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Abstract

The 1918 influenza pandemic was characterized by multiple epidemic waves. We investi-

gated reactive social distancing, a form of behavioral response where individuals avoid

potentially infectious contacts in response to available information on an ongoing epidemic

or pandemic. We modelled its effects on the three influenza waves in the United Kingdom.

In previous studies, human behavioral response was modelled by a Power function of the

proportion of recent influenza mortality in a population, and by a Hill function, which is a func-

tion of the number of recent influenza mortality. Using a simple epidemic model with a

Power function and one common set of parameters, we provided a good model fit for the

observed multiple epidemic waves in London boroughs, Birmingham and Liverpool. We fur-

ther applied the model parameters from these three cities to all 334 administrative units in

England and Wales and including the population sizes of individual administrative units. We

computed the Pearson’s correlation between the observed and simulated for each adminis-

trative unit. We found a median correlation of 0.636, indicating that our model predictions

are performing reasonably well. Our modelling approach is an improvement from previous

studies where separate models are fitted to each city. With the reduced number of model

parameters used, we achieved computational efficiency gain without over-fitting the model.

We also showed the importance of reactive behavioral distancing as a potential non-phar-

maceutical intervention during an influenza pandemic. Our work has both scientific and pub-

lic health significance.

Introduction

The influenza pandemic of 1918 had been regarded as the deadliest pandemic in history. It

had caused an estimated 50 to 100 million deaths worldwide [1, 2]. Due to its exceptional

lethality and unusual epidemiological features, an in-depth understanding of the 1918 pan-

demic could provide insights to future influenza pandemic control and intervention. The 1918

pandemic was characterized by multiple waves of mortality. In the United Kingdom, the
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pandemic took place as three distinct waves: the first wave in the summer 1918, the second

wave in the autumn of the same year, and the third wave in the spring of 1919.

Behavioral epidemiology of infectious diseases focuses on behavior of the individuals as a

key factor to predict infection trajectories [3]. “Reactive social distancing” is a form of behav-

ioral responses where individuals avoid potentially infectious contacts in response to available

information on an ongoing epidemic or pandemic. Such behavioral responses could include

avoiding mass gathering, putting on protective masks, actively maintaining personal hygiene

and getting vaccinated [4]. However, the exact nature of behavioral responses could vary from

disease to disease.

Many previous studies investigated multiple waves of 1918 influenza pandemic. Merler

et al. proposed co-infections as a determinant of multiple waves [5]. Several other studies have

focused on identifying the underlying causes of multiple waves and the impact of behavioral

responses [6–8]. He et al. showed that human behavioral response was a key factor that was

responsible for the temporal changes in transmission rates of the three epidemic waves in

England and Wales. They described the behavioral response in the form of a Power function

which described the proportion of recent mortality over the whole population, and said

response has the largest impact on the epidemic waves of weekly infections [6]. Poletti et al.

studied the 2009 H1N1 influenza pandemic and concluded that human behavioral changes

responding to the total number of infections could have a significant impact on the timing,

dynamics and magnitude of the epidemic spread [7]. Bootsma and Ferguson modelled the

behavioral responses in the form of the Hill function which described the number of mortality.

They showed that the response could have a stronger impact on the weekly deaths than on the

overall mortality [8]. These studies all pointed towards human behavioral responses being a

key factor in the occurrence of multiple waves in the 1918 influenza pandemic.

Although previous studies investigated the impact of behavioral responses on the 1918

influenza pandemic, many questions remain unanswered. The impact of reactive social dis-

tancing on the final epidemic size remains unknown. Previous studies which used an epidemic

model that included a common set of parameters for different cities did not result in a good

model fit. They also lacked a comparison of different forms of functions describing behavioral

responses [6, 8]. In this study, we aimed to compare two mathematical functions of reactive

social distancing: Power function, which is a function of the proportion of recent influenza

mortality in a population, and Hill function, which is a function of recent influenza mortality.

This manuscript is arranged as follows: we fitted our model with the same set of input

parameters to the observed data in London boroughs, Birmingham and Liverpool. We applied

those model parameter values obtained from fitting three cities to all 334 administrative units

in England and Wales using population sizes of individual administrative units. We estimated

the impact of reactive social distancing on the final epidemic size. In the S1 Appendix, we dem-

onstrated theoretically how oscillations are induced by reactive social distancing.

