
RESEARCH ARTICLE

Coughing, sneezing, and aching online:

Twitter and the volume of influenza-like

illness in a pediatric hospital

David M. Hartley1*, Courtney M. Giannini2, Stephanie Wilson1, Ophir Frieder3, Peter

A. Margolis1, Uma R. Kotagal1, Denise L. White1, Beverly L. Connelly4, Derek S. Wheeler5,

Dawit G. Tadesse6, Maurizio Macaluso6

1 James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center,

Cincinnati, Ohio, United States of America, 2 Medical Scientist Training Program, College of Medicine,

University of Cincinnati, Cincinnati, Ohio, United States of America, 3 Department of Computer Science,

Georgetown University, Washington DC, United States of America, 4 Division of Infectious Diseases,

Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 5 Division of

Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of

America, 6 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center,

Cincinnati, Ohio, United States of America

* David.Hartley@cchmc.org

Abstract

This study investigates the relation of the incidence of georeferenced tweets related to respi-

ratory illness to the incidence of influenza-like illness (ILI) in the emergency department

(ED) and urgent care clinics (UCCs) of a large pediatric hospital. We collected (1) tweets in

English originating in our hospital’s primary service area between 11/1/2014 and 5/1/2015

and containing one or more specific terms related to respiratory illness and (2) the daily

number of patients presenting to our hospital’s EDs and UCCs with ILI, as captured by ICD-

9 codes. A Support Vector Machine classifier was applied to the set of tweets to remove

those unlikely to be related to ILI. Time series of the pooled set of remaining tweets involving

any term, of tweets involving individual terms, and of the ICD-9 data were constructed, and

temporal cross-correlation between the social media and clinical data was computed. A sta-

tistically significant correlation (Spearman ρ = 0.23) between tweets involving the term flu

and ED and UCC volume related to ILI 11 days in the future was observed. Tweets involving

the terms coughing (Spearman ρ = 0.24) and headache (Spearman ρ = 0.19) individually

were also significantly correlated to ILI-related clinical volume four and two days in the

future, respectively. In the 2014–2015 cold and flu season, the incidence of local tweets con-

taining the terms flu, coughing, and headache were early indicators of the incidence of ILI-

related cases presenting to EDs and UCCs at our children’s hospital.

Introduction

Social media represents a new and important source of data for healthcare researchers [1–7].

Of particular interest is the use of social media for community situational awareness to support
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local public health decision-making. While a recent review found few peer reviewed studies

documenting the operational use of social media for infectious disease surveillance [8,9], anal-

yses of different social media platforms demonstrate agreement with traditional clinic-based

surveillance nationally and regionally [10,11] in the case of influenza-like illness (ILI). More

recently, correlation between the incidence of georeferenced Twitter messages (“tweets”) con-

taining words related to ILI and the clinical incidence of ILI as collected by city health depart-

ments in the United States was observed [12–15]. Such studies are important steps toward

establishing Twitter as a proxy for ILI incidence collected by public health departments at the

city-scale.

The degree to which the association of Twitter and ILI activity generalizes to clinical obser-

vation at specific hospitals, types of hospitals, and patient populations, however, is unclear and

remains largely unexplored in the literature. The purpose of this study is to analyze potential

correlation between the incidence of explicitly georeferenced tweets related to respiratory ill-

ness in the hospital catchment community to the incidence of ILI in emergency departments

(EDs) and urgent care clinics (UCCs), as recorded in International Classification of Diseases,

Ninth Revision (ICD-9) codes, in a large children’s hospital. While many hospitals see patients

of all ages, including those of ages who use Twitter, children’s hospitals typically serve patients

spanning the neonatal through young adult ages. Since Twitter’s services are directed at per-

sons 13 years of age and older, an important demographic of children’s hospitals demograph-

ics may utilize Twitter. Moreover, a recent study suggests that 37% of adult Internet users

between 18 and 29 years of age use Twitter, as do 25% of those between the ages of 30 and 49

[16]. The age range 18–49 includes the majority of ages of parents or guardians who bring chil-

dren to pediatric hospitals for care as well as older patients presenting to children’s hospitals

[17]. Therefore, Twitter likely is a social media platform relevant to pediatric health, though

few studies address its relevance to pediatric infectious disease specifically.

