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Abstract

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-

transcriptional regulation. miRNAs regulate their target genes by repressing translation or

inducing degradation of the target genes’ mRNAs. Many databases have been constructed

to provide computationally predicted miRNA targets. However, they cannot provide the

miRNA targets expressed in a specific tissue and related to a specific disease at the same

time. Moreover, they cannot provide the common targets of multiple miRNAs and the com-

mon miRNAs of multiple genes at the same time. To solve these two problems, we construct

a database called CSmiRTar (Condition-Specific miRNA Targets). CSmiRTar collects com-

putationally predicted targets of 2588 human miRNAs and 1945 mouse miRNAs from four

most widely used miRNA target prediction databases (miRDB, TargetScan, microRNA.org

and DIANA-microT) and implements functional filters which allows users to search (i) a miR-

NA’s targets expressed in a specific tissue or/and related to a specific disease, (ii) multiple

miRNAs’ common targets expressed in a specific tissue or/and related to a specific disease,

(iii) a gene’s miRNAs related to a specific disease, and (iv) multiple genes’ common miRNAs

related to a specific disease. We believe that CSmiRTar will be a useful database for biolo-

gists to study the molecular mechanisms of post-transcriptional regulation in human or

mouse. CSmiRTar is available at http://cosbi.ee.ncku.edu.tw/CSmiRTar/ or http://cosbi4.

ee.ncku.edu.tw/CSmiRTar/.

Introduction

MicroRNAs (miRNAs), 20–25 nucleotides non-coding RNAs, play important roles in the

post-transcriptional regulation of gene expression [1–3]. Via binding to the complementary

sites within the 3’ untranslated regions (3’ UTRs) of their target genes’ mRNAs, miRNAs

induce mRNA degradation or lead to translational inhibition [1,4–6]. miRNAs are known to

be involved in a wide range of biological processes including cell development, differentiation,

cell-cycle control and apoptosis [7–9].

Understanding the miRNA-target interactions is the crucial step to discern the roles of

miRNAs in different biological processes [10]. Many databases have been constructed to pro-

vide miRNA targets information. For example, TarBase [11] and miRTarBase [12] collect
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manually curated miRNA targets with experimental evidence from the literature but they are

far from complete. The other databases such as TargetScan [10], miRDB [13], microRNA.org

[14], DIANA-microT [15], miRecords [16], MAGIA [17], mirDIP [18], miRSystem [19] and

miRGator [20] collect computationally predicted miRNA targets generated from various algo-

rithms. However, these databases usually return thousands of predicted targets of a query

miRNA. Researchers have to put extra efforts to extract the interested miRNA targets from a

large number of uninterested ones. Since miRNAs regulate their targets in specific tissues, cell

types and disease states, it is advantageous to have a database which can return miRNA targets

in a specific physiological condition. Three existing databases attempted to meet this need.

miTALOS [21] can provide miRNA targets of a specific tissue or cell line. miRWalk [22] can

provide miRNA targets related to a specific OMIM disorder. starBase [23] can provide miRNA

targets whose expressions are anti-correlated with miRNA’s expression in specific cancer

types. However, none of them can provide the miRNA targets expressed in a specific tissue

and related to a specific disease at the same time. Therefore, there is still a need for a database

which implements both the tissue and disease filters.

The complex circuitry of miRNA-mRNA interactions show the dynamic regulation of gene

expression. Recent study showed that overexpressed MRE (miRNA response element)-con-

taining transcripts can soak up the miRNA and upregulate its target genes [24]. Moreover, the

competing endogenous RNAs (ceRNAs), transcripts that cross-regulate each other by compet-

ing for shared miRNAs, were proposed to describe the new layer of post-transcriptional regu-

lation and linked the functions of coding and non-coding RNAs [25]. Several studies indicated

the deregulation of ceRNA network in cancer development [26]. Because most existing data-

bases do not provide the common miRNAs of a set of genes, they cannot be used to find out

the shared miRNAs of ceRNAs. Therefore, it is advantageous to have a database which pro-

vides researchers the common miRNAs of multiple genes and the common targets of multiple

miRNAs.

