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Abstract

A new ichnospecies of a large theropod dinosaur, Megalosauripus transjuranicus, is

described from the Reuchenette Formation (Early–Late Kimmeridgian, Late Jurassic) of

NW Switzerland. It is based on very well-preserved and morphologically-distinct tracks

(impressions) and several trackways, including different preservational types from different

tracksites and horizons. All trackways were excavated along federal Highway A16 near

Courtedoux (Canton Jura) and systematically documented in the field including orthophotos

and laserscans. The best-preserved tracks were recovered and additional tracks were

casted. Megalosauripus transjuranicus is characterized by tridactyl tracks with clear claw

and digital pad impressions, and notably an exceptionally large and round first phalangeal

pad on the fourth digit (PIV1) that is connected to digit IV and forms the round heel area.

Due to this combination of features, M. transjuranicus clearly is of theropod (and not ornitho-

pod) origin. M. transjuranicus is compared to other Megalosauripus tracks and similar ichno-

taxa and other unassigned tracks from the Early Jurassic to Early Cretaceous. It is clearly

different from other ichnogenera assigned to large theropods such as Eubrontes–Grallator

from the Late Triassic and Early Jurassic or Megalosauripus–Megalosauropus–Bueckebur-

gichnus and Therangospodus tracks from the Late Jurassic and Early Cretaceous. A

second tridactyl morphotype (called Morphotype II) is different from Megalosauripus trans-

juranicus in being subsymmetric, longer than wide (sometimes almost as wide as long), with

blunt toe impressions and no evidence for discrete phalangeal pad and claw marks. Some

Morphotype II tracks are found in trackways that are assigned to M. transjuranicus, to M.?

transjuranicus or M. cf. transjuranicus indicating that some Morphotype II tracks are intra-

trackway preservational variants of a morphological continuum of Megalosauripus transjura-

nicus. On the other hand, several up to 40 steps long trackways very consistently present

Morphotype II features (notably blunt digits) and do not exhibit any of the features that

are typical for Megalosauripus (notably phalangeal pads). Therefore, it is not very likely

that these tracks are preservational variants of Megalosauripus transjuranicus or
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Megalosauripus isp. These trackways are interpreted to have been left by an ornithopod

dinosaur. The high frequency of large theropod tracks in tidal-flat deposits of the Jura car-

bonate platform, associated on single ichnoassemblages with minute to medium-sized tri-

dactyl and tiny to large sauropod tracks has important implications for the dinosaur

community and for paleoenvironmental and paleogeographical reconstructions. As with

most other known occurrences of Megalosauripus tracks, M. transjuranicus is found in

coastal settings, which may reflect the preference of their theropod trackmakers for

expanded carbonate flats where food was abundant.

Introduction

Megalosauripus can be considered as one of the most widespread Late Jurassic ichnotaxa made

by large theropods in Europe, America, and Asia. However, its correct assignment and validity

has been highly debated in the last twenty years [1–6]. This is especially because this ichno-

taxon represents the typical shape of a large theropod print (tridactyl, longer than wide, nar-

row), which is morphologically conservative and therefore difficult to characterize and

distinguish.Megalosauripus is known from Late Jurassic to Early Cretaceous deposits,

although it has also been described from the Middle Jurassic of Asia, North America and

Europe [3,7–13].

The ichnotaxonomical entanglement started in 1955, when [14] coined the nameMegalo-
sauripus referring to an illustration of a track from the German collection of Ballerstedt [15],

and reproduced in [16], assumed to have been left by a megalosaur dinosaur. Because this

track was named after the purported trackmaker, and no proper ichnotaxonomical description

was provided, this ichnogenus was declared a nomen nudum in [1] and formalized asMegalo-
sauripus ichnogen. nov. in [3]. Interestingly, [17] erected the new ichnogenus Bueckeburgich-
nus maximus on the same illustration labelled asMegalosauripus in [14]. For this reason, [5]

stated thatMegalosauripus [10] should be considered as a senior synonym of Bueckeburgich-
nus. In addition to the debate about the validity of the ichnotaxonMegalosauripus (see [3] vs.

[5]), it also turns out that many descriptions are based on rather poorly-preserved material

that is in need of revision (see also [18]). The purpose of this paper is to describe various new,

and well-preserved large tridactyl tracks from the Late Jurassic of Highway A16 (NW Switzer-

land) from a morphological point of view. Here we follow the use ofMegalosauripus sensu [3]

because of the morphological affinity of the studied material with the ichnogenus definition

and the emended description of [6].

We focus on a large sample of mostly well-preserved, large tridactyl tracks and trackways

from the Late Jurassic of NW Switzerland. All studied material has been excavated between

2002 and 2011 and systematically documented by the team ‘Paleontology A16’ on tracksites

located on the future course of Swiss federal Highway A16, also named ‘Transjurane Highway’,

and on one tracksite located outside Highway A16 in Porrentruy. A part of the material

described herein is assigned to the ichnotaxonMegalosauripus. Based on the difference of the

new material (notably the very large and rounded first phalange on dIV), a new ichnospecies

Megalosauripus transjuranicus is erected for theMegalosauripus-type large theropod trackways

from Highway A16 and some additional sites in the Swiss Jura Mountains. Detailed differential

diagnoses are provided to underline the difference between previously described ichnotaxa

andMegalosauripus transjuranicus. The herein describedMegalosauripus tracks fall into a size

range between 35 to 45 cm and are thus smaller than many otherMegalosauripus tracks [3,19].
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Apart from the tracks assigned toMegalosauripus transjuranicus, the new material also con-

tains large tridactyl tracks, named ‘Morphotype II’ by [20]. Following this classification, Mor-

photype II includes those tracks that in the field did not present enough details, and that where

grouped without referring to the possible trackmaker (theropod or ornithopod). This morpho-

type is observed both on track levels associated withMegalosauripus transjuranicus (fre-

quently) and on levels without anyMegalosauripus track. Further analyses of the tracks and

trackways showed that, on levels whereM. transjuranicus tracks occur, some trackways with

Morphotype II tracks also preserve morphologies that retain some theropod features observed

in tracks assigned toM. transjuranicus, whereas, in clearM. transjuranicus trackways, some

poorly-preserved tracks are very similar to Morphotype II tracks. On the other hand, on track

levels withoutM. transjuranicus trackways, Morphotype II is consistently observed along very

long trackways without displaying any pronounced morphological variability. In these track-

ways, the consistent morphology of Morphotype II recalls the features of ornithopod tracks.

Despite some tracks showing features similar to Therangospodus pandemicus [21] and possibly

to Iguanodontipus? oncalensis [22], i.e., the lack of a discrete phalangeal pad formula and claw

marks, an accurate diagnosis is prevented by the rather poor track preservation, and therefore

they are not ichnotaxonomically assigned.

The revision of the tracks previously assigned to Morphotype II by [20], pinpointed 1) a

theropod-like Morphotype II identified on the basis of the best-preserved tracks present in the

trackways, and 2) an ornithopod-like Morphotype II described by the consistent morphology

of the tracks along very long trackways.

General setting

Geographical and geological setting

The studied material comes from one tracksite in Porrentruy (POR–CPP) and from five track-

sites, Courtedoux—Béchat Bovais (CTD–BEB), Courtedoux—Bois de Sylleux (CDT–BSY),

Courtedoux—Tchâfouè (CTD–TCH), Chevenez—Combe Ronde (CHE–CRO) and Courte-

doux—Sur Combe Ronde (CTD–SCR), located about 6 km to the west of Porrentruy (Ajoie

district, Canton Jura, NW Switzerland) on the course of Swiss federal highway A16 (Fig 1).

These tracksites are situated on a plateau between Courtedoux and Chevenez, and were sys-

tematically excavated level-by-level by the team ‘Paleontology A16’ (PALA16) from 2002 until

2011 [20–23]. Today all Highway A16 tracksites are (partially) destroyed and covered up by

Highway A16, which was opened for traffic in 2014. The POR–CPP (a.k.a. ‘Dinotec’) tracksite

is located in Porrentruy in the backyard of a technical school called ‘CPP’ and was discovered

in 2011 during the construction of an additional building. A part of this tracksite in the back-

yard is now protected and accessible to the public [24].

The study area belongs to the Tabular Jura Mountains, and is located at the eastern end of

the Rhine-Bresse transfer zone between the Folded Jura Mountains to the south and east and

the Upper Rhine Graben and Vosges Mountains to the north. Elevation is around 500 m and

bedding is (sub)horizontal and affected by normal faults created by several tectonic phases

during the Cenozoic [25–27].

Stratigraphy and paleogeography

The studied trackways come from three different track-bearing laminite intervals (named

lower, intermediate and upper track levels), separated by shallow marine marls and limestones

including massive nerinean limestones [20,28]. The lower track levels are also referred to as

levels 500–550, the intermediate one as levels 1000–1100, and the upper ones as levels 1500–

1650 (Fig 2).

Late Jurassic Megalosauripus tracks from NW Switzerland
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The track-bearing sequences form part of the Reuchenette Formation [29,30]. Fossil mark-

ers such as abundantly occurring ammonites assign the levels to Cymodoce to Mutabilis

(Boreal) respectively Divisum to Acanthicum (Tethyan) biozones, i.e., late Early to early Late

Kimmeridgian [21,28,31–33]. Some of these ammonites were found in layers very close to the

dinosaur track-bearing levels, and the age assignment is also confirmed with ostracods [34].

The sediments of the Reuchenette Formation were deposited at the northern margin of the

oceanic Ligurian Tethys on a large, structurally complex carbonate platform, e.g., [35–37].

This Jura carbonate platform was at a paleolatitude of around 30˚ N, at the threshold between

the Paris Basin to the northwest and the Tethys Ocean to the south and thus influenced by

both the Tethyan and Boreal realms, e.g., [32,33,35,36,38]. During the Kimmeridgian, the cli-

mate of the Jura carbonate platform was semi-arid subtropical to Mediterranean with strong

seasonal differences between prolonged, warm, dry summers and relatively short, wet winters,

e.g., [39–44]. The presence of freshwater on the platform is corroborated by the occurrence of

charophytes [45,46] and hybodontid shark teeth that display an unusual freshwater isotopic

signal [47].

The recurrence of dinosaur tracks and emersive phases during the Late Jurassic support the

hypothesis–at least during sea-level lowstands–of prolonged periods of emersion of the Jura

carbonate platform, which would have connected the larger terrestrial landmasses of the Lon-

don-Brabant Massif in the northeast and/or the Massif Central in the southwest [20,46,48,49].

Sedimentology and paleoenvironment

The track-bearing intervals are thinly-bedded, laminated, tabular and platy, marly limestones,

which locally have a slightly stromatolitic appearance with intercalations of thin layers of cal-

careous marls [20]. Generally, the microfacies of the laminites is quite homogeneous and can

be described as mudstone to wackestone sensu [50], or dolobiopelmicrite sensu [51]; the most

Fig 1. Geographical setting of the Ajoie district (NW Switzerland) and the three Late Jurassic

tracksites along Highway A16 (‘Transjurane’). Inset shows location within Switzerland. Numbers indicate

the different tracksites: 1. Courtedoux—Béchat Bovais (CTD–BEB), 2. Courtedoux—Bois de Sylleux (CDT–

BSY), 3. Courtedoux—Tchâfouè (CTD–TCH), 4. Chevenez—Combe Ronde (CHE–CRO), 5. Courtedoux—

Sur Combe Ronde (CTD–SCR), 6. Porrentruy—CPP (POR–CPP).

https://doi.org/10.1371/journal.pone.0180289.g001
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common biogenic sedimentary structures are (microbial) lamination and invertebrate bur-

rows [20,21].

The track-bearing laminites were deposited in inter- to supratidal flat or supratidal marsh

paleoenvironments, characterized by an exposure index of 60–90% [20]. This is indicated by

macroscopic (stromatolitic lamination, desiccation cracks, wave ripples, invertebrate burrows)

and microscopic (e.g., cryptmicrobial lamination, fenestrae, brecciation) sedimentological fea-

tures [20,21,52]. Marty [20] suggested that this supratidal-flat paleoenvironment was located

several hundred meters away from the coastline towards the open marine realm or an internal

lagoon, and that for most of the time was characterized by restricted and hostile conditions,

which may have been interrupted by periods of rain or storm surges, and that during or rather

at the end of such periods of wetting, dinosaur tracks were recorded.