Methods

Setting

Cincinnati Children’s Hospital is an academic primary through tertiary care institution serv-

ing patients throughout southwestern Ohio, northern Kentucky, and southeastern Indiana.

Cincinnati Children’s Hospital has approximately 1.2 million patient encounters annually, of

which approximately 100,000 are ED visits. The hospital maintains emergency rooms at two

locations and urgent care clinics at five facilities in the Cincinnati, Ohio metropolitan area.

Our hospital defines its primary service area according to the geographic boundaries of coun-

ties in the Ohio-Indiana-Kentucky tristate region. In this study, we approximated this region

as a circle of 55-mile radius centered about Cincinnati.

Data sources

Tweets containing the terms nausea, nauseous, coughing, wheezing, asthma, sneezing, headache,

achy, antibiotics, and flu were collected from November 1, 2014—May 1, 2015 from within the

hospital service area via the Twitter search application program interface (API) (https://dev.

twitter.com/rest/public/search). The keywords flu, headache, and coughing derived from previ-

ous studies [14,15,18,19], while the others were chosen based on the symptoms of respiratory

illness more generally. Data fields retained from the API queries included: text, created, trun-
cated, longitude, and latitude. We utilized only tweets with explicit latitude and longitude

coordinates in this study. The Twitter search API was queried nightly at midnight local time

through the R programming language [20] employing the twitteR library [21]. The previous 24

hours of tweets were queried in each search so that only new tweets were returned in each
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query. Re-tweets, tweets containing the terms ebola and game (to decrease the number of irrel-

evant tweets and thus reduce the class imbalance problem for SVM [22]), and tweets contain-

ing URLs (which frequently denote news reports), were excluded from the queries.

For the same time period, data on the number of patients presenting to EDs and UCCs

with ILI were queried from our hospital’s electronic health record (EHR) system. We devel-

oped a group of ICD-9 codes related to ILI in our patient population. Hospital infectious dis-

ease physicians selected ICD-9 codes from a list taken from the study of Marsden-Haug et al

[23], which was done on a population including all ages, and added codes thought to be rele-

vant based on clinical experience. Codes 465.9 (upper respiratory infection, acute, not other-

wise specified), 487.1 (influenza with other respiratory manifestations), and 486 (pneumonia,

organism unspecified), which were among the ICD-9 codes found to be most indicative of ILI

in the Marsden-Haug et al study, were included in the present study. Also included were the

following: 465 (acute upper respiratory infections of multiple or unspecified sites), 466 (acute

bronchitis and bronchiolitis), 466.0 (bronchitis, acute), 466.11 (bronchiolitis, acute, due to

RSV), 480 (viral pneumonia), 480.9 (pneumonia, viral, unspecified), 481 (pneumococcal pneu-

monia), 482 (other bacterial pneumonia), 482.9 (pneumonia, bacterial, unspecified), 483

(pneumonia due to other specified organism), 483.0 (mycoplasma pneumoniae), 485 (bron-

chopneumonia, organism unspecified), 487 (influenza with pneumonia), 490 (bronchitis, not

specified as acute or chronic), 493 (asthma), 493.0 (extrinsic asthma), 493.1 (intrinsic asthma),

493.2 (chronic obstructive asthma), 518 (other diseases of lung), 518.5 (ARDS), 518.81 (respi-

ratory failure, acute), and 519 (other diseases of respiratory system). The resulting data were

stored as records including fields for visit time, date, and specific ICD-9 codes related to the

visit.

