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Abstract

Both adult and larval zebrafish have been demonstrated to show behavioural responses to

noxious stimulation but also to potentially stress- and fear or anxiety- eliciting situations. The

pain or nociceptive response can be altered and modulated by these situations in adult fish

through a mechanism called stress-induced analgesia. However, this phenomenon has not

been described in larval fish yet. Therefore, this study explores the behavioural changes in

larval zebrafish after noxious stimulation and exposure to challenges that can trigger a

stress, fear or anxiety reaction. Five-day post fertilization zebrafish were exposed to either a

stressor (air emersion), a predatory fear cue (alarm substance) or an anxiogenic (caffeine)

alone or prior to immersion in acetic acid 0.1%. Pre- and post-stimulation behaviour (swim-

ming velocity and time spent active) was recorded using a novel tracking software in 25 fish

at once. Results show that larvae reduced both velocity and activity after exposure to the air

emersion and alarm substance challenges and that these changes were attenuated using

etomidate and diazepam, respectively. Exposure to acetic acid decreased velocity and

activity as well, whereas air emersion and alarm substance inhibited these responses,

showing no differences between pre- and post-stimulation. Therefore, we hypothesize that

an antinociceptive mechanism, activated by stress and/or fear, occur in 5dpf zebrafish,

which could have prevented the larvae to display the characteristic responses to pain.

Introduction

Nociception is the sensory mechanism used to perceive actual or potential tissue damage. The

neurons that mediate nociceptive information are called nociceptors. Fish can perceive and

respond to a wide range of stimuli, including mechanical [1], thermal [2], electrical [3] or

chemical [4]. Recent investigations have reported the presence of these neurons in fish [1,5],

which, along with the findings of nociceptive pathways and brain activity [6,7] and the regula-

tion of novel candidate genes after a nociceptive event [8], suggest that fish are capable of noci-

ception. Moreover, changes in the behaviour have been recorded after exposure to noxious

stimulation [9–11] and these have been ameliorated by administering analgesia [5].
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Pain can be considered as an evolutionarily developed defence response to an aversive or

noxious stimulus [12]. Administration of potentially painful stimuli results is a wide range of

physiological (changes in the heart rate, body temperature or respiratory rate) and behavioural

responses (abnormal behaviours, reduction of activity, appetite) in mammals, birds, amphibi-

ans or fish [13–15]. The behavioural responses to a noxious stimulus can be modulated by an

imposed restraint such as environmental stressors or concurrent experiences such as exposure

to a predator [16]. This phenomenon is called stress-induced analgesia and refers to a reduced

pain response after stress exposure, which is mediated by descending pain-inhibitory circuits

and may be an indicator of adequate centrally mediated pain control [17]. In mammals, the

endogenous antinociceptive system is a component of defensive behavior and can be mobi-

lized in stress situations or during encounters where there is a risk of injury to the animal [12].

Indeed, acute exposure to stressors induce temporary analgesia in rats [18]. The existence of

an endogenous antinociceptive system has been previously demonstrated in fish [19,20] and a

study has provided evidence of the descending modulation of nociception in zebrafish [21].

Stress can be a powerful inhibitor of the nociceptive response in fish, as it affects the defensive

strategies and the anti-predatory behaviour [22]. Ashley et al. [19] proved that social subordi-

nation elicited a higher antinociceptive response in rainbow trout and evidence was recently

provided for the existence of an endogenous modulation of nociception in piaçu [23].

Antinociception associated with fearful experiences involving a confrontation with a preda-

tor or a predator being in close proximity is well studied in mammals [22], but very little is

known about how fear affects antinociception responses in fish. The alarm substance, which is

released by the injured skin of fish and that is known to elicit changes in the physiology and

behaviour, warns conspecifics about predator activity [24]. Fear-like responses have been

recorded after exposure to the alarm substance stimuli, [25,26] and in a recent study, antinoci-

ceptive-like behaviour was reduced in zebrafish after an alarm-induced reaction [21]. Simi-

larly, anxiety can also modulate the nociceptive response in humans [27], other mammals [28]

and fish [21]. Caffeine has been reported to increase anxiety-like behaviours in both adult [29]

and larval zebrafish [30,31]. It is considered a stimulant at low doses but higher doses seem to

increase general activity [32]. Both fear and anxiety are very closely related and sometimes

undistinguishable. While fear is defined as a motivational state elicited by stimuli that give rise

to a defensive behaviour or escape, anxiety is considered as a response to a threat or internal

conflict [33]. Fear is generally thought to inhibit the pain response, whereas anxiety seems to

enhance pain in humans [27,34]. In fish, there is little evidence of how these two behaviours

regulate the nociceptive threshold [20] and only one study has explored the modulation of

nociception by environmental stressors in zebrafish [21]. Previous research in our laboratory

has reported altered activity after noxious chemical and thermal stimulation in 5dpf larval zeb-

rafish that are reduced by lidocaine which has analgesic properties in fish [35,36] and other

authors found similar evidence of behavioral changes in larvae undergoing painful challenges

[11,37]. However, no studies have demonstrated whether these mechanisms of modulation of

the nociceptive responses present in adult fish exist in the larval stages.