The lower track levels (500, green band in Fig 2) have a thickness of about 0.6 m and con-

tain at least 8 track-bearing track levels [20]. The intermediate track levels (1000, red band in

Fig 2) with a thickness of around 1 m and at least 15 track-bearing levels are the track-richest

interval, whereas the upper track levels are about 30–40 thick cm and contain only 2–3 track

Fig 2. Chrono-, bio- and lithostratigraphic context of the Reuchenette Formation in the Ajoie district,

Canton Jura, NW Switzerland (modified from [20,23,28,31]. Four track-bearing intervals, named lower,

intermediate, and upper (dinosaur track) levels, and track levels 600 have been identified within the

Courtedoux Member (Nerinean Limestones, sensu [32]). All studied material comes from the intermediate

(levels 1000–1100) and upper (levels 1500–1650) dinosaur track levels, details shown on inset on the upper

right.

https://doi.org/10.1371/journal.pone.0180289.g002
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levels (1500, blue band in Fig 2). The lower track levels are suggested to represent one elemen-

tary sequence [20], and the intermediate levels 1–2 elementary sequences of each 20 kyr. The

sequence boundary Kim4 was placed in the intermediate levels by [53] in their fig. 10, but

probably corresponds to the upper track-bearing levels [54], which again likely represent one

elementary sequence.

Material and methods

Material

The three letters acronym of the tracksite in combination with the year of discovery is used for

the labelling of recovered original tracks (slabs with one to several tracks). For example,

TCH006-1140 is the specimen with the number 1140 of the year 2006 of the Courtedoux—

Tchâfouè (CTD–TCH) tracksite. In the case of casts, the letter ‘r’ (for French ‘relevé’, or ‘rep-

lica’ in English) is added prior to the sample number. Accordingly, SCR008-r129 is the cast

(copy) number 129 of the year 2008 from the Courtedoux—Sur Combe Ronde tracksite. With

these codes, all the material can unambiguously be identified and located within the collection

of the Paleontology A16 (MJSN–PALA16).

In the field, all trackways were excavated, labelled, and mapped at a 1:20 scale. The best

tracks were collected on slabs and/or casted. Recovered slabs were stabilized and prepared,

and polyester copies were produced. Laserscans with a resolution in the order of several mm

and orthophotos with a resolution of around 2 mm were made of several of the studied track-

bearing levels (e.g., BEB500, BSY1040, SCR1000). Additionally, selected tracks of the trackway

BEB-500-T7 were scanned at a sub-mm resolution with a FARO Platinum Scanarm hand-

scanner.

In 2016, measurements of original tracks and casted tracks (by NLR), and outline drawings

on transparent Folex monofilm and vectorization (with Adobe Illustrator) were made. High-

resolution photogrammetric models were generated from the collected specimens and the

casts in the collection, in order allow a detailed documentation and morphological study.

Studied specimens numbers: MJSN-BEB011-r58 (BEB500-TR7-L2, R2), MJSN-BEB011-

r54 (BEB500-TR7-R7), MJSN-BEB011-r56 (BEB500-TR7-L10, R10, L11), MJSN-SCR008-

r131 (SCR1000-T18-R1), MJSN-SCR008-r129 (SCR1000-T23-R1, L2, R2), MJSN-BSY008-

330 (BSY1035-T6-L2), MJSN-BSY008-339 (BSY1040-T1-R1), MJSN-BSY008-338

(BSY1040-T1-L2),MJSN-BSY008-337 (BSY1040-T1-R2), MJSN-BSY008-336 (BSY1040-

T1-L3), MJSN-BSY008-334 (BSY1040-T9-R3), MJSN-TCH008-r2 (TCH1000-TR1-R2, L3,

R3), MJSN-TCH008-r4 (TCH1000-TR2-R9, L10, R10), MJSN-TCH007-r72 (TCH1000-

TR2-L12, R12, L13), MJSN-TCH006-1348 (TCH1015-T1-L2), MJSN-TCH006-1357

(TCH1015-T1-R3), MJSN-TCH006-1366 (TCH1020-T1-R2), MJSN-TCH006-1337

(TCH1020-T2-L1), MJSN-TCH006-1355 (TCH1020-T2-R1), MJSN-TCH006-1140

(TCH1020-T2-L2), MJSN-TCH006-1137 (TCH1020-T2-R2), MJSN-TCH006-1329

(TCH1025-T1-L4, TCH1025-T2-L1), MJSN-TCH006-1023 (TCH1030-T1-R4), MJSN-

TCH006-1087 (TCH1030-T2-R2), MJSN-TCH006-1022 (TCH1030-T2-L3), MJSN-

TCH006-1034 (TCH1030-T2-R3), MJSN-TCH006-1024 (TCH1030-T3-L1), MJSN-

TCH006-1319 (TCH1030-T6-L1), MJSN-TCH006-1317 (TCH1030-T7-L2).

Generally, the quality of the tracks varies a lot, but all the key specimens are amongst the

best-preserved ones (preservation quality > 2.5 sensu [55]).

All the collected and/or casted specimens, as well as the digital 3D data, are accessible at the

PALA16 collections (Office de la Culture, 2900, Porrentruy, Switzerland) and will be trans-

ferred to the JURASSICA Muséum (Route de Fontenais 21, 2900, Porrentruy, Switzerland)

end of 2018. No permits were required for the described study, which complied with all

Late Jurassic Megalosauripus tracks from NW Switzerland
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relevant regulations. A detailed description and interpretation of all the tracks and trackways

is provided in S1 Text. S1–S30 Figs are added as visual information to the descriptions and all

the measurements are presented in S1 Table.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are

available under that Code from the electronic edition of this article. This published work and

the nomenclatural acts it contains have been registered in ZooBank, the online registration sys-

tem for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the asso-

ciated information viewed through any standard web browser by appending the LSID to the

prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:

C24529B6-D947-47E5-B8BE-96AC74FD402F. The electronic edition of this work was pub-

lished in a journal with an ISSN, and has been archived and is available from the following dig-

ital repositories: PubMed Central, LOCKSS.

Track and trackway parameter measured in the field

In the field, track (Fig 3A) and trackway parameters (Fig 3D) were systematically measured

following standard ichnological terminology, e.g., [20,56,57]. All data, including mean and

standard deviations per trackway parameters, are provided in S1 Table. The following abbrevi-

ations are used: PL: Pes Length; PW: Pes Width; PaL: Pace Length; SL: Stride Length; PA: Pace

Angulation; WAP: Width of the Angulation Pattern.

For trackway parameter measurements, the distal end of the third digit (and not the tip of

the claw) is used as reference point. Tracks directed outward with respect to the line connect-

ing it with the consecutive track (the stride) have an outward (positive) rotation and those

directed inward an inward (negative) rotation. For the quantification of trackway gauge (track-

way internal width), the ratio between the width of the angulation pattern and the correspond-

ing track length ([WAP/PL]-ratio) is used (see also [20,58]). All studied theropod trackways

have a [WAP/PL]-ratio < 1.0 and are thus narrow gauge. Trackways with a [WAP/PL]-

ratio < 0.5 are considered as ‘very narrow gauge’ whereas trackways with a [WAP/PL]-

ratio > 0.5 (the minority of the trackways) are described as ‘comparatively wide’ in compari-

son with the other trackways; they are still narrow gauge in as far that pes tracks intersect or

touch the trackway midline.

Trackways as interpreted in the field were mapped and are illustrated by outline drawings

exhibiting the distinct and essential characters of the tracks. In the trackway outline drawings,

the internal track outline marks the actual imprint (impression) of the foot and defines the

track dimensions (length, width), whereas the external track outline and the external limit of

the displacement rim define the extramorphological features of the tracks (Fig 3A).

According to [20] (table 2.2), the following division of maximum pes length (PL) in cm is

used to address size classes of tridactyl dinosaur tracks: minute (PL<10 cm); small (10<PL<20

cm); medium-sized (20<PL< 30 cm); large (30<PL< 50 cm); and giant (PL> 50 cm).

Track measurements in the collection

Detailed track measurements (phalanges, claws) were carried out on original material and

casts (copies) of the holotype, paratypes and referred specimens stored in the PALA16 collec-

tion and this data is given in S1 Table. Track (pes) length (PL) is measured from the maximum

distal point of digit III (anterior point of PIII3, excluding the claw mark where preserved) to

the maximum proximal point of the first phalangeal pad of digit IV (PIV1) or the metatarso-
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phalangeal pad impression when present (Fig 3A). Track (pes) width (PW) is measured

between the tips of the lateral digits II and IV (Fig 3A); and not between the tip of the claw

marks even if preserved.

The anterior triangle (AT), originally defined by [59] (fig. 2), is measured between the distal

ends of the three digits (Fig 3B) following [60], and not between the tips of the three claw

marks as proposed by [59] because the claws are often variably preserved and/or mostly not

preserved on all three digits. The maximum height of the triangle (te) is measured, perpendic-

ular to the transverse base of the triangle (corresponding to PW) and its length/width-ratio

([te/PW]-ratio) is calculated following the definition of [59], who called this ratio ‘toe exten-

sion/foot width-ratio’, used to characterize how much digit III projects anteriorly beyond lat-

eral digit IV and medial digit II as expressed by polarity between strong mesaxony (strong

central tendency) and weak mesaxony (weak central tendency) [60].

Interdigital angles (da) are measured from the intercepting lines dividing the digits in

halves (Fig 3B). These lines are also used as guides when measuring digit II, III and IV lengths

and widths (Fig 3C) and phalangeal pad (numbered from proximal to distal as in Fig 3A)

PII1/2, PIII1/2/3 and PIV1/2/3/4 lengths. Digit and phalangeal pad widths are measured

Fig 3. Methodology of track and trackway labeling and parameter measurements. Note that the pictured tridactyl

track does not correspond to Megalosauripus transjuranicus, it is a schematic track with a typical theropod phalangeal

pad configuration of 2-3-4 for dII-III-IV, respectively. (A) Track length (PL) and width (PW), labeling of digits (d),

phalangeal pads (P) and claws (C). The internal track outline corresponds to the (interpretation of the) actual impression

of the foot. (B) Interdigital angles (da) and anterior triangle (AT). PW is the width and te the length (measured

perpendicular to the width) of the anterior triangle, which in the present case has an obtuse angle for the anterior apex

indicating a low mesaxony. (C) Digit lengths (L) and widths (W). (D) Trackway parameters. Labeling of trackways always

starts with L1; if L1 is missing R1 is the first number used. α is the rotation (in this case outward and thus a positive value)

of the track (long axis) with respect to the next stride line. LP and RP are left and right pace, respectively; S is stride; WAP

is width of the angulation pattern (measured perpendicular to the stride length; [20]), γ is pace angulation. The

progression is a calculated value (with the Pythagoras’s theorem) and it indicates the forward movement of the

trackmaker in the direction of the trackway during one footfall (pace) [20]. Progression is only half of the stride in the case

of completely regular trackways. The reference point for the trackway parameter measurements is on the tip of the third

digit (without the claw where preserved).

https://doi.org/10.1371/journal.pone.0180289.g003
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tracing a line at the point of greatest width perpendicular to the long axis (intercepting line) of

the digit or phalangeal pad impression.

Calculation of locomotion speed

Calculation of locomotion speed (v) derives from the empiric relationship (v’0.25g0.5SL1.67h-1.17;

SL = stride, h = hip height, g = acceleration of free fall) obtained by [61] and for the calculation of

hip height the factor 4.9 is used: h = 4.9 x PL [57,62]. Because of several shortcomings of this

empiric relationship due to the estimation of hip height based on tracks and the a priori
unknown precise trackmaker, e.g., [63,64], as well as the unknown precise relationship between

relative stride length (SL / h) and the Froude number (speed2 / leg length x g) for dinosaurs [65],

speed calculations are considered rough approximations only [65,66]. Nonetheless, Alexander’s

method [61] is at least informative providing an estimation for the magnitude of the locomotion

speed of a dinosaur trackway and, more importantly, for the relative speed of a given sample of

trackways. All values listed in S1 Table.

Photogrammetry

The photogrammetric 3D models were obtained using a Canon EOS 70D, 20 Megapixel, cam-

era, equipped with a Canon 10-18mm STS or a Canon 18-135mm STS lens and a Canon ring

flash (Macro Ring Lite MR-14 EXII) in order to eliminate the shadows generated by sunlight.

Models were created using Agisoft Photoscan Pro (v. 1.2.4 and v. 1.2.5; www.agisfot.com) fol-

lowing the procedures of [67,68]. The accuracy of the models ranges between 0.1 and 0.03

mm, and resolution is always sub-millimetric. Scaling and alignment was made in Photoscan

Pro. The scaled mesh, exported Stanford PLY files, were then processed in CloudCompare

(www.cloudcompare.com), where the meshes where accurately oriented through the genera-

tion of a plane intersecting the surface, to avoid imprecise alignment due to the roughness and

irregularity of the surface, then it was possible to create accurate false colour depth-maps. Rhi-

noceros (v. 5.12) was then used to create contour lines.

All photogrammetric and laserscanner 3D meshes used in this study, and the related quality

reports, are available for download here: https://doi.org/10.6084/m9.figshare.4036584 (approx-

imately 5 GB).

Systematic ichnology

Ichnofamily: Eubrontidae LULL [69]

Ichnogenus:Megalosauripus LESSERTISSEUR [14] (sensu [3])

Synonymy: For detailed synonymy lists refer to [3] and [5].