Data preparation

We manually classified half of the collected tweets to train a machine classifier. The classifica-

tion rule applied was that if it was thought that the person tweeting or someone near them was

suffering the condition in question (e.g., headache, coughing, asthma, aching, taking antibiot-

ics, etc.) as a health problem potentially related to ILI, then a tweet was classified as relevant;

otherwise, it was classified as irrelevant. The manual classification was based on a consensus of

two researchers; a priori inter-rater reliability was assessed with Cohen’s Kappa (κ). We parsed

the different terms (words or phrases) after cleaning the tweets. Cleaning (i.e., removal of stop

words, punctuation, and numbers and conversion of all words to lower case) was accom-

plished using the R text mining package tm [24]. Search terms in the resulting tweets served as

the variables for classification. We fit a Support Vector Machine (SVM) classifier using two-

class classification using the package e1071 in R [25]. Standard SVM kernels were considered

(linear, radial, polynomial and sigmoidal) and we adopted the kernel yielding the highest clas-

sifier accuracy based on 10-fold cross validation using the training data (50% of the entire twit-

ter data set). Accuracy is defined as the number of true “relevant” and true “non-relevant”

tweets divided by the number of “relevant” and “non-relevant” tweets. The resulting SVM clas-

sifier classified the remaining tweets.

Statistics

For each type of data (i.e., tweets and ICD-9 codes) we constructed the daily incidence time

series. In the case of Twitter, we constructed time series for both the sum of all tweets and the

sum of tweets including individual keywords for the study area. We investigated the normality

of the data corresponding to the resulting Twitter and ICD-9 time series through Shapiro-

Wilk tests (test statistic: W) and applied transformations when needed to achieve normality.
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Augmented Dickey-Fuller tests were used to assess the stationarity of times series. The rela-

tionship between the time series was assessed using Spearman’s (ρ) rank-based correlation

coefficient.

We removed autocorrelation in the time series [26] through pre-whitening. Following the

standard procedure [27], we examined the autocorrelation function (ACF) and partial auto-

correlation function to estimate an ARIMA(p,d,q) model to the Twitter series, where p is the

order of the autoregressive model, d is the number of differences needed to achieve stationar-

ity, and q is order of the moving average model. We filtered this series with the model to

recover the white noise residual series, and then filtered the ICD-9 series with the same model.

The filtered Twitter and ICD-9 series were then cross-correlated to estimate the correlation at

different lags. Residuals from all ARIMA models were tested using Shapiro-Wilk tests and

quantile-quantile (QQ) plots to confirm that they were normally distributed. Pre-whitening

was carried out in the R programming language [20].

Ethics statement

Tweets used in this study were collected from users who consented, via the Twitter terms and

agreement, to make their tweets available publicly. No fields containing Twitter user identifica-

tion were stored when collecting tweets from the search API. EHR data were de-identified

prior to use in the study. The Cincinnati Children’s Hospital Medical Center Institutional

Review Board determined that this study does not meet the criteria for human subjects

research and therefore exempted the research from IRB approval.

Results

We collected a total of 2737 tweets. Overall, headache was the most common keyword (occur-

ring in 53.8% of tweets), followed by flu (occurring in 19.2% of tweets) and coughing (occur-

ring in 10.8% of tweets); other terms occurred much less commonly. The a priori inter-rater

reliability identifying relevant versus irrelevant tweets was high (κ = 0.82). Based on 10-fold

cross validation, we found that an SVM classifier based on a linear kernel performed better

than classifiers utilizing radial, polynomial or sigmoidal kernels, and yielded an average accu-

racy of 78%. Applying the classifier to the remaining tweets resulted in 2057 tweets retained

for analysis. As shown in Fig 1, a similar distribution of terms was observed in the machine-

classified data set: headache occurred in 57.7% of tweets, flu occurred in 16.3% of tweets, and

coughing occurred in 11.4% of tweets while other terms occurred much less commonly.

The EHR query yielded 12081 cases seen in hospital EDs and UCCs, in which ICD-9 codes

occurred with the frequencies depicted in Fig 2. ICD-9 code 465.9 (“upper respiratory infec-

tion, acute, NOS”) was by far the most common admit and discharge code, accounting for

85.9% of all codes collected, followed by codes 486 (“pneumonia, organism unspecified”,

7.4%) and 487.1 (“influenza w/other respiratory manifestations”, 5.6%); other codes occurred

with negligible frequency.

