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Abstract

Predictions optimize processing by reducing attentional resources allocation to expected or

predictable sensory data. Our study demonstrates that these saved processing resources

can be then used on concurrent stimuli, and in consequence improve their processing and

encoding. We illustrate this “trickle-down” effect with a dual task, where the primary task

varied in terms of predictability. The primary task involved detection of a pre-specified sym-

bol that appeared at some point of a short video of a dot moving along a random, semi-

predictable or predictable trajectory. The concurrent secondary task involved memorization

of photographs representing either emotionally neutral or non-neutral (social or threatening)

content. Performance in the secondary task was measured by a memory test. We found

that participants allocated more attention to unpredictable (random and semi-predictable)

stimuli than to predictable stimuli. Additionally, when the stimuli in the primary task were

more predictable, participants performed better in the secondary task, as evidenced by

higher sensitivity in the memory test. Finally, social or threatening stimuli were allocated

more “looking time” and a larger number of saccades than neutral stimuli. This effect was

stronger for the threatening stimuli than social stimuli. Thus, predictability of environmental

input is used in optimizing the allocation of attentional resources, which trickles-down and

benefits the processing of concurrent stimuli.

Introduction

The purpose of attention is to select information from the environmental input for further

processing, based on the trade–off between maximization of information utility and minimiza-

tion of costs related to information processing. This process of information selection is subject

to a significant “budget constraint”, as the brain’s processing capacity is limited [1,2] and the

metabolic cost of cortical computations is high [3]. Therefore, it would not be optimal to

spend our limited processing capacity on information with low utility.
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Thus, metaphorically speaking, attention is the gate-keeper of the mind—and given how

important that role is, its methods of information selection must be of highest standard. There

would be no point in investing in sophisticated methods of information processing if the infor-

mation selected for processing at the beginning would be of low value. That of course leads to

a paradoxical situation—the value of information must be assessed before it is processed.

Therefore, there must be a set of rules that allow attention to optimally assess the value of

information, but that do not require heavy processing.

As traditionally conceived, there are two sources of these rules: related to the properties of

the stimulus (exogenous) and related to the current goals of the organism (endogenous). Exog-

enous (or bottom-up) attentional capture stems from the physical properties of the stimulus

that are deemed important from the evolutionary point of view, i.e. which often signal the

presence of valuable information. For example, salient stimuli are well known to capture atten-

tion, which allows for rapid orienting to potentially important features of the environment [4].

Stimulus features able to attract attention include abrupt onsets [5], unique properties [6], sin-

gletons [7], or novelty [8].

Moreover, certain classes of stimuli that are important from evolutionary point of view are

also attended to preferentially and rapidly. Examples include threats [9], social stimuli such as

faces [10] or human bodies [11], emotional [12] or sexual stimuli [13], animals [14] and ani-

mate motion [15].

In terms of endogenous (top-down) attentional control, attention is preferentially assigned

to task-relevant stimuli [16,17]. This finding was also demonstrated in eye-tracking research

[18]. Both exogenous and endogenous attentional capture have the same goal- the narrowing

down of the environmental input to the most valuable information that are worthy of the

expense of in-depth processing.

However, expectations constitute a separate class of processes that shape the selection of

environmental information, and one that escapes the traditional dichotomy of endogenous vs.

exogenous attentional capture [19–21].

According to the predictive coding approach to perception, expectations alleviate the pro-

cessing burden by allowing for the distinction between expected and unexpected information

[22]. The environmental data that conform to our expectations do not have to be processed in

depth, as we already know them. That frees the processing resources, which in turn can be allo-

cated to the processing of the unexpected. Expectations are of course created endogenously,

but are not derived from our goals, tasks or motivations. Rather, they stem from our knowl-

edge, experience and the representation of the regularities within the world that we learned

[23]. Gibson [24] called this process the “education of attention”, that draws from the constan-

cies and regularities of our environment, teaching us where to look and what to ignore.

Many studies demonstrate that expected stimuli are processed more efficiently, leading to

more accurate responses and quicker detection. For example, presence of target stimulus in

the expected area decreased search time [25], while previous exposure to a scene facilitated tar-

get detection [26]. Chun and Jiang [27] reported that detection of targets was accelerated when

the configuration of distractors was predictive of the target location.

There is also plenty of evidence that unexpected or unpredictable events are attended to

preferentially. For example, surprising elements in a scene attracted earlier fixations [28].

Moreover, surprising events attracted more gaze shifts than less surprising events [29].

In one sense, as Summerfield and Egner [19] observed, attention and expectation have a

similar effect behaviourally—both facilitate detection and recognition. However, lack of pre-

cise distinction between these two, as Kok et al. [30] noted, leads to a confusion regarding the

cognitive and neural effects of these processes. The crucial difference between attention and

expectation lies in the amount of attentional resources assigned to an event expected in the
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sense of being a result of prediction, and an event expected in the sense of being awaited or

goal-relevant (as a result of endogenous attention). The former would receive a smaller share

of attentional resources, while the latter a larger one. For example, Kok et al. [30] reported that

prediction leads to silencing of the sensory signal, but this effect can be reversed by attention,

thereby demonstrating that these two processes have opposing effect on the sensory signal

strength.

If predictable events require less processing resources, then there should be more spare

resources available for other tasks. In other words, the amount of free resources that can be

allocated to other current events will differ depending on the predictability of the primary

event. As a result, the stimuli accompanying predictable stimuli should also be processed more

effortlessly. This “trickle-down” effect is the essence of how expectations optimize processing.