Megalosauripus transjuranicus ichnosp. nov.

urn:lsid:zoobank.org:pub:C24529B6-D947-47E5-B8BE-96AC74FD402F

Figs 4, 5, 6, 7, 8, 9 and 10

Diagnosis ofMegalosauripus in [1]: large (length>40 cm to a maximum of 80 cm), elongate

(average length:width ratio 1:2), asymmetric tridactyl tracks; clear pad impressions that match

the typical theropod phalangeal formula (2:3:4 corresponding to digits II, III and IV); sigmoi-

dal impression of digit III; ungueal impression of digit I oriented posteriorly and medially;

large impression of the metatarsal phalangeal pad of digits II and III and average divarication

angle between digit II-III of 40˚,and between digits III-IV of 30˚. Trackway show irregular

track morphology, with variable steps length and pace angulation; prominent inward rotation

with respect to the trackway midline of the distal end of digit III.

Late Jurassic Megalosauripus tracks from NW Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0180289 July 17, 2017 9 / 42

http://www.agisfot.com
http://www.cloudcompare.com
https://doi.org/10.6084/m9.figshare.4036584
https://doi.org/10.1371/journal.pone.0180289


Etymology

In analogy to Highway A16, also called ‘Transjurane’ in French. All dinosaur track excavations

prior to the construction of the highway were financed by 95% by the ASTRA (Swiss Federal

Roads Authority), and herewith we want to acknowledge this important and unique contribu-

tion to paleontology in Switzerland. Trans from Latin meaning across, through or bandura

stands for the provenance (Jura Mountains, Jura Canton), and is derived from the Celtic/Gaul-

ish word ‘Jor’ meaning forest or ‘mountains with forest’. The fossil-rich limestones of the Jura

Mountains, which was called by [70] ‘Jura Kalkstein’, are the basis of the name of the Jurassic

Period [71,72].

Fig 4. Outline drawings of Megalosauripus transjuranicus footprints. (A) TCH1030-T6-L1, holotype. (B) BSY1035-T6-L2,

paratype. (C) BSY1040-T1-R1, paratype. (D) TCH1025-T2-L1, paratype. (E) TCH1030-T2-R2, paratype; (F)TCH1030-T2-L3,

paratype. (G) TCH1030-T7-L2, paratype. (H) BSY1040-T1-L2. (I) BSY1040T1-R2. (J) BSY1040-T1-L3. (K) BSY1040-T9-R3. (L)

TCH1015-T1-L2. (M) TCH1015-T1-R3. (N) TCH1030-T3-L1. (O) TCH1030-T2-R3.

https://doi.org/10.1371/journal.pone.0180289.g004
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Holotype

TCH1030-T6-L1 (original specimen, collection no.: MJSN-TCH006-1319).

Paratypes

BSY1035-T6-L2 (original specimen, collection no.: MJSN-BSY008-330), BSY1040-T1-R1

(original specimen, collection no.: MJSN-BSY008-339), TCH1025-T2-L1 (original specimen,

collection no.: MJSN-TCH006-1329), TCH1030-T2-R2 (original specimen, collection no.:

MJSN-TCH006-1087), TCH1030-T2-L3 (original specimen, collection no.: MJSN-TCH006-

1022), TCH1030-T7-L2 (original specimen, collection no.: MJSN-TCH006-1317).

Referred specimens

All referred specimens (tracks) are preserved as an original specimen. TCH1015-T1-L2

(MJSNTCH006-1348), TCH1015-T1-R3 (MJSN-TCH006-1357), TCH1030-T2-R3 (MJSN-

TCH006-1034), BSY1040-T1-L2 (MJSN-BSY008-338), BSY1040-T1-R2 (MJSN-BSY008-337),

BSY1040-T1-L3 (MJSN-BSY008-336), BSY1040-T9-R3 (MJSN-BSY008-334).

Fig 5. Holotype of Megalosauripus transjuranicus. Specimen TCH1030-T6-L1 (MJSN-TCH006-1319). (A) Trackway representation. (B)

Photo of the specimen. Scale 20 cm. (C) Interpretative outline drawing. (D) Contour-lines. Spacing 1 mm. (E) False-color depth map. Depth

measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g005
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Diagnosis

Functionally tridactyl, asymmetrical track, clearly longer than wide ([PL/PW]-ratio ranges

from 1.17 to 2.02, track length ranges from 35.5 to 44.5 cm, with a moderate mesaxony

([te/PW]-ratio ranges from 0.35–0.73). Slender digits are well separated, often by small sedi-

ment ridges. Digit IV is the longest, followed by dIII and dII. Digit III is the widest, followed

by dIV and dII. Tracks exhibit the typical theropod phalangeal pad formula of 2-3-4 corre-

sponding to digits II, III and IV [57] in well-preserved tracks, while in slightly less well-

Fig 6. Paratype of Megalosauripus transjuranicus. Specimen TCH1030-T7-L2 (MJSN-TCH006-1317). (A) Trackway representation. (B)

Photo of the specimen. Scale 30 cm. (C) Interpretative outline drawing. (D) Contour-lines. Spacing 1 mm. (E) False-color depth map. Depth

measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g006

Fig 7. Paratype of Megalosauripus transjuranicus. Specimen BSY1040-T1-R1 (MJSN-BSY008-339). (A) Trackway representation. (B)

Photo of the specimen. Scale 30 cm. (C) Interpretative outline drawing. (D) Contour-lines. Spacing 1 mm. (E) False-color depth map. Depth

measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g007
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Fig 8. Paratype of Megalosauripus transjuranicus. Specimen TCH1025-T2-L1 (MJSN-TCH006-1329). (A) Trackway representation. (B)

Photo of the specimen. Scale 20 cm. (C) Interpretative outline drawing. (D) Contour-lines. Spacing 1 mm. (E) False-color depth map. Depth

measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g008

Fig 9. Paratypes of Megalosauripus transjuranicus. (A) Trackway representation. (B-E) Specimen TCH1030-T2-R2 (MJSN-TCH006-

1087). (B) Photo of the specimen. Scale 30 cm. (C) Interpretative outline. (D) Contour lines. (E) False-color depth map. Depth measured in

mm. (F-I) Specimen TCH1030-T2-L3 (MJSN-TCH006-1022). (F) Photo of the specimen. Scale 30 cm. (G) Interpretative outline. (H)

Contour-lines. Spacing 1 mm. (I) False-color depth map. Depth measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g009
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preserved tracks, PIV3 and PIV2 are often not clearly discernible. PIV1 is very characteristic,

as it has a circular (rounded) shape, it is the widest and largest phalangeal pad and is connected

to the rest of dIV impression as it forms the round heel of the tracks. PIV1 is generally twice

the width of the rest of dIV impression. Presence of well-marked and elongated claws, straight

or sometimes inwardly/outwardly oriented on the tips of all three digits II-III-IV. Below digit

II (between dII and dIV) a postero-medial indentation (notch) is well developed. Digit III

impression is straight to sigmoidal; dII impression is generally inwardly oriented. Tips of dII

and dIV can sometimes be on a line perpendicular to the long axis of dIII. Tips of digits II and

IV can sometimes be on a line perpendicular to the long axis of digit III. Digit IV impression is

the shallowest of the track. There is no evidence for a digit I (hallux) impression.

Trackway configuration is generally quite regular; paces are subequal in length between the

right and left sides, with no significant differences registered. Pace length ranges from 83 to 150

cm, pace angulation from 160˚ to 176˚, and stride length from 235 to 301 cm. The gauge is vari-

able with a [WAP/PL]-ratio of 0 to 0.5 indicating a trackmaker with a (very) narrow posture.

Distribution

Late Jurassic (Kimmeridgian).

Type locality

Courtedoux—Tchâfouè and Courtedoux—Bois de Sylleux tracksites, Ajoie district, Canton

Jura, NW Switzerland.

Type horizon

Intermediate track-bearing levels [20,23] of the Nerinean limestones sensu Jank [32,33] of the

Courtedoux Member [28] of the Reuchenette Formation [29].

Fig 10. Paratype of Megalosauripus transjuranicus. Specimen BSY1035-T6-L2 (MJSN-BSY008-330). (A) Trackway representation. (B)

Photo of the specimen. Scale 30 cm. (C) Interpretative outline drawing. (D) Contour-lines. Spacing 1 mm. (E) False-color depth map. Depth

measured in mm.

https://doi.org/10.1371/journal.pone.0180289.g010
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Age

Tethyan Divisum to Acanthicum ammonite zones, late Early to early Late Kimmeridgian, Late

Jurassic [21,28,31–33].

Holotype description

TCH1030-T6-L1. Left pes track (MJSN-TCH006-1319, Fig 5, S29 Fig). Tridactyl, asym-

metrical track with slender and well-segmented digits, with a phalangeal pad formula of 2-3-4

and with well-marked and inwardly-rotated digit II claw marks. Digits are well separated, with

well discernible sediment ridges between digits II-III and III-IV, and sediment displacement

rims surrounding the track. The track is deep, especially digit IV, which is deeper than digits II

digit III. The track is narrow, with asymmetric and low interdigital angles (29˚ for II^III and

22˚ for III^IV). The track is longer than wide ([PW/PL]-ratio = 1.5), the mesaxonic index is

medium and not extremely pronounced ([te/PW]-ratio = 0.58). Presence of wrinkle marks is

due to growth of microbial mats, as also displayed by the well-laminated track-bearing layer.

Two pads compose digit II. PII2 is longer and bigger than PII1 (proximal). There is a pro-

nounced postero-medial indentation below the digit II impression. Digit III has a sigmoidal

shape, and digit IV has four visible phalanges, whereas PIV1 is circular (well rounded), deep,

and it is the largest phalangeal pad impression. It is also the deepest part of the track and forms

the rounded heel of the track.

Paratypes descriptions

TCH1030-T7-L2. Left pes track (MJSN-TCH006-1317, Fig 6, S30 Fig). Tridactyl, asym-

metrical track, slender and well-segmented digits, phalangeal formula 2-3-4 with well-marked

and forwardly-directed claw marks. On digit II the claw mark is slightly inward oriented. Dig-

its are well separated, with well-discernible sediment ridges between II-III and III-IV. The

track is narrow, interdigital angles are asymmetric and low (9˚ for II^III and 21˚ for III^IV).

The track is clearly longer than wide ([PW/PL]-ratio = 1.85), the mesaxonic index is medium

and not extremely pronounced ([te/PW]-ratio = 0.73). The track still preserves some track fill-

ings. Digit II is composed of two pads, whereas PII2 is longer and bigger than PII1 (proximal).

There is a pronounced postero-medial indentation below digit II impression. In digit III, PIII2

is longer than the proximal and distal pads. Digit IV has four clearly visible phalanges. PIV1 is

well rounded, deep and large. It is the deepest part of the track. Furthermore, the impression

of digit IV is shallower than digits II and III. PIV2 and PIV3 are not well discernible and not

very big (marked as fused in S1 Table). PIV2-3-4 are shallower than PIV1.

BSY1040-T1-R1. Right pes track (MJSN-BSY008-339, Fig 7, S14 Fig). Very shallow, tri-

dactyl, asymmetrical track, with slender and well-separated digits. All phalanges, except for

PIV3 and PIV2, are well discernible. Claw marks are slender and comparatively short, proba-

bly due to the firmness of the substrate, as reflected by the shallowness of the track. Presence

of a pronounced postero-medial indentation below dII. Narrow track with asymmetric and

low interdigital angles (5˚ for II^III and 14˚ for III^IV). The track is longer than wide

(PL/PW = 1.8), the mesaxonic index is medium and not extremely pronounced ([te/PW]-

ratio = 0.6). The slab is characterized by a wrinkled surface (‘wrinkle marks’), most likely due

to the former presence of microbial mats [73,74].

TCH1025-T2-L1. Left pes track (MJSN-TCH006-1329, Fig 8, S24 Fig). Tridactyl, asym-

metrical track, with digits III and IV very well preserved and digit II in interference with track

TCH1025-T1-L4 (preserved on the same slab MJSN-TCH006-1329) and therefore not clearly

discernible. Digits are well separated by very steep, pronounced and narrow sediment ridges

between digits II-III, suggesting that sediment was squeezed between the two digits. Claws are
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forwardly directed forming shapes recalling isosceles triangles. Track is narrow, interdigital

angle is asymmetric and low (6˚ for II^III and 20˚ for III^IV). The track is longer than wide

([PW/PL]-ratio = 1.8), the mesaxonic index is medium and not extremely pronounced

([te/PW]-ratio = 0.51). Presence of wrinkle marks is due to the growth of microbial mats

[73,74], as displayed also by the finely-laminated track-bearing layer.