Based on their prominence relative to other terms, we considered only tweets containing

the terms flu, coughing, and headache (dataset in S1 File). Fig 3 depicts the daily incidence of

the sum of tweets including the terms flu, coughing, and headache (black open circles) in the

hospital catchment area and the daily volume of hospital ED and UCC ICD-9 codes (red trian-

gles) related to ILI. The Shapiro-Wilk test applied to the daily incidence of the sum of tweets

including these three keywords (W = 0.95, p<0.001) and separately to daily volume of hospital

ED and UCC ICD-9 codes related to ILI (W = 0.87, p<0.001) indicated that neither are likely

to be normally distributed. Shapiro-Wilk tests were also applied to the time series of individual

keywords; in each case, the test led to rejection of the null hypothesis that the data were from a
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normal distribution. Autocorrelation was observed in the ACFs of the time series of individual

keywords.

We transformed the time series of tweets using square root function in order to achieve

normality of all the pre-whitened time series of tweets. We used Dickey-Fuller tests for each

pre-whitened series and each time found stationarity. We examined the ACF of each of the

pre-whitened series and the residuals and observed no significant autocorrelation. We found

that ARIMA models of order (p = 1, d = 1, q = 2) for flu, (p = 3, d = 2, q = 0) for coughing, and

(p = 0, d = 0, q = 1) for headache best fit the data. Cross-correlation of the filtered time series

identified statistically significant correlation at lags of -11 days (ρ = 0.23), -4 days (ρ = 0.24),

and -2 days (ρ = 0.19) for flu, coughing, and headache, respectively, and the ICD-9 time series.

We also observed autocorrelation in the time series of the three pooled keywords from the

autocorrelation and partial autocorrelation functions. Applying the pre-whitening procedure,

we found that an ARIMA model of order (p = 0, d = 0, q = 2) best fit the data and this was used

to generate the white noise residual series. Cross-correlation of this filtered time series pro-

duced statistically significant correlation at a lag of -2 days (ρ = 0.30) between the pooled

tweets containing flu or coughing or and headache and the ICD-9 time series. When Bonfer-

roni correction is made to control for multiple comparison, the resulting 95% confidence

interval of the cross-correlation functions is [-0.17, 0.17], so that all correlations are statistically

significant.

Fig 1. The frequency of occurrence of individual search terms in the 2057 tweets analyzed in this

study.

https://doi.org/10.1371/journal.pone.0182008.g001
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Discussion

This study examined the temporal relation between tweets involving the words flu, coughing,

and headache and the volume of patients presenting to EDs and UCCs with ILI at a children’s

hospital during a large part of the 2014–2015 cold and flu season. We found that tweets involv-

ing the word flu were predictive of ED and UCC ILI volume at a lead time of 11 days. Tweets

involving the words coughing and headache were less strongly correlated with ILI volume at

lead times of four and two days, respectively. The pooled time series of tweets involving flu,

coughing, or headache was also found to be correlated with, and predictive of, ILI-related ED

and UCC volume.

Other investigators recently also noted correlation at the city level between trends in tweets

involving the term flu and trends in ILI in the general population [14,18], though we believe

this study documents the first observation of the association of the incidence of tweeting about

ILI and ILI as observed at a children’s hospital. Moreover, the observation of a predictive lag

between such tweets and ILI suggests that it may be possible to forecast increases in pediatric

ED and UCC volume related to ILI, at modest lead times, by collecting and classifying tweets

involving the word flu originating from our hospital’s catchment region.

The US Centers for Disease Control and Prevention observes that influenza activity in the

United States typically begins to increase in October and November [28]. In the 2014–2015

season, CDC reported that ILI activity first exceeded the baseline during the week ending

November 22 [29]. Therefore, while our study began the first week of November and thus did

Fig 2. The frequency of occurrence of individual ICD-9 codes in the EHR records analyzed in this

study.

https://doi.org/10.1371/journal.pone.0182008.g002

Twitter and the volume of influenza-like illness in a pediatric hospital

PLOS ONE | https://doi.org/10.1371/journal.pone.0182008 July 28, 2017 6 / 10

https://doi.org/10.1371/journal.pone.0182008.g002
https://doi.org/10.1371/journal.pone.0182008


not capture the entire ILI season, omission of the month of October in our data should not sig-

nificantly change the results of the study.