Under European legislation for experimental animals, fish are only protected when able to

feed freely and in zebrafish this is six days post fertilization thus younger zebrafish are not cov-

ered by the legislation and can be considered as replacement for the use of adult fish. The

objective of this study was to evaluate the behavioural responses of non-protected 5dpf zebra-

fish to stressful, fearful and anxiety-eliciting situations during noxious stimulation and thus

validate their use as a replacement for adult forms. To determine the impact of stress larvae

were exposed to air emersion, a standard stressor, and then exposed to a noxious chemical.

For fear, larvae were exposed to conspecific alarm substance prior to the noxious event and for

anxiety, caffeine was administered via immersion prior to noxious exposure. To confirm that
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these responses were mediated by stress, fear and anxiety, drugs that block the physiological

stress response (specifically cortisol production, etomidate) and reduce anxiety and fear (diaz-

epam) were employed. We showed that stress and fear or anxiety resulted in stress induced

analgesia and reduced the responses to noxious treatment. These effects seem to be modulated

by etomidate via a block on the stress response or via the anti-anxiety effects of diazepam.

Materials and methods

Experimental animals

All experiments were conducted according to the guidelines of research ethics as approved by

the Ethics Committee at the University of Liverpool (40/3534). Five days post-fertilisation

(dpf) zebrafish larvae of AB wild type were used for the purposes of this experiment. Eggs were

provided by the in-house breeding programme. Adult zebrafish were held in breeding pairs

and eggs collected the day after. Eggs were then kept in 3L plastic tanks (Pentair Aquatic Habi-

tat, Apopka, USA) in a closed aerated recirculation system supplied with filtered, aerated fresh-

water at a temperature of 28.5 ±0.5˚C and on a 12 h: 12 h light:dark cycle until 5 dpf. These

were then selected for experiments. Water quality parameters were kept ideal for this species

(pH 7.2; Nitrite = 0 ppm; Nitrate <20 ppm; Ammonia = 0 ppm). Any animals not used in the

present study were either held as stock for other experiments or were humanely killed before

reaching 6dpf by being placed in an Eppendorf on dry ice for use in another study investigat-

ing genomics.

Apparatus

Larvae movements were analysed by placing them individually to eliminate group interactions

in a custom-built plastic plate of 25 wells (length: 16.5mm; width: 16.5mm; depth: 8mm) with

a 53μm mesh bottom (Zebrafish Management Ltd., UK), which allows water to be flushed in

and out. The plate was positioned above an infrared light (illumination area 450 x 210 mm;

850 nm, Loligo Systems, Denmark) to facilitate the tracking of the fish. The experimental tank

was supplied from a glass sump tank (45 x 35 x 40cm) with filtered and maintained at a con-

stant temperature of 28.5±0.5˚C and with aeration provided via an air stone (12cm) and air

line from a compressed air supply.

Video of spontaneous free-swimming was recorded at 25 fp/s. In summary, behaviour of

each larvae tracked using a digital monochrome infrared-sensitive camera (IDS UI-1240LE-

NIR-GL; STEMMER IMAGING, Surrey, UK) with an attached lens (SPACE-COM JHF25M-

5MP; SPACE inc., Tokyo, Japan) mounted above the plate. Videos were acquired without

compression, via IDS software (uEye Cockpit; IDS Imaging Development Systems GmbH) via

connection to a laptop computer (HP, DSC HM87, Palo Alto, CA, USA). For video analysis, a

novel tracking software based on an object automated detection, tracking and monitoring

algorithm was developed for this project. Data files generated by the tracking software were

then processed with a bespoke algorithm in MATLAB, which can detect various behavioural

larvae patterns larvae based upon standard motion features including average velocity (mm/s)

and time spent active (%). Previous studies have demonstrated that these two parameters are

affected by noxious, potentially painful stimuli in larval zebrafish [35,36].