TCH1030-T2-R2. Right pes track (MJSN-TCH006-1087, Fig 9B–9E, S26 Fig). Tridactyl,

asymmetrical track, with slender and well-separated digits. Digits appear to be well impressed

as the track shows a certain depth and digit IV impression is much shallower with respect to

the other digits. All phalanges, apart from PIV3 and PIV2, are well discernible. Impression of

PIV1 phalangeal pad is rounded and it measures 10 cm in diameter. Digits II-IV distal endings

impressions are not aligned. Digits II-III impressions are inwardly rotated. Claw marks are

slender and well developed, forming isosceles triangle shape in correspondence of digit II and

scalene triangle shapes for digit III impression. No claw mark is observed in correspondence

to digit IV impression. The interdigital angles are asymmetric (18˚ for II^III and 30˚ for

III^IV). The track is longer than wide ([PW/PL]-ratio = 1.5), the mesaxonic index is medium

and not extremely pronounced ([te/PW]-ratio = 0.6). The slab is characterized by a wrinkled

surface (wrinkle marks), most likely due to the former presence of microbial mats [73,74].

TCH1030-T2-L3. Left pes track (MJSN-TCH006-1022, Fig 9F–9I, S21 Fig). Shallow, tri-

dactyl, asymmetrical track, with slender and well-separated digits. All phalanges, except for

PIV3 and PIV2, are well discernible. Impression of PIV1 phalangeal pad is rounded and mea-

sures 10 cm in diameter. Digit IV impression is the shallowest. Digits II-IV distal endings

impressions are slightly diverging from one another, meaning that they are not aligned. Digits

II-III impressions are inwardly rotated. Claw marks are slender and well developed, forming a

scalene triangle shape in digit II and isosceles shapes for digits III and IV impressions. The

interdigital angles are subequal in divergence (19˚ for II^III and 19˚ for III^IV). The track is

longer than wide ([PW/PL]-ratio = 1.67), the mesaxonic index is medium and not extremely

pronounced ([te/PW]-ratio = 0.58). The slab is characterized by a wrinkled surface (wrinkle

marks), most likely due to the former presence of microbial mats [73,74].

BSY1035-T6-L2. Left pes track (MJSN-BSY008-330, Fig 10, S13 Fig). Tridactyl, asymmet-

rical track cast, with slender and well-separated digits. Digits appear to be well impressed as

the track shows a certain depth and the digit IV impression is somewhat shallower with respect

to the other digits, although at least PIV1, PIV2 and PIV4 phalangeal pad impressions are

appreciable. Phalangeal pad impressions for all digits are well discernible, except for PIV3.

Impression of PIV1 phalangeal pad is rounded and very well developed and impressed, mea-

suring 11.5 cm in diameter. Digits II-IV distal endings impressions are not aligned and digit II

impression is slightly inwardly oriented, with a subparallel orientation with respect to digit III

impression. Claw marks are slender and well developed, forming isosceles triangle shape in

correspondence of digit II and inwardly oriented ‘D-shape’ for digit III impression. No claw

mark is observed in correspondence to digit IV impression. The interdigital angles are subeq-

ual and narrow (10˚ for II^III and 15˚ for III^IV). The track is much longer than wide

([PW/PL]-ratio = 1.8), the mesaxonic index is medium and not extremely pronounced

([te/PW]-ratio = 0.5).

Differential diagnosis

Valid ichnospecies ofMegalosauripus areM. uzbekistanicus andM. teutonicus. The major dif-

ference ofM. transjuranicus withM. uzbekistanicus from the Late Jurassic of Turkmenistan

and Uzbekistan [3,6,75], andM. teutonicus from the Late Jurassic (Kimmeridgian) of Northern

Germany (Barkhausen tracksite;Megalosauropus in [76]; amended asMegalosauripus in [3])
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lies in the size of PIV1, which is twice the width of digit IV inM. transjuranicus and is much

smaller inM. uzbekistanicus (comparable to the width of digit IV) and absent inM. teutonicus.
The amended diagnosis forMegalosauripus uzbekistanicus of [6] adds the presence of the hal-

lux or digit I impression posteriorly and laterally oriented, which in all specimens ofM. trans-
juranicus, independently of tracks depth, is always absent.M. teutonicus is characterized by

deep tracks (10 cm), broad and short, deeply impressed digits, lack of any discrete phalangeal

pad impressions and it is generally poorly preserved. All these features are clearly different

from the shallow and well-definedM. transjuranicus features (Fig 11).

Carmelopodus tracks from the Middle Jurassic of Utah differ in the phalangeal pad formula

(2:3:3 for digits II, III and IV in [77]), and in the PL: PW ratio, which characterizes Carmelopo-
dus tracks as almost as long and wide.

Kayentapus tracks from Lower Jurassic of Arizona [78] differ in their much smaller size, the

higher PL/PW-ratio index, the greater width of the interdigital angles (considering variations)

and the detached digital pad PIV1 from the rest of the digit IV impression.

Grallator and Eubrontes tracks from the Early Jurassic of Connecticut and Massachusetts

[79] differ in the much higher PL/PW-ratio, in the greatly developed digit III impression in

Grallator and in the shape of the PIV1 impression in Eubrontes.

Fig 11. Outline drawings of selected large theropod ichnotaxa, all drawn to the same scale. Left tracks are mirrored as right tracks.

(A) Holotype of Megalosauripus transjurani (TCH1030-T6-L1, MJSN-TCH006-1319). (B) Asianopodus, redrawn from [90]. (C)

Irenesauripus redrawn from [86]. (D) Tyrannosauripus pillmorei, redrawn from [93]. (E) Bellatoripes fredlundi, redrawn from [94]. (F)

Bueckeburgichnus maximus, redrawn from [84]. (G) Euthynichnium lusitanicum, redrawn from [3]. (H) Iberosauripus grandis, redrawn from

[85]. (I) Megalosauripus uzbekistanicus, redrawn from [6]. (J) Megalosauripus-like track, redrawn from [172]. (K) Megalosauripus-like track,

redrawn from [19]. (L) Megalosauripus from Arizona, redrawn from [3]. (M) Megalosauripus from Utah, redrawn from [3]. (N)

Megalosauripus-like track, from [96]. (O) Megalosauripus-like track, from [108]. (P) Boutakioutichnium atlasicus, redrawn from [81]. (Q)

Holotype of Hispanosauropus, redrawn from [4]. (R) Megalosauropus broomensis, redrawn from [83]. (S) Megalosauripus teutonicus,

redrawn from [76]. (T) Jurabrontes curtedulensis, holotype (SCR1500-T1-L8, MJSN-SCR011-553), from [98].

https://doi.org/10.1371/journal.pone.0180289.g011
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Euthynichnium lusitanicum from the Late Jurassic of Cabo Mondego, Portugal [80],

amended in [3], is considered very distinctive because of the small and slender anteromedially

facing hallux impression, which makes the track tetradactyl with three large, non-tapering dig-

its with no clear phalangeal pad impressions. All these characteristics are very different from

M. transjuranicus. For similar reasons the tetradactyl Boutakioutichnium atlasicus from the

Late Jurassic of Morocco [81] is also considered different from the studied tracks.

Megalosauropus broomensis from the Early Cretaceous of Australia [82,83] is defined by a

quite an atypical phalangeal pad formula of 3-4-5 for digits II-III-IV, which is absent inM.

transjuranicus.
The taxonomic position of Bueckeburgichnus maximus from the Early Cretaceous of North-

ern Germany from the Wealden beds near Bückeburg [17], was the subject of disagreements

between [84] and [5]. Although it is true that the concept of Bueckeburgichnus maximus, (rede-

scribed in [84] as: “large tetradactyl theropod track with a small hallux (digit I), digit II wide

and well-padded, digit III parallel sided proximally but strongly tapering distally, digit IV nar-

row with traces of discrete digital pads”), differs greatly fromMegalosauripus transjuranicus, it

should be underscored that the amended diagnosis of [84] is based on a different specimen

with respect to the original diagnosis by [17]. In fact, the holotype of Bueckeburgichnus maxi-
mus is, as pointed out by [5], the same specimen on which the taxonMegalosauripus was

coined by [14], who was referring to the drawings in fig. 4 [15] and in fig. 120 [16].

The material of Iberosauripus grandis from the Jurassic–Cretaceous transition of the Iberian

range [85] is rather poorly preserved. Based on the illustrations and descriptions in [85], and

on our own personal observations, I. grandis differs fromM. transjuranicus in the width of the

track, almost as wide as long (PL/PW = 1.2, table 2 in [85]), the broadness of its digit impres-

sions, the lack of a strongly developed PIV1 impression, the general symmetric aspect with lat-

eral digits II and IV impressions subequal in length, and a very weak mesaxonic index (0.3).

Irenesauripus acutus from the Aptian–Albian of Canada ([86], fig. 2, p.64) strongly differs

fromM. transjuranicus because of the very elongated, narrow and slender digits, larger interdi-

gital angles, and absence of phalangeal pad impressions. This ichnotaxon is erected on a clearly

compromised track due to rheological bias, which was left in a water-saturated sediment caus-

ing mud collapse and sealing of digit impressions after its formations.

Irenichnites [86] from the Lower Cretaceous of British Columbia is clearly different from

M. transjuranicus because the heel pad is not completely developed and the track is very broad

and very small, the longest measure for PL is of 15 cm.

M. transjuranicus lacks the sigmoidal digit III impression and exhibits much better-defined

phalangeal pad marks with respect toHispanosauropus hauboldi ([87], revised in [4] and in

[88]) which is indicated as plantigrade. Although a clear and diagnostic description for this

ichnogenus is not provided in these papers, it is indicated that at least some digit pad impres-

sions are present in most examples, but they are usually not well defined [88].

Asianopodus from the Valaginian to Barremian of Japan [89] is diagnosed as small to

medium-sized tridactyl, mesaxonic and subsymmetric track with a distinct ‘bulbous’ heel

impression, and Xing et al. [90] also reported Asianopodus from the Early Cretaceous of China

displaying a well-developed and sub-rounded metatarsophalangeal pad located axially poste-

rior to the axis of digit III. Despite some similarity withM. transjuranicus regarding the meta-

tarsophalangeal pad area (presence of a large PIV1), Asianopodus is different because of the

more central position of the metatarsophalangeal pad PIV1, giving the track a symmetrical

shape and because of the clear separation of PIV1 with all digit impressions. Note that [90]

(fig. 6B, p. 310) figured a track asMegalosauripus isp., although this track is the type specimen

of Euthynichnium lusitanicum (compare with [3], fig.7).
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Jialingpus from the Late Jurassic of China [91,92] is similar toM. transjuranicus in respect

to the size of PIV1 but differs in the overall morphology since it displays a different phalangeal

formula of 2-3-3-4 respectively for digits I-II-III-IV with two developed metatarsophalangeal

pads that connect with lateral digits II and IV, and the presence of a hallux (dI) impression.

Giant (PL>70 cm) theropod ichnotaxa such as Tyrannosauripus from the Late Cretaceous

of New Mexico [93], Bellatoripes from the Late Cretaceous of Canada [94] and some other

large to giant unnamed tracks from the Late Jurassic of Portugal [95] and Morocco [96,97] are

not considered here, as they significantly differ fromMegalosauripus andMegalosauripus
transjuranicus. Giant (PL>50 cm) theropod tracks from Highway A16 that are significantly

different fromM. transjuranicus have recently been named Jurabrontes curtedulensis [98].

Other Megalosauripus-type tracks in the tracksites

The great amount of large tridactyl tracks and trackways uncovered on six different tracksites

and ten different track levels on Highway A16 allowed recognizing a wide range of morpho-

logical variations registered on the different levels and even along the course of individual

trackways (especially on levels 500, 1000, 1020, 1030 and 1040). For this reason, only the

best-preserved tracks were classified in the new ichnospeciesMegalosauripus transjuranicus.
Trackways that do not retain any track with sufficient diagnostic features to assign it to this

new ichnospecies were addressed as:Megalosauripus cf. transjuranicus, Megalosauripus?
transjuranicus, and Morphotype II sensu [20]. These three different morphotypes may occur

on the same level and even along the course of a single trackway due to changes in substrate

properties and/or kinematics of the trackmaker and this has important implications for the

understanding and classification (ichnotaxonomy) of large tridactyl tracks. These aspects will

further be commented in the discussion.

During the classification of the studied trackways, always the best-preserved track of a

given trackway is used. A trackway with a track exhibiting diagnostic features ofM. transjura-
nicus is classified as such even if other tracks along the trackway course do not exhibit the typi-

cal features or even do resemble Morphotype II tracks. Trackways that cannot unambiguously

be classified asM. transjuranicus are classified using open nomenclature (see [99,100]) using

cf. transjuranicus and? transjuranicus.
Megalosauripus cf. transjuranicus (Fig 12A–12H). Tracksite and levels: SCR1000,

TCH1020, TCH1025, TCH1030, BSY1035. Trackways: SCR1000-T23, T24 (S6 and S7 Figs);

TCH1020-T1, T2 (S20 and S21 Figs); TCH1025-T1 (S23 Fig); TCH1030-T5 (S27 Fig);

BSY1035-T1, T7 (S11 Fig).

Megalosauripus cf. transjuranicus open nomenclature of the new ichnospecies is used when

the track morphology is well preserved and the large and wide metatarso-phalangeal pad PIV1

is discernible and connected to digit IV, and when digits are well separated. However, not all

the phalangeal pads and three claws are impressed and clearly discernible.