To meet these two needs, we develop a database called CSmiRTar (Condition-Specific

miRNA Targets). CSmiRTar collects computationally predicted targets of 2588 human miR-

NAs and 1945 mouse miRNAs from four most widely used miRNA target prediction databases

(miRDB, TargetScan, microRNA.org and DIANA-microT). CSmiRTar implements (i) a tissue

filter for users to search the miRNA targets expressed in a specific tissue, (ii) a disease filter for

users to search the miRNA targets related to a specific disease, and (iii) a database filter for

users to search the miRNA targets supported by multiple existing miRNA target prediction

databases. Moreover, CSmiRTar allows users to search the common targets of a set of input

miRNAs under a specific physiological condition and the common miRNAs of a set of input

genes under a specific physiological condition. We believe that CSmiRTar will be a useful data-

base for biologists to study the molecular mechanisms of post-transcriptional regulation in

human or mouse.

Construction and contents

Data collection and processing

Five data sources were used to construct CSmiRTar. First, the experimentally validated human

and mouse miRNA targets were retrieved from miRTarBase [12], which manually collected

miRNA-target interactions with experimental evidence from the literature. Second, the com-

putationally predicted human and mouse miRNA targets were retrieved from four most widely

used miRNA target prediction databases (TargetScan [10], miRDB [13], microRNA.org [14]

and DIANA-microT [15]). The miRNA-target interactions in these four databases were pre-

dicted by TargetScan algorithm, MirTarget algorithm, miRanda algorithm and DIANA

Condition-Specific microRNA targets database
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microT-CDS algorithm, respectively. Since the collected miRNA-target interactions from dif-

ferent databases may use different identifiers (IDs), we have to do ID conversion in order to

integrate data from different databases. In CSmiRTar, we used miRBase ID as the miRNA

identifier and NCBI gene ID as the gene identifier. That is, all miRNA-target interactions were

recorded as miRBase ID-NCBI gene ID pairs in CSmiRTar. Third, the tissues in which a

human or a mouse gene is expressed were retrieved from Expression Atlas [27]. Expression

Atlas, maintained by EMBL-EBI, provided the genes expressed in a specific tissue by analysing

microarray and RNA-seq data in ArrayExpress [28]. Fourth, the diseases to which a human

gene is related were retrieved from DisGeNET [29], which manually collected gene-disease

associations from the literature and other expert curated databases. Fifth, the diseases to which

a human miRNA is related were retrieved from PhenomiR [30], which manually collected

miRNA-disease associations from the literature. The statistics of CSmiRTar could be found in

Table 1. The collected dataset is already very big. On average, a human gene has 572 predicted

miRNAs and a mouse gene has 231 predicted miRNAs. Therefore, biologists already have

troubles to find out the functional miRNAs (among so many predicted miRNAs) for a gene of

interest.

Implementation of CSmiRTar website

CSmiRTar was built using the scripting language PHP and Codelgniter framework. Crawler

was used to retrieve raw data from other databases and Python was used to process the raw

data. The processed data was stored in MySQL. The Interactive bar chart was generated by

Highcharts.

Utility and discussion

Database interface

CSmiRTar provides both a search mode and a browse mode. In the search mode, users have

four possible ways to search CSmiRTar. First, users can input a miRNA and search its targets

which are (i) expressed in a specific tissue, (ii) related to a specific disease, or/and (iii) sup-

ported by multiple existing miRNA target prediction databases. After submission, users will

see the search results sorted by the number of supported databases or the average normalized

score (see Fig 1). Second, users can input a set of miRNAs and search their common targets

which are (i) expressed in a specific tissue, (ii) related to a specific disease, or/and (iii) sup-

ported by multiple existing miRNA target prediction databases. After submission, users will

see the search results sorted by the number of supported databases or the mean average nor-

malized score (see Fig 2). Third, users can input a gene and search its miRNAs which are (i)

related to a specific disease or/and (ii) supported by multiple existing miRNA target prediction

databases. After submission, users will see the search results sorted by the number of supported

databases or the average normalized score (see Fig 3). Fourth, users can input a set of genes

and search their common miRNAs which are (i) related to a specific disease or/and (ii)

Table 1. The statistics of CSmirTar.