Experimental procedure

Testing occurred between 09:00 and 16:00 using a randomized trial design to eliminate sys-

tematic effects due to time of day. In all experiments, larvae were caught at random and gently

pipetted from the rearing tank and placed in the individual wells (25 well plate) to acquire
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video recordings. Animals were then allowed 30 minutes to acclimate to the experimental

arena. All groups of larvae were recorded for 10 minutes to assess the pre-stimulation behav-

iour (video recording 1) and recorded again at the end of the experimental procedures for

another 10 minutes to assess the post-stimulation behaviour (video recording 2). For each of

the treatments described below (see Table 1), 10 groups of 25 larvae per group were used

(n = 10 per treatment).

To test that the acetic acid is actually evoking a nociceptive-like response, a group of fish

(group AC) was exposed to acetic acid 0.1% by adding the acid (APC Pure, Manchester, UK)

to the tank water using a syringe right after video recording 1. This concentration was shown

to be effective in previous studies [35,36]. Pilot experiments using food dye without larval pres-

ence showed this approached allowed complete mixing in the tank. Another group of fish

(group AC+LI) followed the same procedure but dissolving a drug with analgesic properties,

lidocaine (lidocaine hydrochloride monohydrate, Sigma-Aldrich Co., UK), in the tank water

to a final concentration of 5 mg l-1 right before the fish were placed in the apparatus. All exper-

imental procedures are shown in Fig 1.

To determine to what extent stress modulates the response to pain in larvae, a series of

experiments were carried out. A first group of fish was exposed to a standard stressor, air

emersion, for 1 minute by adjusting the water level in the experimental tank (group AE) right

after video recording 1. The effect of an anaesthetic agent known to inhibit production of cor-

tisol in fish and suppress physiological stress, etomidate [38], was tested in a second group of

larvae (group AE+ET) by dissolving 0.5 mg l-1 of etomidate (Ark Pharm Inc., Libertyville, IL,

USA) in the tank water immediately before the larvae were placed in the apparatus and then

exposed to air emersion after video recording 1. The sole effect of etomidate 0.5 mg l-1 was

tested in a third group of fish (group ET), following the same procedure above but without the

air emersion challenge. Finally, a group of larvae (group AE+AC) were subjected to the air

emersion challenge and then exposed to acetic acid 0.1% right before video recording 2. To

determine the effect of any potential handling stress, a control group, which underwent the

same experimental procedure as the AE group but left undisturbed, was included (group CO/

AE).

Table 1. List of abbreviations and concentrations of the different substances used to assess the effect of air immersion, alarm pheromone, caf-

feine, etomidate, diazepam dissolved in DMSO and DMSO alone on the nociceptive-like response of 5 dpf (days post-fertilisation) zebrafish.

Group name Substances Group name Substances

CO/AE Control air emersion CO/AP Control alarm pheromone

AC Acetic acid AP Alarm pheromone

AC+LI Acetic acid AP+DI Alarm pheromone

Lidocaine Diazepam 5 mg l-1

ET Etomidate AP+AC Alarm pheromone

Acetic acid

AE Air emersion CO/CF Control caffeine

AE+ET Air emersion CF Caffeine

Etomidate

AE+AC Air emersion CF+DI Caffeine

Acetic acid Diazepam

DI Diazepam CF+AC Caffeine

Acetic acid

DMSO DMSO

https://doi.org/10.1371/journal.pone.0181010.t001
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To determine the impact of the alarm pheromone or alarm substance, a predator cue, on

the pain response of larvae, a first group of fish (group AP) was exposed for 10 minutes to a

concentration of 3.5 ml l-1 of alarm substance produced as proposed by Maximino [21] and

then fish were video recorded (video recording 2). The effect of exposure for 10 minutes to an

anxiolytic substance (diazepam in 0.005% dimethyl sulfoxide (DMSO)) on the alarm phero-

mone reaction was tested in a third group of larvae (AP+DI) by dissolving 5mg l-1 of the

substance in the tank immediately before video recording 1 and then exposed to the alarm

pheromone and recorded again for 10 minutes (video recording 2). The sole effect of diazepam

5 mg l-1 was tested in a group of animals (DI), following the same procedure above but without

the alarm pheromone. Another group of larvae (AP+AC) was exposed for 10 minutes to a con-

centration of 3.5 ml l-1 of alarm pheromone and the appropriate amount of acetic acid 0.1%

was subsequently added to the tank water. Finally, to determine the effect of any potential han-

dling stress, a control group, which underwent the same experimental procedure as the group

AP but left undisturbed, was included (CO/AP). An additional control consisting of 0.005%

(v/v) DMSO in tank water was also used to rule out any undesirable effects of DMSO, follow-

ing the same general procedure but adding the appropriate amount of DMSO to the tank

water right before video recording 2.