Megalosauripus? transjuranicus (Fig 12I–12Q). Tracksites and levels: TCH1000,

BSY1020, BSY1025. Trackways: TCH1000-TR1, TR2 (Fig 12I–12Q, S17 and S18 Figs);

BSY1020-T1 (S9 Fig); BSY1025-T3 (S9 Fig), BEB500-TR1, TR2, TR5, TR8 (S2 Fig).

Megalosauripus? transjuranicus open nomenclature is used when tracks reflect a limited

preservational variation on the strict definition of this ichnogenus [3] and therefore when dig-

its are separated and distinguishable from one another, heel pad (PIV1) is not very discernible,

and morphometric parameters for tracks and trackway configuration are typical, such as tracks

longer than wide, elongated, asymmetric, moderate mesaxony, notch developed between digit

II and heel area impression, trackway configuration somewhat irregular. This classification is

linked to a preservational variation of theM. transjuranicus track morphology due to substrate
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consistency, limb kinematics and/or behavior of the trackmaker [101] rather than foot anat-

omy (different trackmaker).

Other occurrences of Megalosauripus-type and other similar theropod

tracks

Ichnotaxonomy of medium-sized to giant theropod tracks, especially of those from the Late

Jurassic and Early Cretaceous, is a complicated matter and has been debated in many different

papers [1–6]. Many ichnotaxa have been discussed and reviewed by various authors, but, at

the moment, there is no consensus about the validity or redundancy of many of these [1–6].

The main ichnotaxa that are similar to the new ichnospeciesMegalosauripus transjuranicus are

discussed in the differential diagnosis (see section 4.2).

Fig 12. Outline drawings of Megalosauripus cf. transjuranicus (A-H), Megalosauripus? transjuranicus (I-Q), and of Morphotype II

(R-Y) tracks. All tracks are drawn to the same scale. (A) SCR1000-T23-R1. (B) SCR1000-T23-L2. (C) SCR1000-T23-R2. (D)

TCH1020-T1-R2. (E) TCH1020-T2-L1. (F) TCH1020-T2-R1. (G) TCH1020-T2-L2. (H) TCH1020-T2-R2. (I) TCH1000-TR1-R2. (J)

TCH1000-TR1-L3. (K) TCH1000-TR1-R3. (L) TCH1000-TR2-R9. (M) TCH1000-TR2-L10. (N) TCH1000-TR2-R10. (O) TCH1000-TR2-L12.

(P) TCH1000-TR2-R12. (Q) TCH1000-TR2-L13. (R) BEB500-TR7-L2. (S) BEB500-TR7-R2. (T) BEB500-TR7-R7. (U) BEB500-TR7-L10.

(V) BEB500-TR7-R10. (W) BEB500-TR7-L11. (X) SCR1000-T18-R1. (Y) TCH1030-T1-R4.

https://doi.org/10.1371/journal.pone.0180289.g012
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Lockley et al. [4] pointed out that tracks named ‘Megalosaurus’ from the Late Jurassic of

Cabo Mondego (Portugal), named Euthynichnium lusitanicum in [3], and problematic ichno-

taxa such asMegalosauripus [3,5,14] andMegalosauropus [76] have some potential relationship

toHispanosauropus hauboldi [87]. Avanzini et al. [88] noted that the relationship between His-
panosauropus and megalosaur tracks (Megalosauripus) is complex. However, [102] (p.76)

strongly suggested thatHispanosauropus should not be used anymore, and should rather be

included in theMegalosauripus definition [3], due to the lack of a holotype and to the poor

preservation of the designated topotype at the la Griega tracksite. Nevertheless, it is of no sur-

prise that all these ichnotaxa that describe large to giant Late Jurassic theropod tracks from the

Iberian Peninsula and Western Europe are morphologically similar, and to some degree also

toMegalosauripus. In addition, some theropod tracks of comparable size from Asturias were

addressed with the compound nameMegalosauripus-Kayentapus (figured and described in

[102], p.87 and fig. 9.1.7,). These tracks are clearly different from the studied material, espe-

cially because of the lack of the diagnostic large and round PIV1 connected to dIV.

In the Jura Mountains, other so far unnamed large theropod tracks occur at the Kimmerid-

gian La Heutte II, Grenchenberg, and Glovelier—Côte du Crêt (GLO–CCR) tracksites in NW

Switzerland, and at the Tithonian Plagne tracksite in France [103].

The Glovelier tracksite was originally discovered in 1998 [104]. It consists of six tracks that

are poorly preserved, lack any anatomical details such as phalangeal pads or claw marks, and

that are either strongly weathered and/or they are undertracks (NLR, DM, MB pers. obs.

2016), so that they can at best be identified as tridactyl tracks of likely theropod origin, some-

what similar to Morphotype II sensu [20], but clearly different fromM. transjuranicus.
At Grenchenberg, a trackway of a large theropod was discovered within this interval. This

3-m long trackway consists of four consecutive tracks with a mean PL of 35 cm and a slightly-

curved digit III. It is similar to the giant tracks of Highway A16 [98] with a PL of nearly 80 cm

[105]. From the La Heutte II tracksite, [106] described a single large theropod track that is lon-

ger than wide, has narrow interdigital angles, claw marks and pad impressions. However,

based on fig. 3 in [106], the digits have no pad impressions discernible, they are not separated

and they are fused in a large and rounded heel area. Based on the figure and description of

[106], this track cannot be assigned toMegalosauripus transjuranicus, but a cast of the track is

housed at the Naturmuseum Solothurn and is worth to be re-studied.

At Plagne (France), at least two trackways of medium-sized to large theropods are well pre-

served, but they are not yet published. Judging on personal observations (DM, 2012) both

trackways labelled ‘PD’ and ‘PG’, respectively, are characterized by tracks with a PL of approxi-

mately 25–30 cm, well-separated digits with phalangeal pad impressions, and by the presence

of a large PIV1 pad. These tracks can be assigned toMegalosauripus and maybe evenM. trans-
juranicus, but this has to be confirmed by future studies.

The Late Jurassic Loulle tracksite in the French Jura Mountains exhibits an eight-step track-

way of a giant theropod (LOU 20, mean PL = 77 cm) that was tentatively assigned toMegalo-
sauripus by [107] (see their fig. 14). These authors stated that this trackway with an irregular

gait exhibits asymmetric tracks with three well-separated digits, three claw marks, and a pha-

langeal pad configuration of 2-3-3 or -4 but that cannot be determined with confidence. Based

on descriptions and fig. 14 in [107] there is no evidence for a large PIV1 in connection with

dIV and for this reason, and also because of their much larger size, these tracks are not similar

toM. transjuranicus. Mazin et al. [107] have also described three trackways (LOU 05, LOU 06,

LOU 13) with a PL between 21–24.3 cm, which they referred to Carmelopodus. However, these

tracks also resembleMegalosauripus because of their slender and well-separated digits with

clear phalangeal pad impressions, but they are smaller than typicalMegalosauripus tracks.
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Also, these tracks do not show evidence for a large PIV1 in connection with dIV and for this

reason they cannot be assigned toM. transjuranicus.
Recently, [108] classified large theropod tracks (of up to 80 cm in pes length) from the Mid-

dle Jurassic Vale de Meios quarry from the Lusitanian basin of Portugal asMegalosauripus isp.

Where preserved (e.g., track VMX.1 in [108], fig. 5), the phalangeal pad formula is 2-3-4 for

digits II-III-IV but theseMegalosauripus tracks do not show the diagnostic large PIV1 pad of

M. transjuranicus and are for this reason different (Fig 11).

Another famous Middle Jurassic tracksite is that of Ardley Quarry (Oxfordshire, UK),

which displays large tridactyl tracks indicated asMegalosauripus-like tracks in [19,109] and

analyzed from a biomechanical and biological aspect in [110]. The best-preserved tracks such

as R20 of trackway T80 ([110], fig. 6) perfectly fit this ichnogenus classification because it

exhibits well-separated, slender digits with claw marks, the average TL/TW index (1.40), the

inward rotation of digit III and phalangeal pads possibly with a 2-3-4 phalangeal pad configu-

ration for dII-III-IV, the PIV1 phalangeal pad connecting to digit IV impression and the

postero-medial indentation developing from the posterior margin of digit II impression. Nev-

ertheless, Ardley Quarry tracks are larger in size and the diagnostic PIV1 is particularly small

in the Ardley Quarry tracks and not as developed as inM. transjuranicus.
Other tracks assigned toMegalosauripus from the Late Jurassic [96] and Early Cretaceous

of Morocco [111], Arizona and Utah [3,112], Poland [113], and Germany [13,18,114], and

from the Middle Jurassic of Madagascar [115] and China [10] either display subequal phalan-

geal pads when preserved (Arizona, Utah, Germany, Morocco), lack a discrete phalangeal pad

formula (Madagascar, England, Poland) or are too poorly preserved for a sound comparison

(China).

To summarize, tracks from North America, Europe, North Africa and Asia that have been

assigned toMegalosauripus differ from the new proposed ichnospeciesM. transjuranicus
described herein. Certainly, the most diagnostic feature ofM. transjuranicus certainly is the

large and rounded PIV1 pad in connection with dIV. Accordingly, this feature may become an

important characteristic for future classifications of theropod ichnotaxa.

In [3], the smallestMegalosauripus tracks from North America, Central Asia and Europe

have a PL of 39 cm, whereas the mean PL value is about 50 cm and the maximum PL 77 cm.

The English tracks [19,109], and some from Uzbekistan and Turkmenistan [6], are at the

upper end of the size range ofMegalosauripus tracks. Generally,Megalosauripus track lengths

from specimens from North America, Iberian Peninsula and Central Asia (Uzbekistan and

Turkmenistan) are ranging from 40 cm to a maximum of 80 cm, while the material from High-

way A16 ranges from 35.5 cm to a maximum of 45.5 cm, and thus is at the lower end forMega-
losauripus tracks. This size range is also encompassed inMegalosauripus isp. from the Late

Jurassic–Early Cretaceous of China ([10]: PL = 38.3 cm), Middle Jurassic of Portugal ([108]:

PL = 20–80 cm) and Madagascar ([115]: average PL = 34 cm).

Although size alone should not be a criterion for ichnotaxonomic discrimination [115,116],

some tracksites (Vale de Meios tracksite, [108]; Tsisandro tracksite, [115]) display some track

lengths values that are outliers (smallest track recorded in Vale de Meios, Portugal is of 22 cm)

of the typicalMegalosauripus size range (PL>50 cm) at this site.

It is not unusual to observe tracks retaining similar morphologies with different sizes

[10,108,117,118] because of different ontogenetic stages of the trackmakers [119], osteological

convergence among different trackmakers or extramorphological factors biasing track mor-

phology. On the other hand, it is noteworthy that among ten different stratigraphical levels

analyzed, the material clearly identified asM. transjuranicus are distributed over a narrow

size-range (from 35.5 cm to 42.5 cm) and have relatively small mean PL values compared to

other occurrences ofMegalosauripus tracks (see Fig 11I–11O). An explanation for this
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evidence might be an age-segregation distribution among these theropods [118,120], perhaps

concentrating larger theropod tracks (adult-individuals) attributable toMegalosauripus in

other areas, leaving the tidal flat as the favored environment for subadult individuals confining

the size of the footprints to a narrow range [19,110]. However, that narrow PL range ofM.

transjuranicus indicates that the trackmaker was a medium-sized theropod, smaller than the

trackmaker of other areas displaying much largerMegalosauripus-type tracks.

Description of Morphotype II sensu [20]

Tracksites and levels: CRO500, BEB500, SCR1000, TCH1020, TCH1030, BSY1040. Trackways:

CRO500-T43 (S1 Fig), BEB500-TR3, TR4, TR7 (S2 and S2 Fig), SCR1000-T18 (Fig 12X, S5

Fig), TCH1020-T3 (S22 Fig), TCH1030-T1 (Fig 12R and 12Y, S25 Fig), BSY1040-T8 (S15 Fig).

Morphotype II (Fig 12R–12Y) is characterized by subsymmetric tridactyl tracks, most of

them as wide as long but also with some specimens much longer than wide ([PW/PL]-ratio

ranging from 1.18–1.72) and a moderate mesaxony ([te/PW]-ratio ranging from 0.45–0.58).

Digits are not well separated as inMegalosauripus tracks, especially the lateral digits II and IV,

which are also typically merged in the heel without evidence for a postero-medial indentation

below dII. Digits are tapered and rounded to slightly pointed, but no claw marks can be identi-

fied. Digit III impression is well separated from dII and dIV and blunt with a trapezoidal (clo-

ver-like) shape with the maximum width located in the medium to anterior part of the digit. It

is short and forwardly directed, not sigmoidal. No phalangeal pads are discernible. All three

digits are of about the same length. Tracks are usually inclined towards the digit III impression,

which is the deepest one. Interdigital angles are roughly subequal. Displacement rims are often

well developed, especially around digit III, sometimes they are present all around the track.