Silencing of the sensory signal related to predicted input decreases the processing workload,

which should improve performance in concurrent tasks. For example, in dual task studies,

experts perform better in secondary tasks than novices, because, due to their expertise in

the primary task, they are able to allocate more attentional resources to the secondary task

[31–33].

For this reason, dual task studies are an excellent method of exposing the limits of attention

and the strategy behind the allocation of this scarce resource [34,35]. Another excellent mea-

sure of the allocation of attention (specifically visual attention) is the eye-movement analysis.

According to Findlay and Gilchrist [36], vision is an active process, as we actively choose what

we see via the eye movements. Attention and eye-movements are inseparably coupled [37,38]

and because of that the allocation of attention is reflected in the eye-movements. In other

words, eye movements reveal our strategies of selecting the information from the

environment.

The purpose of this study was to demonstrate this mechanism in action using a dual task,

where the primary task varied in terms of predictability. We wanted to test whether the

predictability of the primary task will influence the attentional resource allocation between the

two tasks. We hypothesized that (1) high predictability of the primary task will free some of

the attentional resources and lead to an attentional shift to the secondary task, as reflected in

eye-movement patterns. Additionally, we hypothesized that (2) this shift of attention will be

accompanied by an improvement in the performance in the secondary task. However, we con-

jectured that (3) the allocation of attention based on predictability may be distorted with the

appearance of a secondary stimulus with high evolutionary value, for example a threat or

human face. Finally, we hypothesized that (4) participants who adjust to the predictability of

the primary task to a higher extent will do better in the secondary task, in line with the results

obtained in a previous study [39].

To this end, we used a similar task used in the Król, Kilan-Banach and Strzelecka [39]

study. We asked the participants to perform two tasks simultaneously. The primary task

involved dynamic stimuli (short video clips) representing a dot moving along one of three

types of trajectories (random, semi-predictable and predictable). At some point during the

clip, the dot transformed into a symbol for a short period of time. Participants were assigned a

symbol beforehand and requested to press a key whenever their assigned symbol appeared.

The secondary task involved static stimuli- full colour photographs chosen from the Inter-

national Affective Picture System [40]. In the threat block, half of the stimuli were threatening

in content (representing violence, snakes etc.), while in the social block, half of the stimuli

were social in content (containing at least one person). The other half of stimuli in both tasks

were neutral emotionally and did not represent people. After finishing each experimental

block, participants took part in an additional memory test. This checked their recollection of

the static stimuli, by presenting some of the static stimuli displayed earlier in the experimental
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blocks, intermixed with similar but novel photographs. This task in its basic form has been

tested in our previous study with a smaller sample, with only one type of static stimuli. The

task we used previously also contained a confound, as both the moment of symbol appearance

and the dot trajectory were manipulated in that experiment. That way, unfortunately, we

could not say whether the experimental effect was due to the predictability of the dot trajectory

or the time of symbol appearance. The experiment described here does not have this confound,

as we manipulated only spatial predictability.

Method

Participants

Participants were 148 (105 females) volunteers, aged between 18–46 (M = 23.7; SD = 6). All

participants had normal or corrected to normal eyesight. Participants were recruited for the

study via the Faculty study advertisement system between October 2015 and April 2016 and

took part in exchange for credits in the faculty credit system and/or 30 PLN (around 7 $) per

hour. Of those, who responded to the advertisement, approximately 25% did not make or

missed the appointment in the laboratory. The study was approved by the SWPS University of

Social Sciences and Humanities, Faculty of Psychology II in Wrocław Research Ethics Com-

mittee, in accordance with the Declaration of Helsinki. Participants provided their written

informed consent to take part in the study.

Stimuli

Stimuli in the study were composites of two stimuli types: dynamic (short video clip) and static

(a full colour photograph chosen from the IAPS [40], displayed simultaneously on the opposite

sides of the screen (Fig 1).

Dynamic and static stimuli switched sides in the middle of the experiment and the initial

positioning was randomized between participants.

Static stimuli. Static stimuli were full colour photographs selected from the IAPS,

matched in terms of arousal and valence ratings provided by the authors of IAPS. Additionally,

Fig 1. Example of a single frame within a trial. The original resolution of the image (fitting the whole screen) was changed for illustrative

purposes. To the left, an image representative of the static stimuli (this photograph does not come from the IAPS, as IAPS photographs

cannot be published. The author of this photograph is MEK). To the right, a single frame from the video clip (dynamic stimulus) showing the

position of the dot.

https://doi.org/10.1371/journal.pone.0180573.g001
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17 participants (10 female, mean age = 26, SD = 4.7), who did not take part in the main study,

provided ratings of visual complexity for all stimuli.

In the Social block, 27 non-neutral photographs representing one or more people were

matched to 27 neutral photographs that did not contain people. There were no significant dif-

ferences between neutral and non-neutral stimuli used in the Social block, in terms of valence

(t(52) = 0.53, p = .60), arousal (t(52) = 0.16, p = .88) and complexity (t(52) = 0.55, p = .59).

Therefore, these stimuli differed only in content, with non-neutral stimuli containing images

of people, while neutral stimuli did not.