The stimulatory effect of caffeine on the pain response of larval zebrafish was determined

with a set of experiments: the first group of fish was exposed to 100 mg l-1 of caffeine (caffeine

powder C0750, Sigma Aldrich Co, UK) for 10 minutes and then immediately recorded (video

recording 2). The effect of diazepam (in 0.005% DMSO) on the caffeine reaction was tested in

a third group of larvae (CF+DI) by dissolving 5 mg l-1 of this substance in the tank water 10

minutes prior to video recording 1 and then exposed to caffeine for 10 minutes and recorded

again for 10 minutes (video recording 2). The sole effect of diazepam 5 mg l-1 was determined

in a group of animals (DI), following the same procedure as above but without the addition of

Fig 1. Diagram of the experimental procedures and group names (see Table 1). Assessment of the

impact of air emersion (a), alarm pheromone (substance) (b) and caffeine (c) on the nociceptive-like

responses of larval zebrafish. Video recording 1 and 2 indicate the pre- and post-stimulation video recordings,

respectively. The names indicate the moment when the challenges were applied or when the substances

were introduced in the tank water so only those groups in brackets received that particular treatment.

https://doi.org/10.1371/journal.pone.0181010.g001
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caffeine. Anxiolytic effects of diazepam are known to occur within 10 min of exposure in zeb-

rafish [39,40].

Another group of fish (CF+AC) was exposed to 100 mg l-1 of caffeine for 10 minutes

[30,31] and then acetic acid was added to the tank water for a final concentration of 0.1%. Fish

were immediately recorded again for 10 minutes to assess the post-stimulation behaviour

(video recording 2). Finally, a control group (CO/CF), which underwent the same experimen-

tal procedure as the CF group but left undisturbed, was included. The drugs and concentra-

tions used in these experiments are listed in Table 2.

Statistical analysis

Statistical analyses were performed using SPSS version 22.0.0.1 software. Behavioural data,

namely average velocity (mm/s), average acceleration (mm/s2), time active (%) and total dis-

tance moved (mm) did not fulfil the requirements of a normally distributed population (Kol-

mogorov-Smirnov; P<0.001) and of the homogeneity of variance (Levene’s test, P<0.001),

however initial data analysis showed that only the velocity (mm/s) and the time spent active

(%) were affected by noxious treatment. Therefore, for the purposes of this study, only the

average velocity (mm/s) and the time spent active (%) were used as indicators of the larval

behaviour. Observations where larvae showed no movements at all both before and after stim-

ulation and those in which the tracking process could not successfully track both before and

after exposure were excluded from the data set (13 observations per treatment on average,

approximately 5.3%). Any significant variation in the behavioural response (velocity, mm/s

and time active, %) of the fish during the day that could mask the impact of the different treat-

ments used was determined. Observations in the control treatment in the three experiments

were sorted into six groups depending on the time of the day when they were taken (09h00,

10h00, 11h00, 12h00, 13h00 and 14h00) and a Kruskal-Wallis test (P<0.05) was used to deter-

mine potential differences between groups. No differences were found between the six hours

of the day in the velocity or the time active in the control groups on the stress (χ = 4.829, d.f. =

5, P = 0.56 and χ = 5.002, d.f. = 5, P = 0.74, respectively), alarm pheromone (χ = 8.215, d.f. = 5,

P = 0.33 and χ = 2.155, d.f. = 5, P = 0.81, respectively) and caffeine challenges (χ = 11.017,

d.f. = 5, P = 0.14 and χ = 12.735, d.f. = 5, P = 0.19, respectively). A Wilcoxon signed-rank test

(P<0.05) was performed to assess any potential difference between the pre- (baseline) and

post-stimulation average velocity and amount of time spent active on the same larvae in every

Experiment. The change in average velocity and activity from pre-stimulation to post-stimula-

tion states in each challenge was determined using a Kruskal-Wallis test (P<0.05). When

Kruskal-Wallis test revealed any significant difference, post hoc Mann-Whitney U compari-

sons were made to compare each treatment group to both the control group using a Bonfer-

roni correction, resulting in a significance level set at P<0.0031 (0.05/16).

Table 2. List of drugs used in the experiment, concentrations and potential effects on zebrafish lar-

vae. Concentrations were taken from published sources [21,29,31,40–42].

