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Abstract

Protein complex detection in PPI networks plays an important role in analyzing biological

processes. A new algorithm-DBGPWN-is proposed for predicting complexes in PPI net-

works. Firstly, a method based on gene ontology is used to measure semantic similarities

between interacted proteins, and the similarity values are used as their weights. Then, a

density-based graph partitioning algorithm is developed to find clusters in the weighted PPI

networks, and the identified ones are considered to be dense and similar. Experimental

results demonstrate that our approach achieves good performance as compared with such

algorithms as MCL, CMC, MCODE, RNSC, CORE, ClusterOne and FGN.

Introduction

Empirical studies and theoretical modeling of networks have been studied for many years, and

some relevant techniques have also been improved [1]. In addition to these, some of them

have been applied to molecular biology successfully [2–4]. Proteins in biological system inter-

act with each other by the PPI between them to implement various essential molecular pro-

cesses. The complex biological system that is composed of proteins and Protein-Protein

Interaction networks can be described formally as an undirected graph. In PPI networks, pro-

teins are represented as nodes and the interactions are represented as edges [4]. By aid of PPI

networks, we can obtain invaluable help in understanding the structures and features of

molecular biosystems, such as protein complexes [2] and hub proteins in PPI networks.

The judgment of interactions between two proteins is generally based on the experimental

methods. However, these methods are not always reliable [5], which means that the interaction

networks may contain false positive edges. Due to the technical limitation, the experimental

method cannot evaluate the strength of each interaction quantitatively and accurately [6].

Therefore, confidence weights of interactions should be taken into account by some certain

computational approaches [7]. In fact, some relative computational approaches have been

constantly applied to complement existing experimental approaches, such as gene neighbor-

hood [8]. And most approaches are based on the similarities of protein attributes. To measure

and visualize the functional similarities of gene products based on the existing annotation, sev-

eral methods have been proposed and used to address the critical needs basically [9–10]. The
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similarity values can be used as weights of the edges and the PPI networks can be converted

into a weighted graph. The related experimental results for extracting dense modules in

weighted graph reveal that using biological information can improve the accuracy of protein

complexes identification[11–13]. CMC [14] method assigns the reasonable weights to the cor-

responding interacting protein pairs, and the weight is the therein interaction dependability.

This algorithm can form as many as possible large clusters in the protein networks, and then

delete highly overlapping ones. CFinder [15] is a popular published overlapping clustering

method. And this method can determine functional modules in PPI networks. ClusterOne

[16] is mainly used to find overlapping proteins in PPI networks. It has a good performance

in the yeast data. PEWCC [17] is a graph-based clustering algorithm for protein complex iden-

tification. It can be divided into two steps, the first step is calculating the therein reliabilities,

and the second is predicting protein complexes by weighted clustering coefficients. FGN [18]

combines GO annotations and GO semantic structures to decide the corresponding protein

semantic similarity. First, the protein semantic similarity is calculated according to their prede-

termined GO annotations. Second, the expending RRW algorithm is used to extend attach-

ment proteins to the cores. The graph-based approaches can remove doubtable interactions

before clustering, so that FGN can identify protein complexes more successful. GMFTP [19] is

an algorithm that can identify overlapping and individual proteins. A model is created by the

function of the protein nodes and its topological properties in the networks, which describe

the generation and functional characteristics of the protein interaction networks. Experimental

results indicate that GMFTP can effectively identify overlapping protein complexes in PPI net-

works. WPNCA [20] is a novel algorithm based on the core attachment structure of protein

complexes with its neighboring nodes. Firstly, they proposed a weighting algorithm based on

the probability of adjacent nodes, and then divided the protein networks into several dense

clusters. Experiments were performed on the four datasets. From the relative experimental

results, it can be found that WPNCA is a successful one in detecting complexes. DCAFP [21]

presents a new way to identify complexes. It first defines the concept of each protein prefer-

ence vector because preference vector can represent the functional category of the protein

complex. DCAFP combines preference vector with network topology to improve the accuracy