In the Threat block, 27 non-neutral stimuli had low valence ratings and high arousal rat-

ings. They represented unpleasant, threating scenes, including violence, snarling dogs,

snakes, and were matched to 27 neutral stimuli with neutral content. Neutral and non-neutral

stimuli naturally significantly differed in terms of valence (t(52) = -17.26, p< .001) and arousal

(t(52) = 7.17, p< .001). However, there was no significant difference in terms of complexity,

t(52) = 0.63, p = .53 (for the mean ratings see Table 1 and for the detailed list of stimuli see

S1 Table).

Finally, 9 neutral photographs from each block were selected as targets in the memory test.

They were matched with another two sets of 9 photographs (not displayed in the experimental

blocks), that served as foils in the test and were also neutral in content. Thus, each of two sets

of test stimuli contained 9 neutral targets (that also appeared in the preceding experimental

block) and 9 neutral foils (that were not displayed in the experimental blocks). Targets and

foils did not differ significantly in terms of valence, arousal and complexity.

Dynamic stimuli. Dynamic stimuli were animated clips generated using Mathematica

(Wolfram), with a duration of 2600 ms. Each clip presented a dot moving on the screen along

one of three possible trajectories. Dots following the predictable trajectory moved along a

straight line that was identical in all clips in that condition (Fig 2a). Dots following the semi-

predictable trajectory moved along an undulating but continuous line that was different for

every clip in that condition (Fig 2b). Finally, dots following the random trajectory appeared in

random places on the screen, where each subsequent position of the dot was independent of

the previous one, and the sequence of dot positions was different for each clip in the condition

(Fig 2c). The dots moved with the approximate speed of 10 cm per second.

Each type of trajectory was assigned to a different dot colour (red, green, blue), to give the

participant the opportunity to learn predicting the trajectory based on the dot colour. Dot

colour-to-trajectory assignment was randomized between participants.

At certain point during the clip, dots were replaced with a black symbol for 100 ms (star,

triangle, square, diamond, and cross with equal probability). The change could happen at

any moment between 1500–2000 ms. The mean onset of the symbol was identical in all

conditions.

Table 1. Mean ratings of valence, arousal and complexity for neutral and non-neutral stimuli in each block (SD in parentheses).

Block Valence Arousal Complexity

Threat

• Neutral 6.59 (0.92) 4.55 (0.92) 5.10 (0.99)

• Non-neutral 2.86 (0.64) 6.17 (0.72) 5.27 (0.92)

Social

• Neutral 6.13 (0.85) 3.86 (1.04) 5.08 (1.02)

• Non-neutral 6.27 (0.99) 3.98 (0.52) 5.22 (0.76)

https://doi.org/10.1371/journal.pone.0180573.t001
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Procedure

Participants’ eye movements were recorded using a remote eye-tracking device SMI RED250-

Mobile, with a sampling rate of 60 Hz and gaze position accuracy of 0.4˚. Participants were

seated 70 cm from the computer screen. The experiment was programmed in C# and displayed

on a 15” Dell Precision M4800 workstation. Participants completed a 5-point calibration and 4

–point validation in-house procedure.

Participants were requested to pay attention to stimuli presented on both sides of the screen

to the best of their ability. The study consisted of two blocks- the Social block and the Threat

block, in an order randomized for each participant. Participants were informed that each

block would be followed by a test of their memory of static stimuli displayed in the experimen-

tal block. They were also assigned one of the symbols at random and instructed to press a key

whenever the moving dot transformed into their assigned symbol. This happened in 20% of all

trials, determined at random, where the assigned symbols were distributed equally among the

three dot trajectories. The memory test ensured attention to the static stimuli, while the

assigned symbol detection task ensured attention to the dynamic stimuli. Dynamic and static

stimuli switched their positions on the screen after the first block.

The study began with a training session consisting of 18 trials, including six of each type of

dynamic stimuli (predictable, semi-predictable and random). These were accompanied by

static stimuli, which would not appear later in the study. The results obtained in the training

session were not analysed and training session was not followed by a memory test.

Each block consisted of three sessions, to give the participant the opportunity of a self-regu-

lated break after each session. Each of the six experimental sessions comprised 18 trials, and

included six trials of each type of dynamic stimuli and 9 trials of each type of static stimuli

(neutral and non-neutral, equally distributed). Three of the eighteen static stimuli displayed in

each session appeared again in the memory test as targets, while the rest were only displayed

once. Each of the targets was accompanied by a different type of dot trajectory.

Trials started with a fixation cross displayed for 500 ms, followed by the static and dynamic

stimuli composite displayed for 2600 ms, and a 500 ms blank screen.

The memory test followed each experimental block and consisted of 18 trials, with 9 targets

(that were previously displayed in one of the preceding experimental sessions) and 9 foils

Fig 2. Examples of dot trajectories depending on their predictability. Predictable dot trajectory stayed the same throughout the study,

while semi-predictable and random dot trajectories different from trial to trial. Only one dot was visible at a time.

https://doi.org/10.1371/journal.pone.0180573.g002
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(stimuli that were novel to the participants). Stimuli were displayed centrally on the screen for

3000 ms or until the key press indicating whether the participant remembered the stimulus

(Yes/No). Thus, each participant saw 36 neutral pictures overall, half of these were new to

them and half of them were displayed previously in the experiment. Of those, half (9) were dis-

played in the threat block, and the other half in the social block.