There is no evidence for any manus tracks in association to the pes impressions. The [WAP/

PL]-ratio ranges from 0.2 to 0.6, trackway configuration is quite variable, ranging from narrow

and very straight to sinusoidal trackways displaying a ‘zig-zag’ pattern with outwardly rotated

tracks and a wider gauge. Rare trackway patterns such as ‘standing still’ (pair of parallel tracks,

commonly showing a small inward rotation, [121] were documented. Intra-trackway stride

lengths range from 173 to 317 cm, pace lengths from 86 to 138 cm, pace angulation from 149˚

to 176˚ and speed estimations from 5.3 to 12.7 km/h.

Description of ichnoassemblages

Large tridactyl tracks are quite a common element of the Ajoie ichnocoenosis, even though

with 49 trackways they make up for only 19.4% of all documented tridactyl trackways and

10.3% of all documented dinosaur (tridactyl & sauropod) trackways.

Within both the lower and the intermediate track levels, only the lowermost main track

level (i.e., level 500 and 1000, respectively) can be correlated between different sites. For

instance, level SCR1000 can be correlated with TCH1000. Level CRO500 can be correlated

with BEB500 and most likely also with CPP500, which, however, is located in Porrentruy

about 5 km to the east of the CRO and BEB Highway A16 tracksites that are located only about

1.5 km from one another.

In most ichnoassemblages several large tridactyl trackways were documented, and they are

associated with minute, small, and medium-sized theropod tracks, and with tiny, small, and

medium-sized sauropod tracks. However, they are never found together with all of these differ-

ent size classes of theropod and sauropod dinosaurs.

Moreover, they are never directly associated with giant (PL>50 cm) theropod and large

(PL>75 cm) sauropod trackways, even though at the BSY tracksite, trackways of both giant

theropods and large sauropods occur on level BSY1050 [98], only 10 cm above level BSY1040
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with several trackways ofM. transjuranicus including the paratype trackway. Also on

BSY1040, trackway T1 clearly overprints sauropod trackway S1. This is the only case where a

large tridactyl trackway overprints a sauropod trackway and therefore clearly has passed by

after the sauropod.

Discussion

Trackmaker identification for Megalosauripus transjuranicus

During the Late Jurassic, the taxonomic diversity of large theropods is quite high, including

the families Allosauridae, Megalosauroidea, Ceratosauria and Coelurosauria. The osteological

convergence and substantial overlap in phalangeal proportions of the theropod foot would not

allow a lower level distinction among different theropod taxa [122,123].

In addition, the autopodium of all these theropods are very conservative concerning the

functional morphology [124–126]. Moreover, those features that could help with the identifi-

cation of the trackmaker, e.g., shape, metatarsal impressions and position and orientation of

digit I [127], are not preserved in the analyzed tracks. However, considering additional data

such as the size and the provenance (considering both temporal and spatial distributions), a

discussion on the skeletal remains of similar age as theM. transjuranicus tracks is attempted

here. An identification of the large theropod trackmaker is not easy because of the scarcity of

their skeletal remains in the Late Jurassic deposits of the Jura carbonate platform or surround-

ing areas. In the Swiss Jura Mountains, the body fossil record of theropods is scarce and only

comprises an isolated allosaurid tooth from the Silberhöhle near Röschenz (Late Oxfordian,

Canton Baselland; [128]); two isolated theropod teeth from the Solothurn Turtle Limestone

(Late Kimmeridgian, Canton Solothurn; [129]), one of which is similar to dromaeosaurid

teeth [128]; and, finally, a large (total length of about 7 cm) theropod tooth from the Moutier

sauropod bone assemblage (Early Kimmeridgian, Canton Bern) initially figured in [130], and

attributed to Ceratosaurus [131].

In the French Jura Mountains, a couple of theropod teeth are known from the Damparis

sauropod assemblage [132,133] one of which is considerably large (total length of 11cm) and

was attributed toMegalosaurus insignis by [132]. Furthermore, several isolated, huge vertebrae

are known from the Oxfordian of Plaimbois-du-Miroir, Doubs Department [134], corroborat-

ing the presence of a “very large theropod of uncertain affinity” [135], but these remains still

lack any closer scientific description. However, the teeth from Damparis and the remains from

Plaimbois-du-Miroir are large enough to represent potential trackmakers from the Loulle

quarry in the French Jura Mountains [107]. Therefore, the presence of megatheropods on the

Swiss and French Jura carbonate platform during the Late Oxfordian and Kimmeridgian can

now be confirmed by both the skeletal and track record.

Apart from those of the Jura Mountains, there are potential large theropod trackmakers

known from the Late Jurassic in Europe and notably Portugal. These include members of the

Ceratosauridae, Allosauridae, and Megalosauridae (‘megalosaur’ or ‘megalosaurid’), e.g.,

[2,3,84,136–139].

Allosaurus specimens described from the Late Jurassic of Portugal and assigned to Allosau-
rus fragilis [140,141] and Allosaurus europaeus [142] with an estimated hip height of 2.4 m

seem plausible for having left tracks smaller than 50 cm in total length and covering the size

range ofM. transjuranicus. On the other hand, the largest Allosaurus specimens such as Allo-
saurus fragilis from the Cleveland-Lloyd Dinosaur Quarry with an estimated total body length

of up to 12.5 [143,144] and notably Saurophaganax [145] from the Late Jurassic Morrison For-

mation, USA were indeed too large and probably would have left tracks much bigger (PL>50
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cm) than the trackmaker ofM. transjuranicus. Ceratosauridae are also known from the Late

Jurassic of Portugal [146].

A juvenile allosaurid, Sciuromimus albersdoerferi [147], has been recently described from

the Kimmeridgian of Bavaria. The estimated size for the adult animal, around 5 m in length, is

compatible with the described size range for theM. transjuranicus tracks. Also Ceratosaurus,
with a similar estimated body length [122,148] is a possible candidate for producing tracks

ranging from 30 to 50 cm in pes length.

Megalosauridae or ‘megalosaurs’ are poorly understood, both in their anatomy and their

phylogenetic affinities [149,150], and Thulborn [5] stated: “there exists no definite conception

of megalosaurs or of their tracks”. However, Torvosaurus is a member of the Megalosauridae

known from Colorado [151] and Portugal [95,142]. Its body length ranges from 8–12 m,

which is too large for the studied tracks. Cobos et al. [85] have suggested that tracks classified

as Bueckeburgichnus, Hispanosauropus, Megalosauripus were probably left by members of the

Allosauridae. A recent paper [123] described a new large theropod,Wiehenvenator albati,
from the Callovian of Germany, a derived megalosaurine megalosaurid closely related to Tor-
vosaurus. However, an allosaurid trackmaker seems much more likely forM. transjuranicus
tracks than a ‘megalosaurid’ trackmaker, which would have left larger tracks. There are larger

(giant) theropod tracks discovered on the Highway A16 tracksites, i.e., J. curtedulensis [98].

Interpretation of Morphotype II tracks

Some of the studied tracks are classified as Morphotype II sensu [20], characterized as subsym-

metric, large, slightly mesaxonic, slightly longer than wide (sometimes almost as wide as long),

with subsymmetric interdigital angles, and with blunt toes and without evidence for the

impression of discrete phalangeal pads and claws. In the field, most (but not all) of these track-

ways were labelled as ‘TR’ trackways, as they did not show clear theropod features.

On four other different levels (1000, 1020, 1030 and 1040) from three different tracksites

(BSY; TCH, SCR) Morphotype II tracks are associated withMegalosauripus transjuranicus
(and/or cf. transjuranicus, and/orMegalosauripus? transjuranicus). For instance, the main

track level 1000 can be correlated between the SCR and TCH tracksites; Morphotype II track-

way SCR-1000-T18 is associated on the same level with the trackwaysMegalosauripus cf. trans-
juranicus SCR-1000-T23 and -T24, and with the poorly-preserved trackwaysMegalosauripus?
transjuranicus TCH-1000-TR1 and -TR2 (S7 Fig). On level TCH1020, Morphotype II trackway

TCH1020-T3 is associated with the trackwaysMegalosauripus cf. transjuranicus TCH1020-T1

and -T2. On level BSY1040 a Morphotype II trackway (BSY1040-T8) co-occurs with the track-

waysMegalosauripus transjuranicus BSY1040-T1, -T7 and -T9.

On level TCH1030, Morphotype II tracks even occur within trackways that can clearly be

assigned toMegalosauripus transjuranicus such as trackways TCH1030-T2 -T6 (holotype

trackway ofM. transjuranicus, Fig 5), and -T7. For instance, the track TCH1030-T1-R4 clearly

represents aMegalosauripus morphology while most other tracks of trackway TCH1030-T1

recall a Morphotype II morphology (S25 Fig). Accordingly, these Morphotype II tracks clearly

are preservational variants ofMegalosauripus tracks, related to variable substrate properties

and/or trackmaker locomotion. Trackway TCH1000-TR2 (S7 Fig) is another interesting exam-

ple: because of the preserved phalangeal pads and claw marks in some of the tracks, it is classi-

fied asMegalosauripus? transjuranicus, even though along the 25-m-long trackway, tracks

show different morphologies, some of which strongly recall Morphotype II (e.g., TCH1000-

TR2-R9, L10, R10, S7 Fig). Another example is trackway BSY1040-T8 (S15 Fig), which has the

highest stride lengths (> 3 m) and speed estimation (12.7 km/h) of all studied trackways. In

this trackway, tracks with altered morphology where the merging lateral digits and heel area is

Late Jurassic Megalosauripus tracks from NW Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0180289 July 17, 2017 25 / 42

https://doi.org/10.1371/journal.pone.0180289


not discernible (more pronounced digitigrade stance due to higher locomotion speed), resem-

ble Morphotype II tracks. Further, digit III is strongly indented into the sediment, indicating

that the trackmaker was moving fast, with a high digitigrade posture causing the merging of

lateral digits and the lack of a clear PIV1 impression. Accordingly, Morphotype II tracks

occurring in these trackways clearly are preservation variants ofMegalosauripus or evenM.

transjuranicus. All these trackways are nice examples for intra-trackway variability, where

track morphology changes along the trackway course with single tracks resembling different

morphotypes and even different ichnotaxa.

However, since Morphotype II tracks can, sometimes, resemble the Therangospodus ichno-

taxon, when the two morphotypes are not co-occurring along the same trackway, it is difficult

to unambiguously assess if a given Morphotype II trackway is representing the Therangospodus
ichnotaxon or if it is a preservation variant ofMegalosauripus. Lockley et al. [136] described

T. pandemicus as medium-sized, elongated, asymmetric tracks (therefore longer than wide and

not as long as wide), having digital pad impressions without creases separating discrete phalan-

geal pads, but which, when appreciable, suggest a 2-3-4 phalangeal pad formula; claw marks

sometimes preserved; and a trackway configuration quite similar toMegalosauripus (narrow

trackway, variable step lengths and a high 170˚ pace angulation). In other words, the diagnosis

of Therangospodus [21,22,152,153] is entirely based on the lack of those features that are diag-

nostic forMegalosauripus, i.e., oval digital pads not separated into discrete phalangeal pads, no

rotation of digit III, no separation on the proximal margins of the digits by a hypex.

Gierliński et al. [154] (p. 445) reported a tridactyl track from the Toarcian of Poland with

more distinct phalangeal pads, but these authors stated that they were "not sure if Therangospo-
dus should be distinguished fromMegalosauripus". A very important consideration in [154] is

that they have noticed that "diagnostic features separating them (= Therangospodus vs.Megalo-
sauripus) are entirely extramorphological and subject to growth and behavioral changes or

potentially influenced by the substrate nature, so they may not reflect real taxonomic differ-

ences". Piñuela [102] also pointed out that because of the resemblance of Therangospodus pan-
demicus with altered and poorly-preserved specimens ofMegalosauripus, this might at least in

some cases be indicative, that Therangospodus pandemicus is the product of a morphological

variation of theMegalosauripus ichnogenus. This would favor the interpretation of some of the

tracks included in Morphotype II trackways as preservation variants ofMegalosauripus trans-
juranicus orMegalosauripus in general, rather than assigning them to Therangospodus pande-
micus. On the other hand, [6], although noticing that some of the weatheredMegalosauripus
tracks are similar in overall morphology to Therangospodus, but larger in size, concluded that

tracks preserved at the Khodja-Pil-Ata site (Turkmenistan) represent the two distinct and

valid ichnotaxaMegalosauripus and Therangospodus.
The theropod-like Morphotype II tracks are, however, identified as variants ofMegalosauri-

pus rather than Therangospodus. Nevertheless, as the distinction between the two ichnotaxa is

very weak and preservation-dependent, further investigations is needed in order to clearly

trace this differentiation. However, there are some Morphotype II tracks that consistently

show a morphology different from the ‘classical’ theropod one. On level 500 (the lowermost

track level) at the CRO and BEB tracksites, Morphotype II tracks systematically occur along

several trackways (CRO500-T43, BEB500-TR3, -TR4, -TR7, S1–S3 Figs) without their mor-

phology being susceptible to a noticeable degree of intra-trackway variability. Some of the

trackways of BEB500 are very long and exhibit more than 40 tracks per trackway consistently

exhibiting a Morphotype II morphology. These are not the only large tridactyl tracks preserved

on level BEB500: some trackways (BEB500-TR1, -TR2, -TR5, -TR8) also contain tracks that

can be attributed toMegalosauripus isp., and on level CPP500 someMegalosauripus? transjura-
nicus, but no Morphotype II tracks occurred.
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Accordingly, the interpretation of the large tridactyl trackways of level 500 is not straight-

forward and unambiguous. The long trackways consistently exhibiting a Morphotype II track

morphology were most likely left by a different trackmaker from that of theMegalosauripus
trackways, as it is much less likely, although not impossible, to systematically encounter a pres-

ervation variant with a well-defined and consistent morphology that is so different from the

‘normal’ (Megalosauripus) track morphology.