Organism # of collected

miRNA-target

pairs

# of miRNAs

which can be

queried

# of genes

which can be

queried

# of collected tissues in

which a gene may be

expressed

# of collected diseases

to which a gene may be

related

# of collected diseases

to which a miRNA may

be related

Human 19,006,454 2588 21137 81 3696 81

Mouse 6,949,317 1945 21049 51 X X

https://doi.org/10.1371/journal.pone.0181231.t001
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Fig 1. Search the target genes of an input miRNA. (a) Search human miR-139-3p’s target genes which are

expressed in the brain tissue, related to the brain neoplasms disease and supported by at least two existing

databases. (b) CSmirTar returns 35 target genes sorted by the average normalized score (ANS). (c) When

clicking on a gene name in the “Target Gene” column, it opens a webpage showing the basic information of

this gene, the tissues in which this gene is expressed and the diseases to which this gene is related. (d) When

clicking on a score in the “ANS” column, it opens a webpage showing how the ANS is calculated. (e) When

Condition-Specific microRNA targets database
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clicking on the icon in the “Validated?” column, it links to miRTarBase to show the experimental evidence of

the selected miRNA-target pair.

https://doi.org/10.1371/journal.pone.0181231.g001

Fig 2. Search the common targets of a set of input miRNAs. (a) For a set of human miRNAs (miR-29a-3p,

miR-125b-5p and miR-620), search their common target genes which are expressed in the breast tissue,

related to the breast carcinoma disease and supported by at least two existing databases. (b) CSmirTar

Condition-Specific microRNA targets database
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supported by multiple existing miRNA target prediction databases. After submission, users

will see the search results sorted by the number of supported databases or the mean average

normalized score (see Fig 4).

In the browse mode, users have two possible ways to browse CSmiRTar. First, users can

click on a human/mouse miRNA name and get the miRNA’s targets supported by one or mul-

tiple existing miRNA target prediction databases (see Fig 5). Second, users can click on a

human/mouse gene name and get the miRNAs, which regulate the gene, supported by one or

multiple existing miRNA target prediction databases (see Fig 6).

Our database/tissue/disease filters can significantly reduce the number

of predicted miRNA targets but still keep the functional ones

Identifying the functional targets is a crucial step to dissect the function of miRNAs. Using

existing miRNA target prediction databases usually returns thousands of predicted targets per

miRNA. Therefore, it is very hard for researchers to choose the biologically plausible candi-

dates for further experimental validation. Besides, it can be expected that many of the pre-

dicted targets are non-functional since miRNAs only regulate their target genes in specific

tissues, cell types and disease states.

To solve this problem, we implement three different kinds of filters (a database filter, a tis-

sue filter and a disease filter) to efficiently reduce the number of predicted miRNA targets but

still keep the functional ones. To show the effectiveness of our filters, we prepare a benchmark

set by randomly selecting several experimentally validated miRNA-target pairs in specific tis-

sues and cancers from OncomiRDB [31]. As shown in Table 2 for 10 case studies, our filters

can significantly reduce the number of predicted miRNA targets by more than 90% but still

keep the experimentally validated miRNA targets. For example, human miR-16-5p is known

to regulate the gene PPM1D in breast cancer cells [32]. Even by considering the common pre-

dicted targets from four existing miRNA target prediction databases (i.e. setting the database

filter equal to four), PPM1D is still hidden in 883 predicted targets of miR-16-5p, suggesting

that applying the database filter alone is not an efficient way to reduce the non-functional

miRNA targets. If we further apply the tissue filter (selecting breast) and disease filter (selecting

invasive breast cancer), PPM1D is now hidden in only 16 predicted targets. Researchers then

have a high chance to pick out the functional targets (e.g. PPM1D) of miR-16-5p for further

experimental investigation. On the contrary, if using existing miRNA target prediction data-

bases (e.g. miRecords [16], miRWalk [22], miRSystem [19] and starBase [23]), researchers will

have difficulty to pick out PPM1D among hundreds or even thousands of predicted targets of

miR-16-5p (see Table 3).

Our database/disease filters can significantly reduce the number of

predicted miRNAs of a gene but still keep the functional ones

As shown in Table 4 for 10 case studies, our filters can significantly reduce the number of pre-

dicted miRNAs of a gene by 63% to 95% but still keep the experimentally validated miRNAs

returns 117 common target genes sorted by the mean average normalized score (MANS). (c) When clicking

on a gene name in the “Common Target Gene” column, it opens a webpage showing the basic information of

this gene, the tissues in which this gene is expressed and the diseases to which this gene is related. (d) An

orange bar means that the miRNA-target pair has been experimentally validated. When clicking on the orange

bar, it links to miRTarBase to show the experimental evidence of the selected miRNA-target pair. (e) When

clicking on a score in the “MANS” column, it opens a webpage showing how the MANS is calculated.