of protein complex recognition. DUC [22] algorithm builds a protein interaction network as a

model. Considering such traditional algorithms ignore the adjacent information in the net-

works. DUC integrated the expected densities and degrees. The experimental results show that

such model provides a new insight for the identification of protein complexes. EGCPI [23]

algorithm is a traditional graph clustering one, in which the similarity between proteins are

referred by gene ontology database. And the complexes are found by the homogeneity of the

properties. RFC [24] is a fuzzy clustering algorithm, in which it establishes the fuzzy relation-

ship between proteins and transforms it into some certain equivalence relation. This method

can identify overlapping proteins. DyCluster[25] proposed a framework to model dynamic

protein networks, it first construct a framework to identify protein complexes, and then

detects complexes by clustering in a dynamic networks.

The existing methods based on the topology of protein-protein interaction network and

biological information have inspired us to improve the accuracy of protein complex recogni-

tion. In order to solve the problem caused by false positive and false negative data effectively,

we proposed a new method-DBGPWN, which combined the density and semantic similarity

in PPI networks. In this paper, we first introduce the semantic similarity and construct a

weighted PPI networks. Then, a new concept of semantic clustering coefficient is proposed,

which is used for detecting protein complexes in the PPI networks.

We performed experiments on four different protein-protein interaction networks, which

are widely used in biological experiments. Experimental results demonstrate that DBGPWN
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can identify more functional protein complexes and improve the accuracy of protein com-

plexes prediction.

The remaining part of the paper is organized as follows. Section 2 (Material and Method)

introduces the new algorithm-DBGPWN. Section 3 (Result and Discussion) is the detailed

descriptions and analysis of the experiments. Finally, the fourth part (Summary) is the

conclusion.

Material and method

Semantic similarity

We put forward a new concept called as Unit Similarity Measure, in which GO terms annotat-

ing proteins are regarded as a semantic collection, and their corresponding DAGs are merged

into one united DAG (Directed Acyclic Graph). DAG is a method to represent the structure of

gene ontology database. In a DAG, attributes are represented by nodes, and the semantic rela-

tions are expressed by edges. Gene Ontology is a large collaborative public bioinformatics

database, whose founders’ aim is to unify the representation of gene and gene product attri-

butes across all species [9]. GO includes two kinds of semantic relations, which are represented

by ‘is-a’ and ‘part-of’. The marks ‘is-a’ and ‘part-of’ represent a class-subclass relation and a

partial ownership relation respectively. GO contains amounts of biological or biochemical

terms for describing gene products based on their functions or locations in the cell. All the

terms can be classified into three kinds, which are biological process, cellular component and

molecular function respectively. For example, P56524 is annotated by several GO terms (GO:

0008134, GO: 0005515, GO: 0019901, GO: 0030955 and GO: 0033613), and their relations can

be modeled as a united DAG, as shown in Fig 1.

The black arrows point to five GO terms annotating protein P56524 and the main function

they represent is binding (Fig 1). So the functional similarity between two proteins can be mea-

sured by comparing the united DAGs of their annotations. If a protein has several annotations

about binding, it can be considered to be functional similar to the protein P56524.

Definition 1 (S-value) Given a set of terms united DAGA and a set of GO terms, its S-value
related to term A for any term t in TA is shown in Eq 1 if A� TA.

SAðtÞ ¼
�

1 t ¼ A

maxfwe � SAðt0Þjt0 2 childrenof ðtÞg t 6¼ A
ð1Þ

Where we is the semantic contribution weight of the edge e (e 2 EA) which links term t with its

child term t’, the optimal value of we for ‘is-a’ and ‘part-of’ relations are 0.8 and 0.6 respectively

[10]. The semantic similarity between two GO terms can be formally calculated based on the

S-values of their ancestor terms.

Definition 2 (Semantic Similarity) Given two proteins a and b, A is a set of GO terms anno-

tating a, B is a set of GO terms annotating b, their DAGs can be represented as DAGA = (A,TA,

EA) and DAGB = (B,TB,EB). TA and TB are the sets of GO terms including their ancestor ones.