Substance Concentration Potential effect

Acetic acid 0.1% Noxious

Lidocaine 5 mg l-1 Analgesic

Etomidate 0.5 mg l-1 Cortisol release blocker

Diazepam 5 mg l-1 Anxiolytic

DMSO 0.005% -

Alarm pheromone 3.5 mg l-1 Predatory fear cue

Caffeine 100 mg l-1 Anxiogenic

https://doi.org/10.1371/journal.pone.0181010.t002
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Results

Impact of treatment on normal behavior

When comparing pre-treatment values with post-treatment within each group, exposure to

acetic acid led to an increase in the swimming velocity (mm s-1) and a reduction in the general

activity (%) (Figs 2 and 3). However, administration of lidocaine 5 mg l-1 ameliorated this

effect, with fish in this group showing no differences in the parameters above mentioned. The

air emersion challenge (AE) evoked a decrease in the swimming speed and the time spent

active compared with the baseline values (Table 3). However, prior exposure to etomidate 0.5

mg l-1 did not alter this response to air emersion. Fish exposed to etomidate alone showed no

significant change in any of the two indicators measured. Air emersion followed by exposure

to acetic acid 0.1% did not influence swimming velocity or time spent active from pre-treat-

ment values (Figs 2 and 3). No change in velocity nor time spent active was observed in the

control group (CO/AE).

Exposure to alarm pheromone for 10 minutes decreased both the time that the fish spent

swimming and the swimming velocity, however animals treated with diazepam 5 mg l-1 prior

to exposure to the alarm substance did not exhibit a change in behavior after alarm substance

(Figs 2 and 3). Administration of diazepam and DMSO alone did not influence the behaviour

of the larvae (Table 3).

Fig 2. Velocity shown by 5dpf zebrafish during a 10-minute period before (white boxes) and after

(grey boxes) exposure to different treatments. Each box shows the lower and upper quartile values and

the central horizontal black line indicates the median value. The error bars indicate the variation for the rest of

the data and outliers are indicated as white dots. Significant differences between pre- and post-stimulation

behaviour are indicated with an asterisk (Wilcoxon signed-rank test, P<0.05; n = 10 per group).

https://doi.org/10.1371/journal.pone.0181010.g002
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Fish did not display any change in the swimming speed or in the proportion of time active

when exposed to caffeine. Similarly, the group of animals exposed to the diazepam 10 minutes

before the challenge with caffeine showed no differences in the parameters measured. No

changes in the velocity or time spent active were observed in larvae exposed to the DMSO or

diazepam (Table 3). Immersion in the acetic acid after exposure to caffeine (CF+AC) did not

evoke any behavioural change relative to the baseline (pre-stimulation) state.

Comparison between treatments

There was a significant difference between all groups in the percentage change in swimming

velocity (χ = 37.41, d.f. = 16, P = 0.002) and in the time spent active (χ = 43.62, d.f. = 16,

P<0.001). Fish exposed to acetic acid 0.1% showed a significant increase in the swimming

speed (U = 22, P<0.001) and a reduction in the time active (U = 38, P<0.001) relative to the

control group (CO/AE). However, no changes were observed with exposure to lidocaine 5 mg

l-1 prior to administration of acetic acid (U = 42, P = 0.58 and U = 44, P = 0.68, respectively).

The air emersion challenge significantly decreased both the swimming speed and the time

spent active compared to control larvae (U = 10, P = 0.002 and U = 10, P = 0.002, respectively),

whereas fish exposed to 0.5 mg l-1 of etomidate prior to the challenge (AE+ET) showed no var-

iation in any of the parameters (U = 39, P = 0.44 and U = 44, P = 0.68, respectively). The group

administered with etomidate only (ET) showed no significant change in neither velocity nor

the time active (U = 37, P = 0.35 and U = 41, P = 0.85, respectively) relative to the control

Fig 3. Time spent active shown by 5dpf zebrafish during a 10-minute period before (white boxes) and

after (grey boxes) exposure to different treatments. Each box shows the lower and upper quartile values

and the central horizontal black line indicates the median value. The error bars indicate the variation for the

rest of the data and outliers are indicated as white dots. Significant differences between pre- and post-

stimulation behaviour are indicated with an asterisk (Wilcoxon signed-rank test, P<0.05; n = 10 per group).

https://doi.org/10.1371/journal.pone.0181010.g003
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group (CO/ET; Figs 4 and 5). Air emersion prior to exposure to the acetic acid prevented the

decrease in swimming speed and time active observed in fish undergoing the air immersion

challenge only (U = 34, P = 0.25 and U = 47, P = 0.85, respectively).