In the case where some of the tracks along a trackway were attributed toMegalosauripus
isp., the rest of Morphotype II tracks are likely to be preservational variants of this ichnotaxon,

which presence is confirmed in level 500 (i.e., CPP500-T1). However, it is worth considering a

second scenario in which the more theropodian tracks are the preservation variants of the less

detailed and more abundant Morphotype II tracks. Anyhow, considering the entire ichnoasso-

ciation, this latter scenario is less likely than the former one. The Morphotype II trackways of

level BEB500 that contain some tracks attributed toMegalosauripus isp. were left by a ‘Megalo-
sauripus-trackmaker’.

To summarize, it is concluded that the trackways of level BEB500 consistently exhibiting

Morphotype II morphologies that are not preservational variants ofMegalosauripus isp. or

M. transjuranicus, and that they belong to a different trackmaker, possibly an ornithopod

dinosaur. Hence, the present evidence also indicates that (at least) on level 500, trackways con-

sistently exhibiting Morphotype II morphology associated withMegalosauripus-type track-

ways, imply the presence of two different large tridactyl trackmakers.

For level CRO500, and specifically for the Morphotype II trackway CRO500-T43 (S1 Fig),

Marty [20] stated that this) shares both ornithopod and theropod characteristics, that it clearly

differs fromMegalosauripus (sensu [3]), and that it may have been left by a trackmaker with a

well-padded, fleshy foot. Similarities with the ichnotaxon Therangospodus were noted but the

tracks cannot be unambiguously assigned, as this ichnotaxon is, at present, not clearly defined

and it would need a revision before being considered.

The trackways BEB500-TR5, TR7, TR8 and CRO500-T43 consistently exhibit Morphotype

II tracks that systematically lack most of morphological features (e.g., phalangeal pads, claw

marks). However, the absence of a feature does not necessarily imply that the trackmaker’s

foot anatomically lacks this feature (i.e., phalangeal pads, claw marks), as the absence of a fea-

ture could also be related to substrate properties, kinematics, and/or taphonomical and preser-

vational reasons (see also [54]). Considering these possible preservational issues, CRO500-T43

and the BEB500 Morphotype II trackways displaying a consistent morphology without marked

intra-trackway variability indicate that they were left by a different trackmaker than theMega-
losauripus transjuranicus trackways, or in other words, these trackways are not poorly-pre-

servedMegalosauripus trackways.

Trackmaker identification for purported ornithopod (Morphotype II)

tracks

Given the peculiar features of Morphotype II tracks of BEB500 and CRO500 levels, and despite

that a trackmaker cannot unambiguously be identified, the hypothesis of an ornithopod track-

maker is here supported. Accordingly, this would be the first evidence for the possible presence

of ornithopod dinosaurs on the Jura carbonate platform.

The presence of a medium-sized to large sized ornithopod trackmaker during the Late

Jurassic (Kimmeridgian-Tithonian) is supported by the skeletal record of the Iberian Peninsula

[155–159], England [160] and North America (Morrison Formation, [161,162]) that indicate

the presence of both Ankylopollexia and Dryomorpha for non-Iguanodontoidea ornithopod.

While skeletal remains of the hypsilophodontid Othnielia from the Kimmeridgian-Tithonian
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are quite abundant in the Morrison Formation [161], Late Jurassic records of hypsilophodontid

ornithopods are scarce and few osteological remains were found in Portugal [155,156]. Any-

how, the high degree of morphological convergence of the foot osteology between medium-

sized theropods and ornithopods from the Late Jurassic complicates a clear trackmaker assign-

ment [116,152,163].

Even with a lot of available material, the present case of the Morphotype II trackways shows

the difficulty to distinguish between poorly-preserved theropod tracks and (poorly-preserved)

tracks that were likely left by ornithopods.

Paleoecological and paleo(bio)geographical implications

The frequency ofMegalosauripus transjuranicus trackways in the Ajoie ichnocoenosis indi-

cates that large theropods were commonly present in tidal-flat environments of the Jura car-

bonate platform and represent a quite common and typical element of this ichnocoenosis.

Within the Ajoie ichnocoenosis,Megalosauripus is associated with tiny, small, and medium-

sized sauropod, and minute, small, and medium-sized theropod tracks. Giant (i.e., PL> 50

cm) theropod tracks, i.e. Jurabrontes curtedulensis, are also present but much rarer and, when

preserved, they never co-occur on the same level nor the same ichnoassemblagesM. transjura-
nicus [98]. On several ichnoassemblages,Megalosauripus transjuranicus trackways head in

similar directions as sauropod trackways and at least one trackway overprints (‘follows’) a

small sauropod trackway. Consequently, it can be assumed that in an open, flat and easily-

overviewed tidal-flat paleoenvironment with harsh or no vegetation cover, sauropods, and

notably the smaller animals, were exposed to a severe predation hazard.

As most other known occurrences ofMegalosauripus tracks,M. transjuranicus is found in

coastal tidal-flat deposits, likely reflecting the preference of the trackmakers for broad, flat

areas, with abundance of food (other dinosaurs, fishes, invertebrates) and good hunting possi-

bilities (as also seen in [108]).

Level 500 is the only level where Morphotype II tracks are tentatively assigned to an ornith-

opod trackmaker. The possible presence of ornithopods has important implications for the

interpretation of the dinosaur community on the Jura carbonate platform. Apart from one

track produced by a large ornithopod from the Late Jurassic of Portugal [158], [102] and [163]

have recently reported four parallel trackways of medium-sized and robust ornithopods from

the Late Jurassic of Asturias (Spain), which constitute the first ornithopod trackways known

from the Late Jurassic of Europe (the one described in [9] is a theropod track; see also [18]).

This fact reinforces the possibility of having both large theropods and ornithopods trackways

in the Ajoie ichnocoenosis.

The widespread and rich dinosaur track record of the Jura Mountains indicates that large

parts of the Jura carbonate platform were emergent during several and prolonged time peri-

ods allowing the development of a soil [164] and vegetation cover [165–168], freshwater

sources [46], and in situ dinosaur populations [20,169]. This is further supported by the fre-

quency of large theropod tracks and points to a ‘faunal exchange corridor’ for the exchange

(on geological time spans) of dinosaur faunas between further south (Iberian Massif–Massif

Central) and further north (Rhenish Massif–London-Brabant Massif) [20,48,49]. Skeletal

remains of Allosaurus fragilis [140] and Stegosaurus [170] indicate land bridges over the

North Atlantic [171] and via Portugal, because of dinosaur remains with Morrison Forma-

tion affinity [142,146,156]. Such faunal exchanges are supported by the presence of large

theropod tracks (with a similar morphology) in the Late Jurassic of France (Megalosauri-
pus), N Germany (Megalosauripus), Morocco, Portugal (Euthynichnium), and Uzbekistan

(Megalosauripus).

Late Jurassic Megalosauripus tracks from NW Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0180289 July 17, 2017 28 / 42

https://doi.org/10.1371/journal.pone.0180289


Conclusions and outlook

• Based on very well-preserved and rich material including trackways with several well-pre-

served tracks exhibiting substantial anatomical details,Megalosauripus transjuranicus, a new

ichnospecies of a large theropod dinosaur is erected and described in detail.

• M. transjuranicus is easily differentiated from previously-named ichnotaxa by the presence

of a pronounced, large and well-rounded proximal pad on dIV. This feature does not occur

in any of the many minute, small, and medium-sized tridactyl trackways documented on

Highway A16 tracksites.

• All trackways assigned toM. transjuranicus fall into a narrow size range with a mean PL

ranging from 35.5 to 42.5 cm. This indicates a large predator as trackmaker, but by far not

the largest theropod known from the Late Jurassic.

• An allosaurid theropod is considered as the most likely trackmaker forMegalosauripus trans-
juranicus, although Megalosaurids might also be possible candidates.

• Most of Morphotype II trackways (including all from the intermediate track levels) are pre-

servational variants ofMegalosauripus trackways, as indicated by trackways exhibiting both

morphotypes along their course.

• Trackway CRO500-T43 and several considerably long trackways on level BEB500 systemati-

cally show Morphotype II tracks without any evidence for typicalMegalosauripus features

(such as phalangeal pads). These trackways are tentatively interpreted as produced by an

ornithopod trackmaker and therefore, this would be the first evidence for ornithopod dino-

saurs on the Jura carbonate platform.

• Trackways of possible large ornithopods and large theropods co-occur on level 500, although

not in the same ichnoassemblage (site). Nonetheless, this indicates the coeval presence of

large carnivorous theropod and herbivorous ornithopod dinosaurs on the Jura carbonate

platform.

• The studied material shows that Morphotype II tracks could represent at least two different

trackmakers (ornithopod and theropod), and that poorly-preservedMegalosauripus tracks,

often, cannot be clearly distinguished and may be confounded with each other.

• The frequent presence ofMegalosauripus transjuranicus trackways in the Ajoie ichnocoeno-

sis indicates that large theropods were common in tidal-flat environments of the Jura car-

bonate platform.

• Within the Ajoie ichnocoenosis,Megalosauripus transjuranicus is associated with tiny, small,

and medium-sized sauropod, and minute, small, and medium-sized theropod tracks.

• Within the Ajoie ichnocoenosis giant (i.e., PL> 50 cm) theropod tracks are rare and never

co-occur withM. transjuranicus on the same level.

• Megalosauripus transjuranicus trackways generally head in similar directions as sauropod

trackways, and at least one trackway (BSY1040-T1) overprints (‘follows’) a small sauropod

trackway.

• During the Late Jurassic, the Jura carbonate platform may have represented a ‘migration cor-

ridor’ for the exchange (on geological time spans) of dinosaur faunas between further south

(Iberian Massif–Massif Central) and further north.
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Supporting information

S1 Text. Description and interpretation of tracks and trackways.

(DOC)

S1 Fig. CRO500-T43. Outline drawing of the trackway (scale 1:50).

(TIF)

S2 Fig. BEB500. Outline drawings of trackways from BEB500 (scale 1:50). (A) BEB500-TR1.

(B) BEB500-TR2. (C) BEB500-TR3. (D) BEB500-TR4. (E) BEB500-TR5. (F) BEB500-TR8.

(TIF)

S3 Fig. BEB500-TR7. (A) Outline drawing of the trackway (scale 1:50). (B) Photo of

BEB500-TR7-L2. Scale bar 20 cm. (C) Interpretative outline drawing of BEB500-TR7-L2.

(D) False-color depth map of BEB500-TR7-L2. Depth measured in mm. (E) Photo of BEB500-

TR7-R2. Scale 20 cm. (F) Interpretative outline drawing of BEB500-TR7-R2. (G) False-color

depth map of BEB500-TR7-R2. Depth measured in mm. (H) False-color depth map of

BEB500-TR7-R5 obtained from laserscanner. Depth measured in mm. (I) Photo of BEB500-

TR7-R7. Scale 20 cm. (J) Interpretative outline drawing of BEB500-TR7-R7. (K) False-color

depth map of BEB500-TR7-R7. Depth measured in mm. (L) Photo of BEB500-TR7-L10. Scale

20 cm. (M) Interpretative outline drawing of BEB500-TR7-L10. (N) False-color depth map of

BEB500-TR7-L10. Depth measured in mm. (L) Photo of BEB500-TR7-R10. Scale 20 cm. (P)

Interpretative outline drawing of BEB500-TR7-R10. (Q) False-color depth map of BEB500-

TR7-R10. Depth measured in mm. (R) Photo of BEB500-TR7-L11. Scale 20 cm. (S) Interpreta-

tive outline drawing of BEB500-TR7-L11. (T) False-color depth map of BEB500-TR7-L11.

Depth measured in mm.

(TIF)

S4 Fig. CPP500-T1. Outline drawing of the trackway (scale 1:50).

(TIF)

S5 Fig. SCR1000-T18. (A) Outline drawing of the trackway (scale 1:50). (B) Photo of

SCR1000-T18-R1. Scale bar 20 cm. (C) Interpretative outline drawing of SCR1000-T18-R1.