The semantic similarity between these two proteins can be calculated according to Eq 2.

Simða; bÞ ¼

X

t2TA\TB

ðSAðtÞ þ SBðtÞÞ
X

t2TA

SAðtÞ þ
X

t2TB

SBðtÞ
ð2Þ

In Eq 2, SA(t) is the S-value of the term t according to DAGA, and the SB(t) is the S-value of the

terms t according to DAGB.
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Definition 3 (Harmonic Semantic Similarity) The quadratic mean of three semantic simi-

larities is regarded as the measure of judging whether two proteins are semantic similar. The

calculation formula can be expressed as Eq 3.

HSimða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Simpða; bÞ
2
þ Simf ða; bÞ

2
þ Simcða; bÞ

2

3

s

ð3Þ

where Simp(a,b), Simf(a,b) and Simc(a,b) represent three kinds of semantic similarities-biologi-
cal process, molecular function and cellular component.

Density description

The basic idea of DBGPWN is analogous to the classical clustering algorithm—DBSCAN [22].

DBSCAN expands regions with significantly high density into cluster and discovers clusters

with arbitrary shapes in spatial database with noises. And it can find the arbitrary shape clus-

ters. A cluster is defined as a maximal set of density-connected points. Basically, a point q is

directly density-reachable from a point p if the distance between them is smaller than a given

distance ε, and the point q has enough neighboring points around it. The point q is considered

Fig 1. A united DAG.

https://doi.org/10.1371/journal.pone.0180570.g001
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to be density-reachable from the point p provided that there is a sequence of points p1,. . .,pn
(p1 = p and pn = q) where each pi+1 is directly density-reachable from pi. q and p are density-

connected to each other if they are both density-reachable from another one. It is noticed that

density-reachability is an asymmetric relation, but density-connectivity is a symmetric one.

Generally, two objects in the same cluster may have several common neighbors. For in-

stance, more common friends two persons have, more likely they belong to the same commu-

nity in social networks. If two data points are density-reachable and have several common

neighbors, they are more likely to be a cluster. In addition, it is required to adjust two parame-

ters (MinPts and ε) in DBSCAN, but it is always hard to predetermine their values. Therefore,

DBGPWN is proved to be more suitable in weighted networks although it is proposed based

on the basic idea of DBSCAN. The new algorithm determines dense subgraphs in weighted

PPI networks. The basic idea of DBGPWN is to expand regions with significantly high density

into cluster and discover clusters with arbitrary shapes in spatial database.

Definition 4 (Directly Density-reachable) Given a PPI network weighted by semantic simi-

larity G(E,V,W), two proteins i 2 V and j 2 V, a parameter θ� [0,1], the proteins i and j are

defined to be density-reachable directly if SCC(i,j)� θ.

Definition 5 (Density-reachable) Given a PPI network weighted by semantic similarity G
(E,V,W), two proteins i 2 V and j 2 V, the proteins i and j are defined to be density-reachable

provided that there is a sequence p1,. . .,pn (p1 = i and pn = j) of proteins in Vwhere pi+1 and pi
are directly density-reachable.

Definition 6 (Density-connected) Given a PPI network weighted by semantic similarity G
(E,V,W), two proteins i 2 V and j 2 V, the proteins i and j are defined to be density-connected

provided that there is a protein k which is both density-reachable to i and j. In addition, if i
and j are directly density-reachable without a third protein being directly density-reachable to

them, i and j are still defined to be density-connected.

These definitions can be modified to make clustering more accurately. IfMinPts = 3, the

points x and y are both directly density-reachable to each other on two cases respectively, as

shown in Fig 2. However, x and y should be identified to be more similar on the condition (b)

in Fig 2, as they have more common density-reachable points than that on the condition (a) in

Fig 2.