Methods

Data

We analysed data on weekly influenza deaths between June 29, 1918 and May 10, 1919 from

334 administrative units in London boroughs, Birmingham and Liverpool in England. These

data are publicly available from UK Data Services [9].

Daily temperature data for the same time period are obtained from UK Met Office Hadley

Centre for Climate Change, where they provided Central England temperature data (http://

www.metoffice.gov.uk/hadobs/hadcet/data/download.html).

Reactive social distancing
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Social distancing

Behavioral functions are used to model how people reduce their exposure to potentially infec-

tious contacts in response to the reported mortality during an influenza pandemic [6, 8]. In

Eq (1), we described three forms of behavioral functions (B(W(t)) that could affect the trans-

mission rates: the Power function [6], the Hill function [8] and the modified-Hill function. We

denote the recent mortality as W(t), the total population size as N, and the intensity of behav-

ioral response as κ or N/κ.

We compared the Taylor series expansion of the Power function and the Hill function at W
(0) = 0. We noted that the coefficient of W(t) in the Hill function, N/κ, is comparable to the κ
in the Power function. They both indicated the intensity of behavioral responses which

depended on the perceived risk of infection. Furthermore, we obtained a Modified-Hill func-

tion when we replaced κ with N/κ in the Hill function. The first two terms of the Taylor series

expansion in the Power function and the modified-Hill function are identical.

BðWðtÞ; k;NÞ ¼

Power function 1 �
WðtÞ

N

� �k

¼ 1 � k
WðtÞ

N
þ

kðk � 1Þ

2

WðtÞ
N

� �2

þ � � �
ð1aÞ

Hill function
k

kþWðtÞ
¼ 1 �

1

k
WðtÞ þ

1

k2
WðtÞ2 þ � � � ð1bÞ

Modified � Hill function
1=k

1=kþWðtÞ=N
¼ 1 � k

WðtÞ
N
þ k2

WðtÞ
N

� �2

þ � � � ð1cÞ

As shown in Fig 1, when
WðtÞ

N is close to zero, the Taylor series expansion suggests that the

Power function and the modified-Hill function lead to almost the same value. However, when

the proportion of recent mortality gets larger, the value of the Power function approaches

those of the Hill function. The key difference is whether W(t) is scaled by N or not, i.e. whether

we are considering the proportion of recent mortality or the exact mortality.

Model

We employed a simple Susceptible-Infectious-Recovered (SIR) model which included a behav-

ioral function. Similar results were achieved if an additional “exposed” class is included [6].

The model is represented as follows:

_S ¼ �
bðtÞ
N

SI;

_I ¼
bðtÞ
N

SI � gI;

_R ¼ g � ð1 � �ÞI;
_D ¼ g�I � gD;
_M ¼ gD;
_W ¼ gD � lW:

ð2Þ

As in Eq (2), we assumed people behaved with reactive social distancing according to W,

where such behavior could be described as an exponential function with decaying rate λ,

which referred to the exponentially fading memories of information variables in behavioral
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epidemiology [4]. As in previous studies on the 1918 pandemic, we adopted the simplifying

assumption that population size (N) is constant throughout the pandemic course, although

this assumption is not realistic due to the large number of influenza mortality. The population

sizes in London boroughs, Birmingham and Liverpool were approximately 4,484,523, 919,444

and 802,940 during the study period respectively. ϕ denotes the case-fatality ratio. Parameters

γ, g and λ are rates at which individuals moved from one class to the next. γ−1 is the mean

infectious period, fixed at four days [10]. g−1 is the mean time from loss-of-infectiousness to

death, fixed at eight days. Thus, the mean duration from infection to death is 12 days [8]. λ−1 is

the mean duration of delay in behavioral responses. Following [6], β(t) is the transmission rate

Fig 1. Simulation comparison of the three behavioral functions using the same parameter settings: N = 4000,000,

κ = 1350. Black line, red dashed line and blue dotted line represent Power function, Hill function and modified-Hill function,

respectively.

https://doi.org/10.1371/journal.pone.0180545.g001
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function which takes the following form:

bðtÞ ¼ b0 � e� xTðtÞ � ½1þ aHðtÞ� � BðWðtÞ; k;NÞ; ð3Þ

where the four components are described as follows:

1. β0 is the constant baseline transmission rate.

2. e−ξT(t) is the term representing the temperature effect, T(t) is the daily time series for tem-

perature, where we simulated from the weekly time series obtained from UK Met Office.