Data analysis

Behavioural data. Before calculating signal detection measures, we applied a loglinear

transform [41] in order to deal with extreme values of hits and false alarms (0 and 1), which

were very common in the tasks. Criterion (c) was calculated as half of a standardized sum of

proportions of hits and false alarms, that is:

c ¼ �
1

2
½Zðhit rateÞ þ Zðfalse alarm rateÞ�

while sensitivity (d0) was calculated as a standardized difference between the proportion of hits

and false alarms, that is:

d0 ¼ Zðhit rateÞ � Zðfalse alarm rateÞ

Z is the inverse of the normal distribution function.

Eye—Tracking data. In all analyses, we included only the eye-tracking data recorded dur-

ing the duration of the stimulus (2700 ms.). Fixations and saccades were identified using the

SMI Event Detector software, with minimum fixation length of 80 ms. We eliminated all trials

in which the proportion of bad data samples (those in which the eye position could not be

measured) was greater than 50% or in which no fixations were detected. There were six condi-

tions (2 static stimuli types x 3 dot trajectories) in each of the two blocks (social and threat), so

twelve conditions in total, with nine trials averaged for each condition. If there were no valid

trials for any of the twelve condition, the whole dataset was eliminated, due to the repeated-

measures design of the experiment. There were seven such cases (4.7% of all data). Addition-

ally, we eliminated 8 (5.4% of all data) datasets where the proportion of fixations on any side of

the screen was lower than 5%. This was either a results of low quality eye-tracking data

obtained from that participant (due to calibration problems etc.) or because that particular

participant did not follow the instructions or did not pay attention to the task. As a result, 133

datasets were used in all subsequent analyses.

We defined two Areas of Interest (AOI)—dynamic stimulus and static stimulus. Each was

specified as covering the area equal to half of the screen divided vertically, that is 640 x 720 pix-

els (left side and right side, depending on which side the stimulus was displayed in a particular

session). This amounted to 13.8˚ x 15.9˚ visual angle. Datasets accompanying this manuscript

in the Supporting Information files contain only valid datasets.

Results

Behavioural data

Memory tests—Signal detection. We performed signal detection analysis separately for

each memory test- after the social block (the social test) and after the threat block (the threat

test).

Next, we performed the Wilcoxon signed-rank tests on both sensitivity and criterion. There

was no significant difference between the social test and threat test in terms of either sensitiv-

ity, Z = -0.27, p = .79, or criterion Z = -.52, p = .61.
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Additionally, mean sensitivity in the experiment was equal to 1.77 (SD = 0.62), which is sig-

nificantly higher than chance level (d’ = 0), Z = -10.01, p< .001. Mean criterion in the experi-

ment was significantly conservative (M = 0.31, SD = 0.29), Z = -8.74, p< .001, that is there was

a tendency towards “No” responses.

Memory tests—Accuracy. It was impossible to obtain signal detection measures sepa-

rately for the three levels of dot trajectory, because foils did not appear in the experimental

blocks, and thus it was not possible to match them to specific dot trajectories. For this reason it

was not possible to obtain the false alarm rates.

Foils in the memory tests were not paired with specific dot trajectories, but the target sti-

muli were. We were, therefore, able to analyze accuracy of responses to target stimuli in the

test, depending on which dot trajectory they were accompanied with in the experimental ses-

sions. Accuracy in the memory tests was calculated as the proportion of recognized old static

stimuli to all old static stimuli displayed with that particular dot trajectory, i.e. hit rate in signal

detection terms.

The experimental software drew at random nine of the static stimuli displayed in the exper-

imental session to be displayed in the memory tests. As a result, the number of static stimuli

accompanied by a specific type of ball trajectory that were displayed in the memory tests varied

between participants. In case of sixteen subjects, for at least one dot trajectory no accompa-

nying static stimuli were represented in the memory test, resulting in missing data. These sub-

jects were excluded from the current analysis, leaving a sample of 116 subjects. All target

stimuli were neutral, so stimulus type (neutral vs non-neutral) factor was not taken into

account. Signal detection analysis described in the previous section showed no significant dif-

ferences between the blocks, so for this reason we collapsed accuracy rates across the two

blocks.

We performed Friedman’s test on accuracy levels for all three levels of dot trajectory. The

test was followed with post-hoc analysis using Bonferroni-corrected Wilcoxon signed-rank

tests. Post-hoc tests were performed in the fashion of repeated contrasts, resulting in two tests

and a corrected alpha level of 0.025. There was a significant main effect of dot trajectory on

accuracy in the memory test, χ2(2) = 10.90, p< .01 (Fig 3).

Post-hoc analysis revealed that static stimuli accompanied by the dot moving with predict-

able trajectory were recognized more accurately in the memory test, compared to the static sti-

muli that were accompanied by the semi-predictable dot, Z = -2.28, p = .02. There was no

significant difference between static stimuli accompanied by semi-predictable and random

dots, Z = -0.23, p = .82.

Detection of assigned symbols—Signal detection analysis. The purpose of this task was

simply to ensure attention to the dynamic stimuli. The appearance of the assigned stimuli was

a rare event that was determined at random. As a result, for some participants the assigned

symbols did not appear for every combination of experimental variables. For this reason, we

collapsed the block and stimulus type factors, calculating accuracy only for the three levels of

dot trajectory. However, preliminary analyses we performed before collapsing across these

conditions indicated that neither block nor stimulus type were likely to have a significant effect

on detection of symbols.

Mean sensitivity for the detection of signals was equal to 1.51 (SD = 0.89), which is signifi-

cantly higher than chance level (d’ = 0), Z = -9.47, p< .001. Mean criterion for the detection of

symbols was significantly conservative (M = 0.23, SD = 0.50), Z = -5.14, p< .001.