https://doi.org/10.1371/journal.pone.0181231.g002
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Fig 3. Search the miRNAs of an input gene. (a) For human gene ABL2, search its miRNAs which are

related to Parkinson disease and supported by at least two existing databases. (b) CSmirTar returns 33

miRNAs sorted by the average normalized score (ANS). (c) When clicking on a miRNA name in the “miRNA”

column, it opens a webpage showing the basic information of this miRNA and the diseases to which this

miRNA is related. (d) When clicking on a score in the “ANS” column, it opens a webpage showing how the

ANS is calculated. (e) When clicking on the icon in the “Validated?” column, it links to miRTarBase to show the

experimental evidence of the selected miRNA-target pair.

https://doi.org/10.1371/journal.pone.0181231.g003
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Fig 4. Search the common miRNAs of a set of input genes. (a) For a set of human genes (KCNC3,

RBBP4, ADCY1, ABL2 and TP53), search their common miRNAs which are related to the hematological

disease and supported by at least two existing databases. (b) CSmirTar returns 17 common miRNAs sorted

by the mean average normalized score (MANS). (c) When clicking on a miRNA name in the “Common

miRNA” column, it opens a webpage showing the basic information of this miRNA and the diseases to which

Condition-Specific microRNA targets database
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which really regulate the gene. For example, human gene MECP2 is known to be regulated by

miR-212-3p in gastric cancer cells [33]. Even by considering the common predicted miRNAs

from three existing miRNA target prediction databases (i.e. setting the database filter equal to

three), miR-212-3p is still hidden in 537 predicted miRNAs of the gene MECP2, suggesting

that applying the database filter alone is not an efficient way to reduce the non-functional miR-

NAs of MECP2. If we further apply the disease filter (selecting gastric cancer in the stomach),

miR-212-3p is now hidden in only 22 predicted miRNA of MECP2. Researchers then have a

high chance to pick out the functional miRNAs (e.g. miR-212-3p) of MECP2 for further exper-

imental investigation.

Identifying the shared miRNAs of ceRNAs

An important step to reconstruct the ceRNA network is to identify the shared miRNAs of ceR-

NAs. CSmiRTar allows users to input a set of genes (e.g. ceRNAs) to search the shared miR-

NAs which regulate these genes. As shown in Table 5 for five case studies, CSmiRTar can

identify the experimentally validated shared miRNAs of ceRNAs. For example, it is known

that human ceRNAs (PTEN, VAPA and CNOT6L) are all regulated by miR-17-5p, miR-19a-

3p, miR-20a-5p and miR-106b-5p in human prostate cancer cells [34]. By considering the

common predicted miRNAs from three existing databases (i.e. setting the database filter equal

to three) and applying the disease filter (selecting prostate cancer), CSmiRTar returns 13 pre-

dicted shared miRNAs which contain all the four experimentally validated shared miRNAs of

the input ceRNAs.

Identifying the common target genes of a set of miRNAs

In CSmiRTar, users can input a set of miRNAs to search their common target genes. As shown

in Table 6 for five case studies, CSmiRTar can successfully identify the experimentally vali-

dated common target genes of multiple miRNAs. For example, it is known that human miR-

186-5p, miR-216b-5p, miR-337-3p, and miR-760 cooperatively induce cellular senescence by

targeting the gene CSNK2A1 in human colorectal cancer cells [35]. By considering the pre-

dicted target genes supported by three existing miRNA target prediction databases (i.e. setting

the database filter equal to three) and applying the tissue/disease filter (selecting colon/colorec-

tal carcinoma), CSmiRTar returns 23 predicted common target genes which contain the exper-

imentally validated common target gene CSNK2A1 of the input set of miRNAs.

Conclusions

In this article, we present CSmiRTar which provide computationally predicted targets of 2588

human miRNAs and 1945 mouse miRNAs. CSmiRTar implements (i) a tissue filter for users

to search the miRNA targets expressed in a specific tissue, (ii) a disease filter for users to search

the miRNA targets related to a specific disease, and (iii) a database filter for users to search the

predicted miRNA targets supported by multiple existing databases,. Moreover, CSmiRTar

allows users to search the common targets of a set of input miRNAs under a specific physiolog-

ical condition and the common miRNAs of a set of input genes under a specific physiological

this miRNA is related. (d) An orange bar means that the miRNA-target pair has been experimentally validated.