The parameter ξ describes the intensity of the temperature effect.

3. [1 + αH(t)] is the school term factor. It has an amplitude parameter α and a school day

function H(t). H(t) is a step function that takes a large value on school days and a small

value on holidays [6]. Easter and Christmas holidays are known. The summer vacation

period (t1, t2), which are unknown, has to be estimated. During the 1910’s, a large number

of adults and school children were involved in summer harvesting. Thus there were an

impact on influenza transmission [6].

4. The last factor is the human behavioral term B(W(t);κ, N) that is expressed differently for

the Power function, Hill function and modified-Hill function. W(t) denotes the recent

influenza mortality. κ or N/κ represent the intensity of human behavioral response towards

the perceived risk of influenza infection.

Finally, we define the basic reproductive number R0 ¼
hbðtÞi

g
with W(t) = 0. We have W = 0

at disease-free equilibrium [6]. Since the temperature effect is on average smaller than one, we

have hβ(t)i< β0. However, we chose to estimate the effective reproductive number, ReffðtÞ,
instead. ReffðtÞ is defined as the average number of secondary case of infection per primary

case at time t [11]. It is more appropriate to use ReffðtÞ than R0 in this study because we need

to estimate the final epidemic size, which reflects the depletion of susceptible individuals

under reactive social distancing. We have ReffðtÞ ¼ bðtÞSðtÞ=ðgNÞ [12]. An ReffðtÞ � 1 indi-

cates that the epidemic is under control.

Modelling framework

We fit the model as described in Fig 2 to the reported weekly influenza deaths from the three

largest cities: London boroughs, Birmingham and Liverpool during the 1918-1919 influenza

pandemic. We further modelled for all 334 administrative units in England and Wales by

incorporating their respective population sizes (N), and using the epidemiological parameters

of the three cities. A key difference from previous models by Bootsma and Ferguson [8] and

He et al. [6] is that they used distinct parameters for different administrative units. By using a

common set of parameters, we greatly reduced the number of free parameters and computa-

tional time in our work. Previous studies showed that the transmissibility during the pandemic

showed little spatial variations [13, 14], thus our assumption is also biologically plausible.

We simulated the epidemic dynamics in Eq (2) using the Partially Observed Markov Pro-

cess model (POMP, also known as Hidden Markov Model) within a plug-and-play framework

[15]. Using the iterated filtering method [16, 17], we computed the maximum likelihood esti-

mate of the following parameters: baseline transmission rate (β0), case-fatality ratio (ϕ), impact

of school term (α), impact of air temperature (ξ), intensity of reactive social distancing (κ),

decay rate of reactive social distancing (λ), and school term start date (t1) and end date (t2).

We used Euler-multinomial algorithm with a fixed daily time step and incorporated the daily

temperature and school dates for model-fitting. We accounted for measurement noise and

Reactive social distancing

PLOS ONE | https://doi.org/10.1371/journal.pone.0180545 July 12, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0180545


used negative binomial process to compute the maximum log-likelihood (See S1 Text for

details). The POMP model has been widely used in infectious diseases modelling studies,

including Ebola, cholera, malaria, influenza, as well as studies in finance and ecological

dynamics [15, 18–35]. The POMP package in R was implemented (http://kingaa.github.io/

pomp/).

We performed model fittings of the POMP package on workstations. We transformed all

parameters into the range (−1,1), by taking logarithm on all positive parameters, or using

the logistic function to the parameters that have values between 0 and 1. We used the Iterated

Filtering method for multiple times to achieve convergence of model fitting. At each iteration,

the current estimates were used as the initial parameter values to ensure that the log-likelihood

is improved at each iteration. In order to check that the maximum log-likelihood is indeed a

true global maximum, we chose to fix each parameter at several points (e.g. 20 points) across a

wide range of values and perform iterated filtering on other parameters. This step yielded the

maximum log likelihood as a function of this parameter. Consequently, we achieved conver-

gence of the maximization on smooth maximization profiles.

The likelihood-based inference framework is further discussed in S1 Text and S1 Fig. Some

oscillations induced by reactive social distancing are discussed in S1 Appendix.