Two points x and y both have four ε-neighbours, the difference is the number of common

neighbors(Fig 2). Generally, two objects in a same cluster may have several common neigh-

bors. If two data points are density-reachable and have several common neighbors, they are

more likely to be the part of a cluster. In addition, it is required to adjust two parameters

(MinPts and ε) and parameters setting is usually hard to be determine in advance. Therefore,

we propose a new measure of directly density-reachable. Its fundamental principles are analo-

gous to edge-clustering coefficient.

For a PPI network weighted by semantic similarity, this measure is essentially a calculation

of biological similarity based on the network topology, so it can be called as semantic clustering

coefficient defined as following.

Definition 7 (Semantic Clustering Coefficient) Given a PPI network weighted by semantic

similarity G(E,V,W), and its adjacency matrix Ai,j(, Ai,j equals to the weightWi,j of this edge if

there is an edge between nodes i and j in G, else it equals to 0; Ai,j = 1 if i = j), the semantic clus-

tering coefficient between two proteins i and j is represented as Eq 4.

SCCði; jÞ ¼

X

k2V

fAi;k þ Ak;jjAi;k > 0&Ak;j > 0g
� �

� 2

X

k2V

Ai;k þ
X

k2V

Ak;j
ð4Þ
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If there are several proteins being semantic similar to both proteins i and j, and the protein i is

semantic similar to the protein j as well, SCC(i,j) may be high. Essentially SCC(i,j) depends on

the number of the high weighted triangles containing i and j. In a PPI network, their intra-

interactions may be high if a protein in a complex has more interactions with others. There-

fore, a complex may contain many triangles with high weighted interactions in a weighted PPI

network.

As shown in Fig 3, it shows several proteins and their interactions with supposed weights.

The points a and b show an obvious clustering feature because their three high weighted

interactions form a triangle. Based on Eq 4, SCC(a,b) = 0.725. The semantic clustering co-

efficient of two proteins is applied to determine whether they are directly density-reachable

in DBGPWN, and it can be regarded as the probability value if they belong to the same

complex.

In the DBSCAN algorithm, the parameters ε and MinPts represent the given minimum

distance and the number of nodes within a given neighborhood respectively. Our proposed

DBGPWN algorithm contains only one parameter, and in DBGPWN algorithm, two nodes

are defined to be directly reachable by density if their semantic coefficient SCC is equal to or

greater than the parameter θ. That is to say, these two protein nodes are regarded to be con-

nectable. To explain the DBGPWN algorithm more explicitly, the pseudo-code is shown in

Table 1.

Fig 2. Two cases of directly density-reachable.

https://doi.org/10.1371/journal.pone.0180570.g002
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Fig 3. Clustering property in weighted networks.

https://doi.org/10.1371/journal.pone.0180570.g003

Table 1. The Pseudo-code of DBGPWN algorithm.

Algorithm DBGPWN

Input: A weighted PPI network G(E,V,W), a parameter θ;

Output: Clusterings C1,. . .,Cn;

Begin:

1. calculate semantic clustering coefficient between the connected proteins;

2. Let i, j is two proteins;

3. For (i = 0; i<V; i++)

4. Calculate the SCC of each proteins

5. if (protein i do not belong to any cluster) then

6. create a new cluster C;

7. For (j = 0; j<V; j++)

8. Compare the SCC of proteins

9. if (protein j do not belong to any cluster) then

10. if (i is density-connected to j) then

11. insert protein j into C;

12. End For

13. End for

End.

https://doi.org/10.1371/journal.pone.0180570.t001
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Results and discussion

Experimental data

In the experiments, four popular datasets-Gavin, DIP, Krogan and MIPS are used to verify our

proposed DBGPWN algorithm.

Gavin and DIP were used to construct the network. The Gavin dataset consists of 1430 pro-

teins and 6531 interactions, which is a relatively dense and small-scale protein network. The

DIP dataset (20091230 version) consists protein information, interaction confidence and

experimental techniques for detecting interactions, which constitute a network of relatively

sparse large-scale protein networks. And it contains 4930 proteins and 18693 interactions.