Due to non-parametric nature of the data, we performed Friedman’s test on both sensitivity

and criterion for the three types of dot trajectories (random, semi-predictable and predictable).

The test was followed with post-hoc analysis using Bonferroni-corrected Wilcoxon signed-

rank tests, with corrected alpha level of 0.017.
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In case of sensitivity, the main effect of dot trajectory was significant, χ2(2) = 9.37, p = .01.

Post-hoc tests revealed that random dot trajectory was related to significantly lower sensitivity

than both semi-predictable, Z = -2.60, p = .01, and predictable dot trajectories, Z = -3.32,

p = .01. There was no significant difference between predictable and semi-predictable trajecto-

ries, Z = -0.52, p = .61.

In case of criterion, the main effect of dot trajectory was significant, χ2(2) = 56.46, p< .001.

Post-hoc tests revealed that criterion was more conservative in the random dot trajectory

Fig 3. Accuracy rates in the testing session, depending on the dot trajectory accompanying the static stimulus. Accuracy is

collapsed across tasks. Error bars denote within-subjects 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0180573.g003
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condition than in both the predictable, Z = -5.49, p< .001, and semi-predictable condition,

Z = -5.98, p < .001. There was no significant difference between the predictable and semi-

predictable conditions, Z = -0.88, p = .38 (for a figure, see S1 Fig).

Eye-tracking data

Proportion of time spent looking at the dynamic stimulus. In order to get a fair mea-

sure of the visual attention allocation, we calculated the total time spent looking at each AOI in

each trial (time spent looking on the dynamic stimulus henceforth). In order to do that, the

whole stimulus-related eye data sample was processed instead of single fixations, i.e. a

sequence of 60 pairs of X-Y coordinates per second (given the 60 Hz sampling rate), one for

each eye. This measure allowed us to take into account all types of eye-movement activity that

may be taking place, and that escape the definition of a fixation. This may give a more accurate

picture of eye-movement activity for the dynamic stimulus, where motion is involved and fixa-

tions may not be the best measure to capture the entirety of eye-movement activity in response

to these stimuli. However, we have also performed an analysis involving the duration of fixa-

tions, which yielded similar results and is available in S1 Appendix.

We subjected the time spent looking at the dynamic stimulus to a repeated-measures 2

(block: social vs. threat) x 2 (static stimulus type: neutral vs. non-neutral (either social or

threatening, depending on the block) x 3 (dot trajectory: random, semi-predictable, predict-

able) ANOVA (Fig 4)

Participants spent more time looking at the dynamic stimulus in the social block than in

the threat block, F(1,132) = 3.92, p = .05, ηp
2 = .03. Participants spent more time looking at the

dynamic stimulus when the accompanying static stimulus was neutral, than when it was not

neutral, F(1,132) = 135.90, p< .001, ηp
2 = .51. Finally, there was a significant difference in the

time spent looking on the dynamic stimulus depending on the dot trajectory, F(1,132) = 92.28,

Fig 4. The proportion of time spent looking on the dynamic stimulus, separately for the neutral and non-neutral (social or threat,

depending on the task) stimuli. Error bars denote within-subjects 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0180573.g004

The trickle-down effect of predictability

PLOS ONE | https://doi.org/10.1371/journal.pone.0180573 July 10, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0180573.g004
https://doi.org/10.1371/journal.pone.0180573


p< .001, ηp
2 = .41. Contrasts revealed that participants looked significantly less at the dynamic

stimulus when the dot trajectory was predictable compared to when it was semi-predictable,

F(1,132) = 99.23, p< .001, ηp
2 = .43. Contrasts also revealed that they looked significantly

longer at random dynamic stimuli than semi-predictable ones, F(1,132) = 14.21, p< .001,

ηp
2 = .10.

There was a significant interaction between block and stimulus type, F(1,132) = 9.54,

p = .01 ηp
2 = .07, implying that the difference between the neutral and non-neutral stimuli was

larger in the threat block, compared to the social block. The interaction between block and dot

trajectory was not significant, F(2,264) = 1.24, p = .29, ηp
2 = .01, and neither was the interac-

tion between stimulus type and dot trajectory, F(2,264) = 0.09, p = .92, ηp
2 < .01. Finally, the

three-way interaction between block, stimulus type and dot trajectory was also non-significant,

F(2,264) = 0.24, p = .79, ηp
2 < .01.

Proportion of the number of saccades to the dynamic stimulus. This measure was cal-

culated in a similar manner to the proportion of duration of fixations- i.e. we calculated the

proportion by dividing the number of saccades to the dynamic stimulus by the total number of

saccades.

We subjected the proportion of the number of saccades to the dynamic stimulus to a

repeated-measures 2 (block: social vs. threat) x 2 (static stimulus type: neutral vs. non-neutral

(either social or threatening, depending on the block) x 3 (dot trajectory: random, semi-

predictable, predictable) ANOVA (Fig 5).

The difference between the proportion of number of saccades to the dynamic stimulus in

the social block and in the threat block was insignificant, F(1,132) = 3.53, p = .06, ηp
2 = .03.

The number of saccades to the dynamic stimulus was higher when the accompanying static

stimulus was neutral, than when it was not neutral, F(1,132) = 122.40, p< .001, ηp
2 = .48.