Results

Baseline fitting results

Fig 3 shows the best-fitting simulation models using three different behavioral functions, i.e. a

model with the Power function (Fig 3(a)–3(c)), the Hill function (Fig 3(d)–3(f)) and the modi-

fied-Hill function (Fig 3(h)–3(j)). The inset panels show the log-likelihood profile of each

model as a function of the parameter κ. Since the number of parameters of the three models

Fig 2. Schematic diagram showing the transmission dynamics during an influenza pandemic. S, I and R denote the number of susceptible,

infectious, and recovered individuals, respectively; D denotes the number of infected individuals who are no longer infectious and are progressing

to death in influenza or pneumonia causes; M denotes the cumulative number of influenza-related deaths; and W denotes recent influenza

mortality, a proxy indicator for the perception of pandemic severity.

https://doi.org/10.1371/journal.pone.0180545.g002
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Fig 3. Simulation comparisons of the weekly influenza mortality during the 1918 pandemic in London boroughs, Birmingham and Liverpool.

We modelled using three different behavioral functions: (a-c) Power function, (d-f) Hill function, and (g-i) modified-Hill function. Bold blue line: reported

cases; thin red line: simulation median. The shaded area indicates the 95% confidence interval. The inset panels show the profile log-likelihood as a

function of κ.

https://doi.org/10.1371/journal.pone.0180545.g003
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are the same, their maximum log-likelihoods (MLL) could be directly compared. The MLLs

for the Power function, the Hill function and the modified-Hill function are -596.12, -659.58

and -596.34, respectively. Since a larger MLL indicates a better model fit, and the Power func-

tion and the modified-Hill function have very similar goodness-of-fit levels, we concluded that

these two functions provided the best model choice in this study.

Previous studies assumed key parameters such as R0 and κ to be different for each city in

order to achieve the best model fit [6, 8]. In contrast, our model uses a common set of parame-

ters (i.e. same κ and R0 in the three cities) but different population sizes and initial conditions

for each of the three cities. Of these models, the Power function and the modified-Hill function

demonstrated good model fit (Fig 3).

Fig 4 compares the three behavioral functions with the maximum likelihood estimates of κ.

The Power function and the modified-Hill function largely overlaps, but the Hill function

clearly deviates from the other two functions.

Fig 5 shows the estimated daily reproductive number R0 (thin red curve) and the effective

reproductive number, Reff (blue bold curve). Since we assumed all input parameters to be

identical, the estimated daily reproductive numbers were identical in all three cities. We set

W = 0, therefore fluctuations in daily reproductive numbers can only be due to changes in

school terms and daily temperature. For the effective reproductive number, we used the esti-

mated W(t) and the susceptibles, S(t). Thus Reff is different between the cities. When Reff is

different from 1, the mortality curve changes with a time lag of about 12 days.

We summarised all parameters estimated in the best-fit model that uses a Power function

in Table 1. All parameter values are largely biologically reasonable [6, 8]. Thus, we found a

model with common parameter values in all three cities. The only differences are in the popu-

lation sizes and the initial conditions, where we denoted the initial susceptible population and

initial population size to be S0 and I0, respectively. The estimated initial conditions were simi-

lar among the three cities.

Impact of reactive social distancing

As the goodness-of-fit of the models were similar between the Power function and the modi-

fied-Hill function, we chose the Power function for further exploration of the theoretical

impacts of reactive social distancing on the pandemic. The theoretical impact depends on the

intensity parameter (κ) and the decay parameter (λ). We introduced the final epidemic size

(Z) and the weekly mortality which reflect the magnitude of the pandemic.

The basic reproductive number R0 is the key epidemiological parameter in infectious dis-

ease transmission. It is defined as the average number of secondary cases arising from an aver-

age primary case in an entirely susceptible population [36]. If R0 > 1, the disease will spread.

However, if R0 < 1, the disease will not spread [37].

The final epidemic size is the proportion of a population who have been infected during an

epidemic. It is determined when the epidemic ends and there are no more infectious individu-

als in the population. Suppose s(1) is the proportion of susceptible at the end of the epidemic.

Then the final size of the epidemic can be defined as 1 − s(1). Without human behavioral

intervention, s(1) is the root of the final-size equation [38, 39],

ln sð1Þ ¼ R0ðsð1Þ � 1Þ: ð4Þ

Therefore, the final epidemic size can be calculated as follows:

Z ¼ 1 � e� R0Z: ð5Þ

Reactive social distancing
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With the inclusion of the behavioral term, the effective reproductive number is smaller,

which leads to a smaller final epidemic size. However, a closed-form solution could not be

obtained, and numerical simulation is needed. Figs 6 and 7 show the simulation results of the

impact of the behavioral term on the final epidemic size and weekly mortality, respectively.