With regard to the alarm pheromone challenge, larvae exposed to acetic acid swam faster

but for less time (U = 25, P<0.001 and U = 30, P<0.001, respectively) than those left undis-

turbed (CO/AP), whereas treatment with lidocaine (U = 38, P = 0.39 and U = 47, P = 0.85) pre-

vented any changes relative to controls after exposure to the acid (Figs 4 and 5). The alarm

pheromone evoked a significant decrease in velocity and time active (U = 26, P = 0.009 and

U = 1, P<0.001, respectively) but fish exposed to diazepam 5mg l-1 10 minutes prior to the

alarm substance had a similar median velocity and time spent active (U = 49, P = 0.97 and

U = 47, P = 0.85) compared with controls (CO/AP). Both the group treated with the organic

solvent DMSO (U = 40, P = 0.48 and U = 44, P = 0.68) and the diazepam+DMSO (U = 44,

P = 0.68 and U = 50, P = 0.99) did not show a significant change in the two parameters mea-

sured. The differences in behaviour observed after exposure to the alarm substance were not

evident after immersion in acetic acid 0.1%, with similar median velocity and time spent active

(U = 39, P = 0.44 and U = 46, P = 0.80, respectively).

Statistical analysis revealed that exposure to acetic acid exerted an increase in the swim-

ming velocity and a reduction in the time spent active (U = 18, P00.001 and U = 35,

P = 0.001, respectively) relative to controls (CO/CF). These changes in the control group

were not observed when compared with larvae administered with 5mg l-1 of lidocaine after

immersion in the acid (U = 43, P = 0.63 and U = 49, P = 0.97). When larvae were exposed to

100 mg l-1 of caffeine, no significant reduction in the time median velocity or time spent

active were observed (U = 42, P = 0.58 and U = 45, P = 0.74, respectively). Immersion in diaz-

epam 5 mg l-1 before exposure to caffeine had no significant effect compared with the control

group (U = 49, P = 0.96 and U = 49, P = 0.97, respectively). Fish treated with both DMSO

(U = 41, P = 0.53 and U = 49, P = 0.97) and diazepam+DMSO only (U = 49, P = 0.97 and

Table 3. Wilcoxon signed-rank test analysis of the velocity and time spent active in for each group

before and after treatment. Significant results in bold.

Velocity Time spent active

Group Z P Z P

AC -2.50 <0.001 -1.48 0.0014

AC+LI -0.66 0.51 -0.15 0.88

CO/AE -0.764 0.44 -0.968 0.33

AE -2.09 0.037 -2.80 0.005

AE+ET -0051 0.96 -0.15 0.88

ET -0.76 0.45 -0.56 0.58

AE+AC -1.58 0.11 -1.17 0.24

CO/AP -0.36 0.72 -0.46 0.65

AP -2.29 0.022 -2.80 0.005

AP+DI -0.26 0.80 -0.15 0.88

DI -0.051 0.96 -0.050 0.95

DMSO -0.36 0.72 -0.26 0.80

AP+AC -0.051 0.90 -0.044 0.96

CO/CF -0.051 0.97 -0.153 0.88

CF -0.97 0.33 -0.15 0.88

CF+DI -0.153 0.87 -0.26 0.80

CF+AC -0.76 0.44 -0.26 0.80

https://doi.org/10.1371/journal.pone.0181010.t003
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U = 49, P = 0.95) displayed similar velocities and times active. The behavioural change

observed in the caffeine-exposed fish was not apparent in those exposed to acetic acid 0.1%

too, with similar median velocity (U = 43, P = 0.63), while there were no differences in the

time active (U = 48, P = 0.91).

Discussion

The present study has shown for the first time that larval zebrafish are significantly affected by

stress, fear, and anxiety treatments that modulate the response to a noxious stimulus. Exposure

to acetic acid for 10 minutes elicited significant behavioural changes in 5dpf zebrafish, with

fish showing higher median swimming velocity (mm/s) and lower median time spent active

(%) compared with the control group. Fish exposed to air emersion and diazepam swam

slower and for less time, whereas those administered with caffeine only had a lower median

velocity. Animals exposed to air emersion, diazepam and caffeine prior to the acetic acid chal-

lenge did not display these changes.

Larvae exposed to a solution of 0.1% of acetic acid showed a significant behavioural

response from the baseline values (pre-stimulation), characterised by higher swimming veloc-

ity and a reduction in the time spent active. Although a reduction in the activity has been pre-

viously observed in larval zebrafish in our laboratory [35] and in fish exposed to potentially

noxious stimulation [5,43,44], the increased swimming velocity has not been described in fish

Fig 4. Change in velocity (%) shown by 5dpf zebrafish exposed to different treatments. Each

box shows the lower and upper quartile values and the central horizontal black line indicates the median

value. The error bars indicate the variation for the rest of the data and outliers are indicated as white dots.

