

[123–124], and self-relevant and self-referential processing [38–39] in middle and older adult-

hood. Also, lobule IX seems to be part of a functional resting state network, the default mode

network, which has been implicated in episodic memory and self-reflection [113].

Recognition memory of positive words is associated with regional

occipital gray matter volume

Smaller regional gray matter volume in the cuneus and lingula of the occipital lobe, specifically

in an area corresponding to the primary visual or striate cortex (BA 17, V1), was correlated with

better recognition memory of positive words. Both the localization and direction of the associa-

tion were quite surprising. Meta-analyses on functional neuroimaging studies have found prefer-

ential activation to emotion-laden stimuli in the occipital areas V2 to higher visual association

cortices (BA 18 and beyond), not in V1 (BA 17) [27, 125]. In a study on the relationship between

EEM in story recall of narrated slides and gray matter intensity, EEM was correlated with gray

matter intensity in BA 18 [56]. In studies on the incidental encoding of emotion-laden stimuli,

the primary visual cortex has usually activated in response to any stimuli regardless of their emo-

tional content [21–22]. However, as some studies have reported enhanced occipital activation to

memory for emotion-laden stimuli without disclosing the exact localization of the cluster [20,

31], it is unclear whether the primary visual cortical activation is unspecific to emotion-laden sti-

muli or not. In fact, enhanced activation of the cuneus (BA 17) has been observed during the

emotional discrimination of faces in young adults [102]. Consequently, it is difficult to account

for this finding. We welcome further studies including replications to gain a more thorough

understanding of the associations between recognition memory of emotion-laden words and

regional gray matter volume in middle-aged and older adults.

On the interpretation of structure-function relationships in a cognitively

intact middle-aged and older sample

The interpretation of our results rests on theories on the mechanisms that drive memory for

emotion-laden stimuli in middle-aged and older adults. This mode of interpretation could be

construed as problematic, as age was controlled for in the VBM analyses. Therefore, the results
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could be regarded as age-invariant, which would preclude age-specific interpretations. How-

ever, the fact remains that the sample represented middle-aged and older adults. When con-

ducting studies on gray matter volumetric correlates of behavior, the results are known to be

dependent on the age of the participants and the presence of brain pathology [48]. This is

thought to reflect that the microstructural mechanisms underlying local gray matter volume as

measured by VBM are likely to be different in young adults, normally aged adults, and people

with neuropathological conditions [44, 48]. After all, it is not precisely known what aspects of

microstructure and which cellular events contribute to local gray matter volume as measured

by VBM [44]. Also, the effect of using age as a covariate was assessed in a study, where a nega-

tive correlation between PFC regional volume and cognitive measures in a sample of healthy

older adults was found to hold up after controlling for age [126].

The directionality of some of our results is surprising, as the general assumption is that the

size of brain structures and their functional efficiency (in terms of both functional activation

and cognitive/behavioral efficiency) are positively correlated. However, the relationship

between regional gray matter volume and functional efficiency seems to be quite complex. It

has been shown that this relationship varied according to memory process (encoding, retrieval)

and brain region, even within the PFC, in older individuals [127]. For example, local gray mat-

ter atrophy partly accounted for reduced occipital activation at encoding, and for left prefrontal,

parietal and right cerebellar enhanced activation at retrieval in older adults as compared to

young adults [127]. Stern et al. (2005) stated that the processing efficiency of cortical structures

may be related not only to their size, but also to their functional efficiency, implying that when

less tissue is related to stronger activation to produce higher levels of a certain behavior, a com-

pensatory mechanism may be at play [128]. To approach a resolution to these conundrums

would entail amending some of the limitations to our study, such as including young adults and

patient groups as well as studying both structure-function relationships and the activation of

the implicated brain areas during task performance.

Limitations

This study has limitations affecting the generalizability of the results. First, the study was con-

ducted using a convenience sample of older middle-aged and older adults, and no young

adults were included. However, the group was quite representative of its age segment in terms

of gender and educational attainment [129]. Also, the sample size was modest, but still exceed-

ing sample sizes in most previous studies. The time lapse between the behavioral tasks and the

MRI scan was quite long, 13.4 weeks on average.

Another limitation is the use of standardized valence and arousal evaluations to create

word valence categories, as it has been shown that effects of emotional stimulus content on

memory performance may vary depending on whether objective or subjective evaluations are

used [130]. This could be of particular importance to the outcome of the behavioral analyses.

Related to this, a further potential pitfall of our study may be our inability to disentangle the

effects of valence and arousal on memory performance and in the explanations of our struc-

ture-function correlational findings, as we could not match the negative and positive words

for arousal. However, it is well known that the dimensions of valence and arousal tend to be

inter-correlated, especially regarding negative stimuli [73, 131].

Moreover, the use of automated software-based tracing of the amygdala may be considered

a limitation, as previous studies have shown that the identification of the amygdala using even

very sophisticated software compared to manual tracing presents with a challenge [49, 132].

However, the algorithm for the detection of amygdalar volume of the automatic labelling tech-

nique used in this study is considered as quite reliable and valid [78].
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Conclusions and future directions

In conclusion, our study demonstrated the presence of both EEM and a positivity bias in rec-

ognition memory, but not immediate free recall, of intentionally encoded words in a sample of

cognitively intact 50-79-year-old adults. Structure-function correlational analyses revealed no

statistically significant associations between amygdalar or hippocampal volume and the mem-

ory measures. Whole-brain VBM analyses yielded associations between memory for emotion-

laden words and regional gray matter volume in the dorsomedial and dorsolateral parts of the

frontal cortex, and in the cerebellum, suggesting that memory for emotion-laden words in

healthy middle and older adulthood is dependent on the structural integrity of brain areas

directly subserving cognitive control processes. Also, a surprising association between primary

visual cortex volume and recognition memory of positive words was revealed. The results sug-

gest that cognitively intact middle-aged and older adults show distinctive features in the struc-

ture-function relationships for memory for emotion-laden stimuli. As a whole, much remains

to be learned in this field of research, especially about the effects of normal, neurologically

healthy aging on the structural brain correlates of emotional memory processes.

The explanation to our results in terms of the neural substrates of the differential effects of

automatic and controlled processing on memory for emotion-laden words clearly warrants

future studies that should include young adults as well as patients with neurodegenerative dis-

orders. Furthermore, the intricate relationship between neural structure and function would

be best examined in an event-related experimental paradigm, which would enable assessment

of the impact of structural correlates on the functional efficiency of the implicated brain areas.

Hogan et al. (2011) [133] and Paul et al. (2009) [134] showed that positive correlations

between cerebellar volume and various cognitive measures in older age disappeared when

frontal lobe volume was accounted for, indicating a primary role for age-related changes in the

frontal lobe in driving age-related cognitive changes, and by extension a primary role for the

frontal lobe in subserving these cognitive functions. This indicates that it would be fruitful to

extend this approach to our research area with a larger sample that would permit more statisti-

cal power to detect such relationships. Finally, as the cognitive control explanation to our find-

ings rests upon the existence of anatomical and functional connections between these various

brain structures, future studies using diffusion tensor imaging and functional connectivity

approaches would also be warranted.
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49. Guzmán-Vélez E, Warren DE, Feinstein JS, Bruss J, Tranel D. Dissociable contributions of amygdala

and hippocampus to emotion and memory in patients with Alzheimer´s disease. Hippocampus. 2015.

https://doi.org/10.1002/hipo.22554 PMID: 26606553
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