Consistent with numerous previous studies [14,15,18,19,30], we opted to utilize an a priori
selection of keywords representing symptoms associated with ILI for Twitter queries. We

found that, out of several keywords considered, flu, coughing, and headache appeared most

commonly in the tweets collected, further strengthening the previously-established validity of

these keywords. We elected to include only tweets that include latitude and longitude coordi-

nates explicitly and not to utilize enhanced geo-location approaches such as CARMEN [31] or

TwoFishes (http://twofishes.net/). Such approaches typically exploit, in addition to latitude-

longitude coordinates attached to tweets (either directly or via place tagging, if the user allows),

information in user profiles, or potentially language in the body of tweets. While limiting the

potential data available for the study to the few percent of all tweets estimated to contain lati-

tude and longitude coordinates [32], utilizing tweets containing explicit latitude-longitude

coordinates garnered from GPS avoids ambiguity in location that user profile information, for

example, introduces at the geographic scales of interest in this study. Dredze and coworkers

suggest that such approaches are accurate to within 50 miles about 60 percent of the time [31].

The approach used in this study has several limitations. First, we do not know the degree to

which tweets mined from the search API are representative of all tweets, and we are unaware

of published studies estimating the size or randomness of API search results relative to the

entire Twitter “fire hose”. Second, while we employed machine learning methods to remove

irrelevant tweets (i.e., tweets unrelated to respiratory illness, such as, e.g., “His voice gives me a

Fig 3. The daily incidence of the sum of tweets including the terms flu, coughing, and headache

(black open circles) in the hospital catchment area and the daily volume of hospital ED and UCC ICD-

9 codes (red triangles) related to ILI.

https://doi.org/10.1371/journal.pone.0182008.g003
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headache, LOL”) [33,34], the accuracy of the classifier could likely be improved if additional

data were available to better inform the training. Third, because sample size would be insuffi-

cient, we did not disaggregate the ICD-9 time series by clinic or location. Nor did we investi-

gate possible day-of-week effects (i.e., the possibility that people may be predisposed to tweet

about ILI on certain days of the week relative to others [35]), though we are not aware of such

effects from previous studies. Fourth, these keywords, while biologically inspired and consis-

tent with those used in other studies, may have not been optimal [14,15,18,19]. Similarly, while

we filtered out tweets including the words “game” and “ebola” in order to decrease the collec-

tion of irrelevant tweets, these terms are not necessarily generalizable to future years.

Study results suggest that changes in the incidence of Twitter messages originating near

Cincinnati and containing the words flu, coughing, and headache portend changes in ED and

UCC volume at the lags calculated. It is possible that this approach may be of highest value at

the beginning of the cold and flu season, when Twitter is relatively quiescent in terms of mes-

sages related to ILI and before users may become sensitized to tweeting about symptoms.

While this study examined the association between tweets including words related to ILI and

pediatric ILI observed in clinical settings, it is also of interest to understand how ILI-related

tweets vary in terms of age, gender, and other demographic factors. While doing so is difficult

[36,37], applying such tools in future efforts may result in a rich set of factors to study. Lastly,

it may be possible to improve the correlation through smoothing of the data collected (e.g.,

moving average schemes). Because our study has not included such approaches, the results of

our analysis are likely to be biased toward the null. Employing methods such as those described

in this study may strengthen the association between local tweets and pediatric ILI observed at

our children’s hospital, support early warning of increases in ILI incidence, and lead to deeper

insight into the relationship of social media and pediatric infectious disease at the community

level.

Supporting information

S1 File. Excel file of the time series of tweet counts before classification (tab entitled

“Tweet ts before classification”), tweet counts after classification (tab entitled “Tweet ts

after classification”), and ICD-9 counts (tab entitled “ICD-9 code time series”).

(XLS)
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