Fig 7 shows the cumulative number of weekly mortality by varying the values of the inten-

sity parameter (κ) and decay parameter (λ) in the behavioral term. In Fig 7(a), increasing κ
from 1,000 to 10,000 generates oscillations in the simulated weekly mortalities. In Fig 7(b), by

fixing κ at 10,000, λ serves as a tuning parameter which changes the frequency and duration of

the oscillations.

Fig 4. Comparison among the values of three behavioral functions with their best-fitted κ.

https://doi.org/10.1371/journal.pone.0180545.g004
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Applying the model to 334 administrative units

We applied our model with parameter values from fitting the three largest cities to all 334

administrative units in England and Wales. The only parameter we need to incorporate into

this model are the population sizes of the administrative units. As the three cities had similar

initial conditions, we used that of Liverpool’s. The results are displayed in Fig 8. We computed

the Pearson’s correlations between the observed (Fig 8(a)) and simulated data that considers

school term, temperature and behavioral changes (Fig 8(b)) for each administrative unit. The

median correlation is 0.636. This shows that our model performs reasonably well in at least

half of the 334 administrative units using only data from three major cities. Previous studies

showed that the model fit is inadequate when the behavioral terms are removed, even if the cit-

ies are being fitted separately [6, 8]. In Fig 8(c), we set W = 0 and using other parameters from

Fig 8(b), we show the simulation results of the 334 administrative units. The model can only

yield the first two waves with the third wave missed. Furthermore, we compared the overall

Fig 5. Estimated daily basic reproductive number R0 (thin red curve), effective reproductive number Reff (bold blue curve) and weekly influenza

mortality (shaded region). The average basic reproductive number is 3.24 in the three cities.

https://doi.org/10.1371/journal.pone.0180545.g005

Table 1. Summary of all parameters estimated in the best-fit model using the Power function. Distinct parameters could have different values for the

three cities. Common parameters have the same values for all three cities.

Parameter London boroughs Birmingham Liverpool Type

initial, S0/N 0.685 (0.503, 0.836) 0.677 (0.450, 0.806) 0.632 (0.253, 0.950) distinct

initial, I0 9552 (7116, 14611) 3760 (2302, 4964) 927 (610, 1521) distinct

behavioral, κ 1323.2 (1185.9, 1484.8) common

delay, λ−1 (days) 12.43 (10.73, 14.55) common

CFR, ϕ 0.0118 (0.0108, 0.0129) common

baseline, β0 4153.8 (3067.9, 8424.1) common

school-term, α 0.437 (0.377, 0.498) common

temperature, ξ 0.04048 (0.03441, 0.04568) common

summer vacation start, t1 June 23 (May 24, June 28) common

summer vacation end, t2 August 21 (Aug 12, August 31) common

https://doi.org/10.1371/journal.pone.0180545.t001
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Fig 6. Contour plots of the cumulative number of deaths with R0 ¼ 1:5 (panel a) and R0 ¼ 2 (panel b). N = 2,000,000, S0 = 0.8N, I0 = 100,

g−1 = 8, γ−1 = 4, ϕ = 0.01. κ represents the intensity of reactive social distancing behavior, and λ represents the rate of decay of reactive social

distancing behavior.

https://doi.org/10.1371/journal.pone.0180545.g006

Fig 7. Cumulative number of weekly mortality using different values of κ and λ. With N = 2,000,000, S0 = 0.8N, I0 = 100, g−1 =

8, γ−1 = 4 and ϕ = 0.01, the effects of κ and λ on the simulated weekly mortalities are shown in panels (a) and (b) respectively. In

panels (a), we fixed λ−1 = 10 days, and the cumulative weekly mortalities are 16% smaller when we have κ = 10,000 than κ = 1,000.

In panel (b), when we fixed κ = 10,000, the cumulative weekly mortalities will be 27% smaller when we have λ−1 = 5 days than λ−1 =

20 days.

https://doi.org/10.1371/journal.pone.0180545.g007
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attack rates in the two scenarios: using all three factors, the estimated infection attack rate is

about 28.5% (95% confidence interval (CI): 14.1%, 35.9%). Without behavioral changes, the

estimated infection attack rate is about 40.8% (95% CI: 34.0%, 46.9%). Thus, there are substan-

tial reduction in attack rates due to behavioral changes.