When clicking on the orange bar, it links to miRTarBase to show the experimental evidence of the selected

miRNA-target pair. (e) When clicking on a score in the “MANS” column, it opens a webpage showing how the

MANS is calculated.

https://doi.org/10.1371/journal.pone.0181231.g004
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Fig 5. Browse CSmiRTar by a miRNA name. (a) The browse page in shown. (b) The 2588 human miRNAs

which can be browsed are shown. (c) By clicking on the number 410, it opens a webpage showing the 410

predicted target genes of hsa-let-7a-2-3p supported by at least 3 of the 4 existing miRNA target prediction

databases. (d) By clicking on the icon in the rightmost column, it directs users to the search page.

https://doi.org/10.1371/journal.pone.0181231.g005
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Fig 6. Browse CSmiRTar by a gene name. (a) The browse page is shown. (b) The 567 human genes whose

first alphabet is “E” are shown. (c) By clicking on the number 130, it opens a webpage showing the 130

miRNAs predicted to regulate E2F1 supported by at least 3 of the 4 existing miRNA target prediction

databases. (d) By clicking on the icon in the rightmost column, it directs users to the search page.

https://doi.org/10.1371/journal.pone.0181231.g006
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condition. We provide many case studies to show the effectiveness of our filters in reducing

the number of predicted miRNA targets but still keep the functional ones. However, users

should note that some functional miRNA targets may not be kept when applying both the

tissue and disease filters if they are not expressed in normal tissues but are abnormally

expressed in disease states. Nevertheless, we believe that CSmiRTar will be a useful database

for biologists to study the molecular mechanisms of post-transcriptional regulation in human

and mouse.

Table 2. Our database/tissue/disease filters can significantly reduce the number of predicted miRNA targets but still keep the functional one.

Human

miRNA

Functional

target

Reference

Pubmed ID

Filter settings:

(database/tissue/

disease)

# of predicted targets

when using only the

database filter

# of predicted targets when

using all three (database/tissue/

disease) filters

Reduced ratio

miR-16-5p PPM1D 20668064 4 / breast tissue /

invasive breast cancer

883 16 98.19% =

(883–16)/883

miR-301a-

3p

PTEN 21393507 4 / breast tissue /

invasive breast cancer

533 14 97.37%

miR-195-

5p

SLC2A3 22265971 3 / bladder tissue /

carcinoma of bladder

3008 125 95.84%

miR-615-

5p

IGF2 22819824 3 / liver tissue / liver

neoplasms

1238 57 95.40%

miR-519d-

3p

CDKN1A 22262409 4 / liver tissue / liver

neoplasms

717 45 93.72%

miR-135a-

5p

APC 18632633 4 / colon / colorectal

neoplasms

374 27 92.78%

miR-153-

3p

MCL1 19676043 3 / brain / glioblastoma 1816 156 91.41%

miR-204-

5p

EZR 21416062 3 / stomach / stomach

carcinoma

1152 104 90.97%

miR-103a-

3p

KLF4 22593189 3 / colon / colorectal

carcinoma

2095 236 88.74%

miR-497-

5p

RAF1 21350001 4 / breast tissue /

breast neoplasms

887 106 88.05%

https://doi.org/10.1371/journal.pone.0181231.t002

Table 3. The number of predicted miRNA targets, which include the functional one being examined, in different databases.

Human miRNA Functional target miRecords miRWalk miRSystem starBase CSmiRTar

miR-16-5p PPM1D 151 (6)a 916 (8) 151 (6) 4239 (1) 16

miR-301a-3p PTEN 352 (5) 715 (8) 561 (4) 144 (4) 14

miR-195-5p SLC2A3 479 (5) 942 (8) 404 (5) 338 (4) 125

miR-615-5p IGF2 66 (4) 196 (8) 3036 (1) N/A 57

miR-519d-3p CDKN1A 217 (5) 806 (8) 19 (6) 4 (5) 45

miR-135a-5p APC 687 (4) 1336 (7) 59 (6) 2262 (1) 27

miR-153-3p MCL1 42 (6) 111 (9) 177 (5) 246 (3) 156

miR-204-5p EZR 224 (5) 9 (11) 14 (7) 172 (3) 104

miR-103a-3p KLF4 3799 (3) 1751 (7) 1983 (2) 299 (3) 236

miR-497-5p RAF1 11043 (2) 1303 (8) 224 (5) 342 (4) 106

miRecords, miRWalk, miRSystem and starBase were all run with the setting of their algorithm filter as stringent as possible to minimize the number of

predicted mRNA targets while still include the functional target being examined. CSmiRTar was run with the settings shown in Table 2.