Significant differences between groups and the control groups are indicated with an asterisk (control in the air

emersion challenge: CO/AE), a hashtag (control in the alarm pheromone challenge: CO/AP) or a cross

(control in the caffeine challenge: CO/CF) (Wilcoxon signed-rank test, P<0.0031).

https://doi.org/10.1371/journal.pone.0181010.g004

Stress, fear, anxiety and nociception in larval zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0181010 August 2, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0181010.g004
https://doi.org/10.1371/journal.pone.0181010


yet. Administration of lidocaine 5 mg/l prevented the behavioural changes observed. This local

anaesthetic was first tested in fish in rainbow trout [45] and previous research confirmed its

efficacy as anaesthetic in adult zebrafish [46]. Moreover, its use as analgesic in larval zebrafish

exposed to acetic acid has been tested [36]. These results may imply that larvae experiences the

stimulus as noxious.

Short-term air exposure has been demonstrated to increase cortisol levels in fish [47,48]

and specifically in adult zebrafish [49] but no studies have identified the effects on larval zebra-

fish. In our study, larvae exposed to the air emersion challenge displayed a significant response,

with reduced swimming velocity and general activity. Etomidate is an anaesthetic agent, ana-

log of the metomidate, that affects adrenal steroidogenesis inhibiting production of cortisol

and that has been used in fish [41], Administration of etomidate prevented the reduction in

both velocity and locomotor activity. The group exposed to etomidate did not show any appar-

ent behavioural response, which is in agreement with other studies [50]. Therefore, we hypoth-

esize that etomidate was effective counteracting the effects of the air emersion and therefore,

reducing the stress response of the larvae after this challenge. Only one study has evaluated

the efficacy of etomidate or metomidate as an anaesthetic in larval fish [51]. These authors

reported that metomidate was ineffective for red drum (Sciaenops ocellatus) and goldfish (Car-
assius auratus) larvae, although this conclusion is based on survival and recovery times and

not on physiological indicators such as cortisol.

Fig 5. Change in time spent active (%) shown by 5dpf zebrafish exposed to different treatments. Each

box shows the lower and upper quartile values and the central horizontal black line indicates the median

value. The error bars indicate the variation for the rest of the data and outliers are indicated as white dots.

Significant differences between groups and the control groups are indicated with an asterisk (control in the air

emersion challenge: CO/AE), a hashtag (control in the alarm pheromone challenge: CO/AP) or a cross

(control in the caffeine challenge: CO/CF) (Wilcoxon signed-rank test, P<0.0031).

https://doi.org/10.1371/journal.pone.0181010.g005
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The alarm reaction consists of a set of behaviors that may protect fish from nearby active

predators. This substance is synthesized in the epidermal cells of the fish and then released if

there is cell membrane damage, which induces a strong fear response in nearby individuals

[29,52]. Whereas new models for the study of fear and anxiety have been developed in larval

zebrafish [30,31], only one study has determined the impact of the alarm substance in young

stages of this species [53]. In this study, embryos exposed for 30 minutes displayed higher over-

all developmental rates compared with non-exposed fish. However, the effects on the behav-

iour of early developmental stages is unknown yet. This behavioural response can result in

either increased [19] or reduced activity [20] in adult fish. In our study, larvae exposed to 3.5

ml/l of alarm pheromone, a concentration that has been successfully tested in adult zebrafish

[21], presented similar responses to those exposed to the air emersion challenge, i.e. a decrease

in the velocity and time spent active. Although this reduction in the general activity could indi-

cate that larvae showed some kind of predator avoidance strategy, such as freezing, with our

data it is not possible to discern whether fish actually detected the alarm pheromone. Further

studies should attempt to detect characteristic abnormal behaviours in larval zebrafish such as

erratic movements, wall-hugging or freezing [54]. Diazepam is an agent belonging to the

group of benzodiazepines, which are widely prescribed for the treatment of anxiety and other

disorders. In fish, it has been proved to reduce the responses elicited by fear or anxiety-like sit-

uations [39,40]. In our study, the group of larvae exposed to diazepam only did not show the

behavioural changes observed in the group exposed to the alarm pheromone. Thus, we can

conclude that this substance did not influence the behavioural responses of the larvae, which is

consistent with previous research [31]. The results of the present study could imply that these

fish actually underwent some kind of fear and/or anxiety when exposed to alarm substance

and that this could be ameliorated using an anxiolytic substance, diazepam.