We discussed the oscillations induced by reactive social distancing in S1 Appendix. We

obtained an interesting linear relationship between the durations of behavioral reaction and

the period of transient oscillations (S1 Appendix).

Discussion and conclusions

Our study compared three forms of behavioral functions that described reactive social distanc-

ing, which assumes individuals either respond to the number of recent mortality or the pro-

portion of mortality in the overall population. Using simple epidemic models to fit mortality

cases in London boroughs, Birmingham and Liverpool, we showed the behavioral functions in

the form of the Power function or the modified-Hill function outperformed the Hill function

Fig 8. Comparison between the observed and simulated patterns of influenza mortality in 334 administrative units. (a) Observed data. (b)

Simulated data that considers school term, temperature, and behavioral changes. (c) Without behavioral changes. Administrative units are ordered in

descending population sizes from top to bottom.

https://doi.org/10.1371/journal.pone.0180545.g008
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in terms of model fit. These results suggest that the proportion of mortality plays a more

important role than the number of recent mortality.

Our modelling techniques are an improvement compared with earlier studies [6, 8]. We

showed that a common set of parameters and temperature from Central England could be

used for modelling the 334 administrative units. Bootsma and Ferguson [8] developed an epi-

demic model to study the impacts of public health interventions on the 1918 influenza pan-

demic in 16 US cities. He et al [6] proposed another epidemic model which incorporates

school opening and closing, temperature changes and changes in human behavioral responses

during the 1918 influenza pandemic in 334 administrative units in England and Wales. How-

ever, in both studies, instead of using a common set of model input parameters, unique model

input parameters were needed for model fitting of each city or administrative units. Here, our

model requires only a common set of parameters for the three-city or the subsequent

334-administrative unit model-fitting procedure, and the reduced number of parameters used

represented significant improvement in computational efficiency and resulted in more robust

estimates. Caley et al. [40] studied the 1918 influenza pandemic in Australia and showed that

reactive social distancing had a significant impact on the observed multiple epidemic wave and

final epidemic size. Our effective reproductive numbers are comparable to these studies.

Our theoretical damping oscillation results provide a plausible explanation to the observed

multiple waves, where reactive social distancing in response to the high recent proportion of

influenza deaths could lead to a dampening of epidemic waves. However, with the decline in

the proportion of influenza deaths, public risk perception could be lowered as well, leading to

less social distancing which could eventually induce another epidemic wave. In addition, we

showed that reactive social distancing could lead to reduction in final epidemic size.

Our findings are plausible and are consistent with earlier mathematical modelling studies

on the 1918 influenza pandemic. Our estimated initial proportion of susceptible individuals

are around 0.650, which are comparable with previous studies by Mathews et al [41], Bolton

et al. [42], Gani et al. [43] and He et al. [6]. Our estimates of the initial number of infectious

individuals and school term intensity are also consistent with He et al [6].

Compared to previous studies, our methods provide several improvements. First, by using

a common set of model parameters for fitting the three-city model, we have greatly enhanced

our computational efficiencies and have also resulted in more robust estimates of the final epi-

demic size. Second, by comparing different forms of social distancing, we identified that peo-

ple responded most to the proportion of influenza mortality during the 1918 pandemic. Third,

our theoretical results suggest an almost perfect linear relationship between the mean period

of damping oscillations and the duration of reactive social distancing under ideal conditions.

These findings have important implications on the impact of behavioral reaction on influenza

pandemic waves.

Major limitations of our study include the lack of direct historical behavioral data on quan-

tifying the extent of reactive social distancing. Also, other non-pharmaceutical interventions

could have played a role on the influenza pandemic patterns observed, but these measures are

not considered in our model. There could be differences in summer vacation periods and daily

temperature data in the three cities. However, such detailed data are not accessible to us. In

future epidemics or pandemics, such information can be gathered and incorporated into the

framework developed in this work. Furthermore, our model failed to achieve reasonable

model fits for small administrative units due to their smaller population sizes because the

model parameters are estimated from large cities. We were indeed more interested in fitting

large cities. Finally, we did not consider the effect where epidemics in small administrative

units are likely driven by large cities.
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In conclusion, a simple model that considers reactive social distancing, temperature, and

school term could explain the observed multiple waves and final epidemic size in London bor-

oughs, Birmingham and Liverpool during the 1918 influenza pandemic. Despite societal

changes, our historical analyses on the 1918 pandemic could still serve as an evidence base for

future pandemic planning.
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