- a151 (6) means that in miRecords, miR-16-5p has 151 target genes (including PPM1D) predicted by at least 6 different algorithms. Note that in miRecords,

6 is the most stringent setting of the algorithm filter for still reporting PPM1D as a predicted target gene of miR-16-5p.

https://doi.org/10.1371/journal.pone.0181231.t003
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Table 4. The database/disease filters can significantly reduce the number of predicted miRNAs but still keep the functional miRNA which regu-

lates the target gene.

Human

target

gene

Functional miRNA

which regulates the

target gene

Reference

Pubmed ID

Filter setting:

(database/disease)

# of predicted miRNAs

when using only the

database filter

# of predicted miRNAs

when using both

(database/disease) filters

Reduced

ratio

MECP2 miR-212-3p 20020497 3 / gastric cancer in

stomach

537 22 95.90% =

(537–22)/537

MCL1 miR-153-3p 19676043 3 / glioblastoma

multiforme, somatic in

brain

253 21 91.70%

CREB1 miR-181b-5p 22539488 4 / gastric cancer in

stomach

99 9 90.91%

ALCAM miR-215-5p 21119604 4 / gastric cancer in

stomach

47 5 89.36%

FOXO1 miR-370-3p 23029264 4 / prostate cancer in

prostate gland

49 7 85.71%

APC miR-135a-5p 18632633 4 / colorectal cancer

in colorectum

22 5 77.27%

SPRY2 miR-27a-3p 20638779 4 / pancreatic cancer

in pancreas

26 6 76.92%

KLF4 miR-103a-3p 22593189 3 / colorectal cancer

in colorectum

128 35 72.66%

ID1 miR-381-3p 22592211 3 / lung cancer in lung

cancer cell line

56 16 71.43%

PBX3 let-7c-5p 21984339 4 / colorectal cancer

in colorectum

60 22 63.33%

https://doi.org/10.1371/journal.pone.0181231.t004

Table 5. The database/disease filters can significantly reduce the number of predicted shared miRNAs but still keep the functional shared miRNAs

of ceRNAs.

Human ceRNAs Functional shared miRNAs Reference

Pubmed ID

Filter setting: (database/

disease)

# of predicted shared miRNAs when

using the filters

PTEN, VAPA,

CNOT6L

miR-17-5p, miR-19a-3p, miR-20a-5p,

miR-106b-5p

22000013 3 / prostate cancer 13

CD44, CDC42 miR-216a-5p, miR-330-3p 21149267 1 / breast cancer 192

PTENP1, PTEN miR-19b-3p, miR-20a-5p 20577206 1 / colorectal cancer 114

CDK6, ABL1, SRC miR-203-3p 23462723 2 / breast cancer 29

FOXF2, RECK,

MTSS1

miR-182-5p 23383207 3 / prostate cancer 2

https://doi.org/10.1371/journal.pone.0181231.t005

Table 6. The database/tissue/disease filters can significantly reduce the number of predicted common targets but still keep the functional com-

mon target of a set of miRNAs.

A set of human miRNAs Common target

gene

Reference

Pubmed ID

Filter settings: (database/

tissue/disease)

# of predicted targets when

using the filters

miR-17-5p, miR-19a-3p, miR-20a-5p, miR-20b-5p,

miR-26b-5p, miR-106a-5p, miR-106b-5p

PTEN 22000013 3 / prostate tissue / prostate

carcinoma

20

miR-186-5p, miR-216b-5p, miR-337-3p, miR-760 CSNAK2A1 23137536 3 / colon / colorectal

carcinoma

23

miR-330-3p, miR-608, miR-216a-5p CD44 21149267 2 / breast tissue / breast

neoplasms

78

miR-130a-3p, miR-301a-3p, miR-454-3p SMAD4 23393589 3 / colon / colorectal

neoplasms

116

miR-19b-3p, miR-20a-5p PTEN 20577206 3 / colon tissue / colon

carcinoma

91

https://doi.org/10.1371/journal.pone.0181231.t006
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