Finally, there was a significant difference in the proportion of the number of saccades to the

dynamic stimulus depending on the dot trajectory, F(1,132) = 148.70, p< .001, ηp
2 = .53.

Fig 5. The proportion of saccades to the dynamic stimulus, separately for the neutral and non-neutral (social or threat, depending

on the task) stimuli. Error bars denote within-subjects 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0180573.g005
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Contrasts revealed that participants significantly less saccades to the dynamic stimulus

when the dot trajectory was predictable compared to when it was random, F(1,132) = 138.70,

p< .001, ηp
2 = .51. Contrasts also revealed that there were significantly more saccades to

the dynamic stimulus in the semi-predictable condition, compared to the random condition,

F(1,132) = 13.65, p<0.001, ηp
2 = .09.

There was a significant interaction between block and stimulus type, F(1,132) = 9.89,

p< .01, ηp
2 = .07, implying that the difference between the neutral and non-neutral stimuli

was larger in the threat block, compared to the social block.

The interaction between block and dot trajectory was not significant, F(2,264) = 1.68,

p = .19, ηp
2 = .01, and neither was the interaction between stimulus type and dot trajectory,

F(2,264) = 1.41, p = .25, ηp
2 = .01. Finally, the three-way interaction between block, stimulus

type and dot trajectory was also non-significant, F(2,266) = 0.97, p = .38, ηp
2 < .01.

Analysis of different types of saccades. In order to obtain a more fine-grained analysis of

saccades, we divided all saccades into three types: saccades within the static stimulus (both

starting and ending within the static stimulus AOI), saccades within the dynamic stimulus

(both starting and ending within the dynamic stimulus AOI), and saccades between the two

types of stimuli (starting and ending in a different AOI). Next, we performed a repeated-

measures 3 (saccade type: within static, within dynamic, between static and dynamic) x 2

(static stimulus type: neutral vs. non-neutral) x 3 (dot trajectory: random, semi-predictable,

predictable) ANOVA on the number of saccades. Greenhouse- Geisser correction was used to

adjust the degrees of freedom, when the sphericity assumption was violated. There was a sig-

nificant main effect of saccade type, F(1.21, 159.81) = 383.88, p< .001, ηp
2 = .74. Contrasts

revealed that there were significantly fewer saccades within the static AOI (M = 1.41,

SD = 0.08) than between the AOIs (M = 1.86, SD = 0.05), F(1,132) = 47.94, p< .001, ηp
2 = .27.

Contrasts also revealed that there were significantly fewer saccades between the AOIs

(M = 1.86, SD = 0.05), than within the dynamic AOI (M = 5.16, SD = 0.16), F(1,132) = 365.90,

p< .001, ηp
2 = .74.

There was no significant difference between neutral and non-neutral stimuli, F(1,132) = 0.04,

p = .85, ηp
2 < .01, but the main effect of dot predictability was significant, F(2,264) = 73.14,

p< .001, ηp
2 = .60. The interaction between the stimulus type and saccade type was non-

significant, F(1.24, 164.2) = 2.26, p = .11, ηp
2 = .02, and so was the interaction between the stim-

ulus type and dot predictability, F(2,264) = 0.25, p = .78, ηp
2 < .01. However, the interaction

between the saccade type and the dot predictability reached significance, F(2.44, 321.88) =

182.95, p< .001, ηp
2 = .58. Finally, the three-way interaction between stimulus type, saccade

type and dot predictability was insignificant, F(2.66, 350.67) = 0.10, p = .98, ηp
2 < .01.

Given that the interaction between saccade type and dot trajectory was significant, we run

three follow-up ANOVAs with dot predictability as the factor. We collapsed the stimulus type

variable given there was neither a significant main effect nor a significant interaction in the

omnibus ANOVA.

The effect of dot predictability was significant for all three saccade types: within the static

AOI: F(1.88, 248.75) = 72.18, p< .001, ηp
2 = .35, within the dynamic AOI: F(2,264) = 201.93,

p< .001, ηp
2 = .61, and between the AOIs: F(1.91, 252.60) = 155.56, p< .001, ηp

2 = .54.

In case of the saccades between the AOIs, contrasts revealed that there were significantly

fewer saccades in the random dot condition, compared to the semi-predictable dot condition,

F(1,132) = 257.57, p< .001, ηp
2 = .66, and significantly fewer saccades in the semi-predictable

dot condition compared to the predictable dot condition, F(1,132) = 19.85, p< .001, ηp
2 = .13

(Fig 6a).

In case of the saccades within the static AOIs, contrasts revealed that there were signifi-

cantly fewer saccades in the random dot condition, compared to the semi-predictable dot
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condition, F(1,132) = 122.75, p< .001, ηp
2 = .48, and significantly fewer saccades in the

semi-predictable dot condition compared to the predictable dot condition, F(1,132) = 82.50,

p< .001, ηp
2 = .39 (Fig 6b).

In case of the saccades within the dynamic AOI, contrasts revealed that there were signifi-

cantly fewer saccades in the random dot condition, compared to the semi-predictable dot con-

dition, F(1,132) = 57.42, p< .001, ηp
2 = .30, but significantly more saccades in the semi-

predictable dot condition compared to the predictable dot condition, F(1,132) = 419.17,

p< .001, ηp
2 = .76 (Fig 6c). Finally, for a distribution of saccade length, depending on dot tra-

jectory predictability, please see S2 Fig.