Krogan and MIPS consist of 3581 proteins, 14077 interactions and 4546 proteins, 12317 inter-

actions respectively.

Evaluation metrics

To measure the comparability between predicted clusters and known complexes, we employ

the most widely evaluation metrics used in experiments. Their related definitions are described

below.

Definition 8 (Overlapping Score) Given a predicted cluster P and a known complex K, the

Overlapping Score between P and K is defined as follows.

OSðP;KÞ ¼
jVP \ VK j
jVPj � jVK j

jVP \ VK j 6¼ 1

0 jVP \ VK j ¼ 1

ð5Þ

8
><

>:

where |VP \ VK| is the sum of the common proteins in the predicted cluster P and the known

complex K, |VP| is the size of the predicted cluster and |VK| is the size of the known complex.

Sensitivity and specificity are two widely used measures for evaluation algorithm perform-

ance.

Definition 9 (Sensitivity and Specificity) Let TP (True Positive) represents the number of

the predicted clusters matched with the known complexes when OS(P,K)� σ, FP (False Posi-

tive) equals the total number of the predicted clusters minus TP, and FN (False Negative) rep-

resents the number of the known complexes which are not matched with the predicted

clusters. Then, sensitivity (Sn) and specificity (Sp) can be respectively expressed as follows.

Sn ¼
TP

TPþ FN
ð6Þ

Sp ¼
TP

TP þ FP
ð7Þ

Sensitivity is the fraction of the true-positive predictions out of all the true ones, and specificity

is the fraction of the true-positive predictions out of all the positive ones[13]. To make a com-

prehensive comparison, F-measure is used as an evaluation metric which is a comprehensive

metric combined sensitivity and specificity. It can be formally represented as Eq 8.

F � measure ¼
2 � Sn � Sp
Sn þ Sp

ð8Þ

Moreover, we employ the p-vlaue to measure the biological relevance of the returned clusters

and the ability of a method in term of clustering proteins.
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Definition 10 (p-vlaue) Given a cluster of size n withm proteins sharing a common annota-

tion x, then the probability of observingm or more proteins annotated with x out of those n
proteins is defined as p-value.

p� value ¼
Xn

i¼m

CiM � C
n� i
N� M

CnN

�
�
�
�
�
i < M ^m > 1

( )

ð9Þ

where N is the number of proteins in the database withM of them sharing annotation x. Thus,

the lower the p-value is, the more significant for representation the associated GO term x is.

Generally, the recommended cutoff value of p-value to distinguish significant from insignifi-

cant groups is 0.05.

Definition 11 (MMR) MMR (Maximum Matching Ratio) is a maximal matching measure

in a bipartite graph. The two sets of nodes in the graph represent the references and predicted

complexes. An edge which connects the reference complex and the predicted one is weighted

by the corresponding overlap score.

We compare DBGPWN with MCL[26], CMC[13] MCODE[27], RNSC[28] CORE[29],

ClusterOne[16] and FGN in our paper. To make a reasonable comparison, we run DBGPWN

on the networks of proteins dataset in which the interactions have been weighted by Unit Sim-

ilarity Measure. All the protein complexes identified are compared with standard known com-

plexes. The performance of each method is evaluated in terms of sensitivity, specificity and

F-measure.

DBGPWN achieves good performance on the Gavin data set (Fig 4). From Fig 4(A), we can

see that the DBGPWN has obvious advantage when OS� 0.2. The value of sensitivity in

DBGPWN is twice as high as that in MCODE and RNSC algorithms. Therefore, DBGPWN

has a good experimental effect on the Gavin dataset compared with other seven algorithms.

The experimental result shows that DBGPWN is more effecitve than other algorithms on

the DIP data set (Fig 5). DBGPWN has achieved the best results compared to other algorithms

in the aspects of sensitivity or specificity. The protein complexes identified by DBGPWN on

this dataset is more accurate as shown in above.