Caffeine acts as a stimulant at low doses and there is ample evidence that it elicits anxiety-

like behaviours in zebrafish [29–31] at similar concentrations as the used in our experiment.

Thus, it may seem prudent to expect an increase in both the swimming speed and time spent

active in fish exposed to this substance. However, fish exposed to caffeine did not show any

change in any of these indicators which is in agreement with previous studies on the beha-

vioural responses of zebrafish to caffeine [31,55,56] but now with Richendrfer et al. [30], who

found a reduction in the swimming speed with larval zebrafish. Thus, with our data it is not

possible to conclude that the caffeine evoked an anxiety-like behavioural response. It may be

that the concentration used in this experiment was too low to exert a significant change or

that, caffeine exerted a different behaviour that was not quantified here. Therefore, further

research is needed to fully understand the responses of larval fish to this substance.

Our results show that the behavioural responses observed in the group exposed to a poten-

tially noxious stimulus, i.e. immersion in acetic acid 0.1%, is inhibited by previous exposure

to either air emersion and alarm substance. These results may suggest an antinociceptive effect

of stress, and fear or a mechanism that inhibit nociception in situations of stress and fear,

which results in stress-induced analgesia. This phenomenon has been described in mammals

[16,57,58] and fish [19] but never in larval fish. Stress induced analgesia refers to an animal not

showing any signs of pain when exposed to a potentially painful stimulus after undergoing a

stressful situation. This response is also present when fish are exposed to a fear- or anxiety-

eliciting challenge. For some authors, fear and anxiety are undistinguishable, whereas others

believe that they are separate mechanisms. Anxiety is a generalized response to an unknown

threat or internal conflict, whereas fear is focused on known external danger [33]. Both phe-

nomena are extremely difficult states to assess because they are a subjective experience. How-

ever, some investigators have explored the quantification of these defense reactions in fish

[59,60]. These reactions are not independent of pain but are closely related [27,34]. It is known
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that fear and anxiety trigger the endorphin mechanism, therefore inhibiting pain motivation

and recuperative behaviors that might compete with effective defensive behavior. A decrease

in nociceptive sensitivity allows a threatened or injured animal to engage in necessary defen-

sive behaviors, such as freezing, fleeing or fighting, by minimizing signals that would otherwise

alert the animal to attend to an injury [22]. Evidence demonstrated the existence of an endoge-

nous opioid system in zebrafish that is similar to those found in mammals [61] and an endoge-

nous opioid antinociceptive system, activated by an acute stress, has been found in fish

[19,20,23]. The molecular mechanisms of fear-conditioned and stress-induced analgesia in

fish are not as well elucidated as they are in mammals. It seems that there are several systems

that play a significant role in the modulation of the descending inhibitory pain pathway involv-

ing stress and fear-induced analgesia in mammals including monoaminergic [62], endocanna-

binoid [63,64], and opioid [65], as well as a GABAergic and glutamatergic signalling in specific

brain regions [12]. Stress induced analgesia has been recorded in another fish species, the

piaçu, where alarm substance and other stressor resulted in reduced nociceptive or pain-

related behaviours [20,23]. Additionally in trout, high stress linked to low dominance status

meant these fish showed little response to painful treatment (Ashley et al 2009). Future study

of these mechanisms may clarify the underpinning molecular and physiological changes that

accompany these behavioural responses.

We hypothesize that an antinociceptive mechanism elicited by stress, fear and anxiety

could have prevented the larvae to display the characteristic behavioural response caused by

the noxious acetic acid.

Conclusions

The novel results presented in this study demonstrate that 5dpf zebrafish showed altered beha-

vioural responses after exposure to a potentially noxious stimulus and that these responses

were inhibited by stress- and fear-eliciting situations. Therefore, this suggests the presence of a

modulation mechanism of nociception in larval zebrafish, which is activated under potentially

threatening or aversive situations. We believe that these findings are also relevant to welfare

and handling in experiments involving the use of fish. Since these unprotected 5dpf larval zeb-

rafish display similar behavioural responses to both noxious treatment and the various drugs

tested in the present study, they could be proposed as a suitable alternative to replace adult

zebrafish in nociception and analgesic studies. These results may propose the question as to

whether 5dpf zebrafish should be protected if they show similar responses to potentially pain-

ful stimuli, however, further evidence is required such as brain processing mechanisms, altered

future motivational state and an ability to learn to avoid noxious stimuli (see Sneddon et al.

2014) before this question can be fully answered.
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