Eye-movement correlates of accuracy

First, we wanted to evaluate whether the ability to remember the static stimulus was dependent

on the amount of time participants spent looking at that particular stimulus when it was first

presented in the experimental block. For each participant and for each static stimulus that was

presented in both the experimental block and the memory test, we calculated the average dis-

tance between the center of that stimulus in the experimental block and the position of the eye-

gaze throughout that trial. Next, we performed a rank biserial correlation between the average

distance between the eyegaze and the center of the stimulus at first presentation, and remem-

bering it in the second presentation, i.e. in the memory test. We found that larger distance

between the center of the stimulus and the eyegaze at first presentation was negatively corre-

lated with remembering the stimulus in the memory test, rs = -.20, p< .001.

There was also a significant negative correlation between the mean proportion of time

spent looking at the dot and sensitivity in the memory test, rs = -.22, p = .01.

Finally, we defined “predictability adjustment” as the participants’ ability to change the allo-

cation of their looking time depending on the predictability level of the dynamic stimulus.

More specifically, it was calculated as proportion of time spent looking at the dynamic stimu-

lus with random trajectory divided by the proportion of time spent looking at the dynamic

stimulus with predictable trajectory- higher values signified larger difference in looking time

between the two conditions and thus, higher “predictability adjustment”.

There was no significant correlation across participants between predictability adjustment

and sensitivity in the memory tests, rs = .03, p = .72.

Fig 6. The number of saccades a. between the AOIs, b. within the static AOI and c. within the dynamic AOI, depending on the

dot trajectory predictability. Note that for the clarity of presentation of results each diagram has a different scale on the y-axis.

https://doi.org/10.1371/journal.pone.0180573.g006
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Discussion

The main goal of the study was to investigate whether predictability of the primary stimulus

leads to a reduction in attentional resources allocation to that stimulus and, as a consequence,

frees the resources for the processing of concurrent stimuli. This in turn should lead to more

in-depth processing of the secondary stimulus, reflected in more robust encoding and better

future recollection of that stimulus. This hypothesis was operationalized using a dual-task and

testing the influence of stimulus predictability in the primary task on the attention allocation

and performance in both tasks. Additionally, we wanted to test whether stimuli particularly

important from evolutionary point of view, will be capable of distorting the allocation of atten-

tion driven by stimulus predictability. We used eye-movement patterns as the measure of

visual attention allocation. We also performed signal detection analysis (where possible) and

analysed the accuracy of responses in both primary and secondary tasks.

Summarizing the results, in support of our first hypothesis, we found that participants allo-

cated more attention to unpredictable (random and semi-predictable) stimuli than to predict-

able stimuli. We also found evidence in favour of the second hypothesis, as participants

performed better in the secondary task (as evidenced by higher sensitivity), when the stimuli

in the primary task were more predictable. Our third hypothesis was supported by the finding

that “special” stimuli (social or threatening) were allocated with more “looking time” than neu-

tral stimuli. This effect was stronger for the threatening stimuli than social stimuli. Addition-

ally, the number of saccades to the dynamic stimulus was smaller, when the static stimulus was

“special”- either social or threatening.

Additionally, when the stimuli in the primary task were more predictable, participants per-

formed better in the secondary task, as evidenced by higher sensitivity in the memory test.

However, we found no evidence for our final hypothesis, that the ability to adjust atten-

tional allocation to stimulus predictability will be related to better performance in the second-

ary task. We found no correlation between predictability adjustment- the extent to which

participants changed their looking patterns depending on dynamic stimulus predictability,

and performance in the memory task.

The effect of predictability on eye-tracking and behavioural measures

We found a strong effect of predictability on all eye-tracking measures and most importantly

on performance in the memory test. Time spent looking at the dynamic stimulus was larger

for the unpredictable (random and semi-predictable) dot trajectories compared to the predict-

able trajectory. Similar effect was obtained also for the proportional duration of fixations

within the dynamic stimulus. The former measure, though not standard, might have been a

fairer reflection of the amount of visual attention assigned to the stimulus, given the dynamic

nature of the primary task stimuli that were likely related to many smooth-pursuit movements.

Perhaps because of that the difference between semi-predictable and random dot trajectories

was only obtained using the former measure. This effect is additionally confirmed by the mea-

surement of the number of saccades to the dynamic stimulus. Predictable dot trajectory was

related to a smaller proportion of saccades than the unpredictable trajectories- this effect is

very strong. Additionally, a fine-grained analysis of the types of saccades revealed that this was

mainly due to the decrease in the number of saccades within the dynamic stimulus. At the

same time, the there was an increase in the number of saccades within the static stimulus and

between the stimuli in the predictable dot condition, compared to the semi-predictable and

random dot conditions. This suggests that dot predictability allowed a transfer of attention

from the dynamic to the static stimulus.
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However, surprisingly there is also a small, but significant increase in the number of saccades

to the dynamic stimulus in the semi-predictable condition, compared to the random condition.

The analysis of saccade types revealed that this effect appears only in case of saccades within the

dynamic stimulus. This suggests that continuous dot-trajectory in the semi-predictable condi-

tion might have been easier to track than discontinuous trajectory in the random condition. In

other words, participants might have stopped attempting to track each dot position in the ran-

dom condition, instead simply fixated on the dynamic side of the screen. It is possible that there

was not enough time to plan and execute the next saccade before the dot moved to another loca-

tion, so there was little benefit in doing so. The signal detection analysis of the symbol detection

task showed significantly lower sensitivity when the dot trajectory was random, compared to

the other two conditions. Given the significantly more conservative criterion in the random dot

condition, we can conclude that the decrease in sensitivity was mainly caused by an increase in

misses. That suggests that the task of monitoring the dot for the appearance of their assigned

symbol was more difficult when the dot trajectory was random, compared to the other two con-

ditions, which could also lead to a slight decrease in the number of saccades.