We can see that the DBGPWN algorithm has not achieved good performance on the Kro-

gan data set (Fig 6). The sensitivity values of RNSC and CORE algorithms are higher than

that of DBGPWN when OS = 0.25. MCODE is the most effective method when OS = 0.5. But

DBGPWN shows good performance in other OS value. So it is still advantage good one as

compared with than other contrast methods.

Fig 4. Performance comparisons on the Gavin.

https://doi.org/10.1371/journal.pone.0180570.g004
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DBGPWN has achieved good experiment result in terms of sensitivity (Fig 7). Its value is

higher than other contrast methods. The specificity of DBGPWN is slightly lower than that of

MCODE when OS = 0.05. But the former still is the best effective algorithm in sensitivity and

specificity metrics. Its specificity is twice times higher than that of CMC and MCODE.

F-measure is a comprehensive metric. It can describe the merit of the experiment results in

details (Fig 8). In Fig 8(A), we can get the following inclusions. When OS< 0.15, DBGPWN

Fig 5. Performance comparisons on the DIP.

https://doi.org/10.1371/journal.pone.0180570.g005

Fig 6. Performance comparisons on the Krogan.

https://doi.org/10.1371/journal.pone.0180570.g006

Fig 7. Performance comparisons on the MIPS.

https://doi.org/10.1371/journal.pone.0180570.g007
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algorithm has not gotten an effective result. But with the OS value increases, DBGPWN shows

obvious advantages. Meanwhile, as shown in Fig 8(C), the F-measure of DBGPWN and RNSC

algorithms are not perfect, but the experimental results of those two methods are better than

other ones. In Fig 8(B) and 8(D), it can be seen that DBGPWN is an effective method.

We present two clusters returned by our method with low p-values, and they are well matched

with known complexes. DBGPWN groups a cluster which contains 11 proteins; this cluster is

matched with a known protein complex in the Gavin. The 6 proteins in the cluster are annotated

with a common GO term DNA repair (GO: 0006281) of biological process, and the correspond-

ing p-value is 6.68e-15. In addition, there are 6 proteins sharing another biological process cellu-

lar response to DNA damage stimulus (GO: 0006974), and the corresponding p-value is 2.89e-14.

DBGPWN also finds a high quality cluster with 6 proteins (YDL225W, YDR168W, YCR002C,

YJR076C, YLR314C, and YHR107C), and 5 out of them can be discovered in a known complex

Cytoskeleto septin filaments (YDL225W, YDR218C, YGR059W, YCR002C, YJR076C, YLR314C,

and YHR107C). For the molecular function nucleotide binding (GO: 0000166) annotating 5 proteins

in the cluster, the p-value is 0.00027. For themolecular function guanosine triphosphate binding
(GO: 0005525) shared with 5 proteins, the p-value is 9.1e-9. Moreover, 4 proteins perform themolec-
ular function structural molecule activity (GO: 0005198), and the p-value of the cluster is 6.04e-9.

MMR shows the matching rate of protein complexes on the different datasets (Fig 9). We

can see that the DBGPWN performs slightly worse than the MCODE method on the Gavin

dataset, but it is much better than other ones on the MIPS dataset. Although the experimental

results are not same on different datasets, we can judge that DBGPWN is more effective in

identifying protein complexes than other four contrast algorithms.

Conclusions

In the paper, we made the following two contributions. Firstly, a simplified semantic similarity

measurement is used to measure the strength of each interaction in PPI networks. Secondly, a

Fig 8. F-measure performance comparisons on the four datasets.

https://doi.org/10.1371/journal.pone.0180570.g008
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new density-based algorithm is proposed to search for the dense regions in the weighted PPI

networks. And the proteins coupled tightly are classified into the same cluster. The experimen-

tal results demonstrate that DBGPWN has a good clustering performance.(i) DBGPWN does

not require any auxiliary information, and it is not sensitive to the input parameter.(ii) Com-

pared with MCL, CMC, MCODE, RNSC, CORE, ClusterOne and FGN, DBGPWN can get

more accurate protein complexes.
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