There is another problematic aspect of the random trajectory condition. Multiple studies

report “onset primacy”, the phenomenon of attentional capture by stimulus onset [5,42–44].

This may be significant in case of the random stimuli, where lack of continuity between succes-

sive presentations of the dot may lead to each being treated as a new stimulus. As a result, in

the random condition each appearance of the dot may capture more attention by virtue of

being perceived as the onset of a new stimulus. In contrast, in the semi-predictable and pre-

dictable conditions, dynamic stimuli, because of the continuity of the dot trajectory, would not

attract additional attention related to onset primacy.

However, the pattern of differences between the semi-predictable and predictable condi-

tions is very similar to the pattern of differences between the random and predictable condi-

tions. For this reason, difficulty in tracking or presence of multiple onset are unlikely to be the

cause behind the observed patterns of results.

What is important, these differences in the allocation of time spent looking at each stimulus

were also reflected in the accuracy in the memory test. Static stimuli accompanied by dot mov-

ing with a predictable trajectory were recognized in the memory test with significantly higher

accuracy than static stimuli accompanied by the less predictably moving dots. That means that

when the primary task was more predictable, the additional attention allocated to the second-

ary task was used in the processing of the static stimulus, leading to better encoding and subse-

quent improved memory. This demonstrates that shifts of attention observable in the eye-

movement patterns represent changes in allocation of a valuable but limited resource that

determines which information are processed and subsequently survive in the brain as memo-

ries. Utilizing statistical regularities in the environment helps to allocate attention more opti-

mally and improves performance [45–47]. In addition to these findings, this study

demonstrates, that predictability of some elements of the environment not only lead to more

effective processing of that element, but also offloads the resources to other, less regular or pre-

dictable elements of the environment, resulting in a measurable benefit to their processing.

The role of exogenous attention

The effect of stimulus type (neutral versus social or threatening, depending on the block) was

strong and significant for all eye-movements measures in the study: that is, time spent looking

at the dynamic stimulus and the proportion of saccades to the dynamic stimulus. Static stimuli

“special” from the evolutionary point of view attracted a larger share of visual attention than

neutral stimuli, and decreased the amount of attention allocated to the dynamic stimulus. This
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effect was stronger for threatening stimuli than for social stimuli in case of both the proportion

of duration of fixation and proportion of looking time. However, the reason for this difference

is unclear—it could be that threatening stimuli have priority over social stimuli in capturing

attention, but it could also be due to differences in valence and arousal between these two clas-

ses of stimuli.

Additionally, for these measures there was also a significant interaction between stimulus

type and block, implying that the difference between neutral and non-neutral stimuli was

larger in the threat block compared to the social block. In other words, both threatening and

social stimuli were capable of capturing a larger share of attention than neutral stimuli, but

this effect was larger for the threatening stimuli. There was no significant difference in the

effect strength between threatening and social blocks in case of the proportion of the number

of saccades. There was also no difference between the social and threat block in performance

in the memory test. However, the memory test involved only neutral stimuli, so we did not

expect any differences between the two blocks.

To summarize, the study demonstrated the ability of stimuli with special evolutionary value

(such as social or threatening stimuli) to capture attention and effectively distort the allocation

of attention that was optimized for another, concurrent task. Similarly, Nummenmaa et al.

[12] demonstrated that emotional stimuli were more likely to attract first fixations and be

inspected for a longer time than simultaneously presented neutral stimuli.

Unfortunately, the design of the study did not allow us to find out whether this distortion of

attention allocation resulted in either worse performance in the symbol detection task for

dynamic stimuli accompanied by non-neutral static stimuli, or improved memory for non-

neutral stimuli. However, for example Van Damme et al. [9] demonstrated that presence of

a threat cue decreased accuracy of target detection, which suggests difficulty with disengaging

attention from threats. Similarly, emotionally charged words in a Stroop task interfered with

colour naming by increasing the share of attention allocated to the meaning of the word [48].

To sum up, results obtained in this study demonstrate that attention allocation is simulta-

neously shaped by multiple processes, competing for shares in the same pool of resources. Sud-

den appearance of a stimulus that is task-irrelevant but important from the evolutionary point

of view can distort the allocation of resources optimized to the task at hand.

Conclusion

This study provides further evidence on the role of predictions in shaping visual attention.

As traditionally conceived, allocation of attention is managed endogenously, via motivation

and task-relevance assessment, and exogenously, via factors intrinsic to the stimulus such as its

salience and evolutionary importance. However, as this study demonstrates, the attentional

resources are also assigned in accordance to stimulus predictability- with predictable stimuli

receiving a smaller share of attention than unpredictable ones. This constitutes a “saving”

which can be used in processing of concurrent stimuli. Our study shows that such attentional

“savings” lead to a measurable benefit in processing and encoding of concurrent stimuli,

reflected in improved memory. Therefore, utilizing predictability inherent in the environment

saves attentional resources and leads to a “trickle-down” effect, i.e. benefits the processing of

other concurrent stimuli.
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