(D) False-color depth map of SCR1000-T18-R1. Depth measured in mm.

(TIF)

S6 Fig. SCR1000-T23. (A) Outline drawing of the trackway (scale 1:50). (B) Photo of

SCR1000-T23-R1. Scale bar 30 cm. (C) Interpretative outline drawing of SCR1000-T23-R1.

(D) False-color depth map of SCR1000-T23-R1. Depth measured in mm. (E) Photo of

SCR1000-T23-L2. Scale 30 cm. (F) Interpretative outline drawing of SCR1000-T23-L2. (G)

False-color depth map of SCR1000-T23-L1. Depth measured in mm. (H) Photo of SCR1000-

T23-R2. Scale 30 cm. (I) Interpretative outline drawing of SCR1000-T23-R2. (K) False-color

depth map of SCR1000-T23-R2. Depth measured in mm.

(TIF)

S7 Fig. Trackways from levels SCR1000 and TCH1000. Outline drawings at 1:50 scale of

trackways from SCR1000 (A-B) and TCH1000 (C-D). (A) SCR1000-T23. (B) SCR1000-T24.

(C) TCH1000-TR1. (D) TCH1000-TR2.

(TIF)

S8 Fig. Trackways from levels BSY1000, BSY1005, BSY1010, and BSY 1040. Outline draw-

ings at 1:50 scale of trackways from different levels of BSY. (A) BSY1005-T1. (B) BSY1010-T1.
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(C) BSY1015-T1. (D) BSY1040-T7.

(TIF)

S9 Fig. Trackways from levels BSY1020, and BSY1025. Outline drawings at 1:50 scale of

trackways from different levels of BSY. (A) BSY1020-T1. (B) BSY1025-T3.

(TIF)

S10 Fig. Trackways from level BSY1025. Outline drawings at 1:50 scale of trackways from

BSY1025. (A) BSY1025-T1. (B) BSY1025-T2.

(TIF)

S11 Fig. Trackways from level BSY1035. Outline drawings at 1:50 scale of trackways from

BSY1035. (A) BSY1035-T1. (B) BSY1035-T7.

(TIF)

S12 Fig. Trackways from level BSY1025. Outline drawings at 1:50 scale of trackways

from BSY1035. (A) BSY1035-T2. (B) BSY1035-T5. (C) BSY1035-T3. (D) BSY1035-T4.

(E) BSY1035-T8.

(TIF)

S13 Fig. BSY1035-T6-L2 (paratype). (A) Outline drawing at 1:50 scale. (B) Photo. Scale 30

cm. (C) Interpretative outline drawing. (D) False-color depth map. Depth measured in mm.

(TIF)

S14 Fig. BSY1040-T1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

BSY1040-T1-R1 (paratype). Scale bar 20 cm. (C) Interpretative outline drawing of BSY1040-

T1-R1. (D) False-color depth map of BSY1040-T1-R1. Depth measured in mm. (E) Photo of

BSY1040-T1-L2. Scale bar 20 cm. (F) Interpretative outline drawing of BSY1040-T1-L2. (G)

False-color depth map of BSY1040-T1-L2. Depth measured in mm. (H) Photo of BSY1040-

T1-R2. Scale bar 20 cm. (I) Interpretative outline drawing of BSY1040-T1-R2. (J) False-color

depth map of BSY1040-T1-R2. Depth measured in mm. (K) Photo of BSY1040-T1-L3. Scale

bar 20 cm. (L) Interpretative outline drawing of BSY1040-T1-L3. (M) False-color depth map

of BSY1040-T1-L3. Depth measured in mm.

(TIF)

S15 Fig. BSY1040-T8. Outline drawing at 1:50 scale of the trackway.

(TIF)

S16 Fig. BSY1040-T9. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

BSY1040-T9-R3. Scale bar 30 cm. (C) Interpretative outline drawing of BSY1040-T9-R3.

(D) False-color depth map of BSY1040-T9-R3. Depth measured in mm.

(TIF)

S17 Fig. TCH1000-TR1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1000-TR1-R2. Scale bar 30 cm. (C) Interpretative outline drawing of TCH1000-TR1-R2.

(D) False-color depth map of TCH1000-TR1-R2. Depth measured in mm. (E) Photo of

TCH1000-TR1-L3. Scale bar 30 cm. (F) Interpretative outline drawing of TCH1000-TR1-L3.

(G) False-color depth map of TCH1000-TR1-L3. Depth measured in mm. (H) Photo of

TCH1000-TR1-R3. Scale bar 30 cm. (I) Interpretative outline drawing of TCH1000-TR1-R3.

(J) False-color depth map of TCH1000-TR1-R3. Depth measured in mm.

(TIF)

S18 Fig. TCH1000-TR2. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1000-TR1-R9. Scale bar 30 cm. (C) Interpretative outline drawing of TCH1000-TR1-R9.
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(D) False-color depth map of TCH1000-TR1-R9. Depth measured in mm. (E) Photo of

TCH1000-TR1-L10. Scale bar 30 cm. (F) Interpretative outline drawing of TCH1000-

TR1-L10. (G) False-color depth map of TCH1000-TR1-L10. Depth measured in mm. (H)

Photo of TCH1000-TR1-R10. Scale bar 30 cm. (I) Interpretative outline drawing of TCH1000-

TR1-R10. (J) False-color depth map of TCH1000-TR1-R10. Depth measured in mm. (K)

Photo of TCH1000-TR1-L12. Scale bar 30 cm. (L) Interpretative outline drawing of TCH1000-

TR1-L12. (M) False-color depth map of TCH1000-TR1-L12. Depth measured in mm. (N)

Photo of TCH1000-TR1-R12. Scale 30 cm. (O) interpretative outline drawing of TCH1000-

TR1-R12. (P) False-color depth map of TCH1000-TR1-R12. Depth measured in mm. (Q)

Photo of TCH1000-TR1-L13. Scale bar 30 cm. (R) Interpretative outline drawing of

TCH1000-TR1-L13. (S) False-color depth map of TCH1000-TR1-L13. Depth measured in

mm.

(TIF)

S19 Fig. TCH1015-T1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1015-T1-L2. Scale bar 30 cm. (C) Interpretative outline drawing of TCH1015-T1-L2.

(D) False-color depth map of TCH1015-T1-L2. Depth measured in mm. (E) Photo of

TCH1015-T1-R3. Scale 20 cm. (F) Interpretative outline drawing of TCH1015-T1-R3.

(G) False-color depth map of TCH1015-T1-R3. Depth measured in mm.

(TIF)

S20 Fig. TCH1020-T1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1020-T1-R2. Scale bar 30 cm. (C) Interpretative outline drawing of TCH1020-T1-R2.

(D) False-color depth map of TCH1020-T1-R2. Depth measured in mm.

(TIF)

S21 Fig. TCH1020-T2. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1020-T2-L1. Scale bar 18 cm (10 cm for the black/white scale bar). (C) Interpretative

outline drawing of TCH1020-T2-L1. (D) False-color depth map of TCH1020-T2-L1. Depth

measured in mm. (E) Photo of TCH1020-T2-R1. Scale bar 20 cm. (F) Interpretative outline

drawing of TCH1020-T2-R1. (G) False-color depth map of TCH1020-T2-R1. Depth measured

in mm. (H) Photo of TCH1020-T2-R2. Scale bar 18 cm (10 cm for the black/white scale bar).

(I) Interpretative outline drawing of TCH1020-T2-R2. (J) False-color depth map of TCH1020-

T2-R2. Depth measured in mm.

(TIF)

S22 Fig. TCH1020-T3. Outline drawing at 1:50 scale of the trackway.

(TIF)

S23 Fig. TCH1025-T1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1025-T1-L4. Scale bar 20 cm. (C) Interpretative outline drawing of TCH1025-T2-L1.

(D) False-color depth map of TCH1025-T1-L4. Depth measured in mm.

(TIF)

S24 Fig. TCH1025-T2. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1025-T2-L1 (paratype). Scale bar 20 cm. (C) Interpretative outline drawing of

TCH1025-T2-L1. (D) False-color depth map of TCH1025-T2-L1 Depth measured in mm.

(TIF)

S25 Fig. TCH1030-T1. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1030-T1-R4. Scale bar 20 cm. (C) Interpretative outline drawing of TCH1030-T1-R4.
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(D) False-color depth map of TCH1030-T1-R4. Depth measured in mm.

(TIF)

S26 Fig. TCH1030-T2. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1030-T2-R2 (paratype). Scale bar 30 cm. (C) interpretative outline drawing of TCH1030-

T2-R2. (D) False-color depth map of TCH1030-T2-R2. Depth measured in mm. (E) Photo of

TCH1030-T2-L3 (paratype). Scale bar 30 cm. (F) Interpretative outline drawing of TCH1030-

T2-L3. (G) False-color depth map of TCH1030-T2-L3. Depth measured in mm. (H) Photo of

TCH1030-T2-R3. Scale bar 30 cm. (I) Interpretative outline drawing of TCH1030-T2-R3.

(J) False-color depth map of TCH1030-T2-R3. Depth measured in mm.

(TIF)

S27 Fig. Trackways from level TCH1030. (A) Outline drawing at 1:50 scale of TCH1030-T3.

(B) Photo of TCH1030-T3-L1. Scale bar 30 cm. (C) Interpretative outline drawing of

TCH1030-T3-L1. (D) False-color depth map of TCH1030-T3-L1. Depth measured in mm.

(E) Outline drawing of TCH1030-T3 (scale 1:50).

(TIF)

S28 Fig. TCH1020-T3. Outline drawing at 1:50 scale of the trackway.

(TIF)

S29 Fig. TCH1030-T6. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1030-T6-L2 (holotype). Scale bar 30 cm. (C) Interpretative outline drawing of TCH1030-

T6-L2. (D) False-color depth map of TCH1030-T6-L2. Depth measured in mm.

(TIF)

S30 Fig. TCH1030-T7. (A) Outline drawing at 1:50 scale of the trackway. (B) Photo of

TCH1030-T7-L2 (paratype). Scale bar 30 cm. (C) interpretative outline drawing of TCH1030-

T7-L2. (D) False-color depth map of TCH1030-T7-L2. Depth measured in mm.

(TIF)

S1 Table. Measurement tables. (A)Measurements made on material in the collection. (B)

Measurements taken in the field. (C) Averages calculated from the field data. (D)Standard

deviations for the field data.

(XLSX)
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Christel Lovis, Marielle Cattin, Christian A. Meyer.

Data curation: Novella L. Razzolini, Matteo Belvedere, Daniel Marty, Géraldine Paratte,
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Géologique Fr Nouv Série. 1955; 74: 1–150.
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48. Meyer CA, Thüring B, Wetzel A. The hitch-hikers guide to the Late Jurassic–Basement structures pro-

vide clues to dinosaur migration routes. Hantkeniana. 2006; 5: 38.

49. Meyer CA. The hitch-hikers guide to the Late Jurassic and early Cretaceous–Dinosaur tracks from the

Swiss and French Jura Mountains in a sequence stratigraphic context. Dinosaur Track Symposium—

Abstract Book. Oberkirchen (Germany); 2011. p. 25.

50. Dunham RJ. Classification of carbonate rocks according to depositional texture. In: Ham WE, editor.

Classification of Carbonate Rocks. American Association of Petroleum Geologists, Memoir 1;

1962. pp. 108–121.

Late Jurassic Megalosauripus tracks from NW Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0180289 July 17, 2017 36 / 42

https://doi.org/10.5281/zenodo.34341
https://doi.org/10.1007/s00015-006-1187-8
https://doi.org/10.1016/j.sedgeo.2005.08.008
https://doi.org/10.1016/j.sedgeo.2005.08.008
https://doi.org/10.1016/S0012-821X(01)00588-X
https://doi.org/10.1086/424577
https://doi.org/10.1371/journal.pone.0180289


51. Folk RL. Spectral subdivision of limestone types. In: Ham WE, editor. Classification of Carbonate

Rocks. American Association of Petroleum Geologists, Memoir 1; 1962. pp. 62–64.

52. Marty D, Pacton M. Formation and preservation of Late Jurassic dinosaur track-bearing tidal-flat lami-

nites (Canton Jura, NW Switzerland) through microbial mats. In: Billon-Bruyat J-P, Marty D, Costeur L,

Meyer CA, Thüring B, editors. 5th International Symposium on Lithographic Limestone and Platten-

kalk—Abstracts and Field Guides. Porrentruy: Société jurassienne d’émulation, actes 2009 bis;
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53. Colombié C, Rameil N. Tethyan-to-boreal correlation in the Kimmeridgian using high-resolution

sequence stratigraphy (Vocontian Basin, Swiss Jura, Boulonnais, Dorset). Int J Earth Sci. 2007; 96:

567–591. https://doi.org/10.1007/s00531-006-0117-3

54. Marty D, Billon-Bruyat J-P. Field-trip to the excavations in the Late Jurassic along the future Transjur-

ane highway near Porrentruy (Canton Jura, NW Switzerland): dinosaur tracks, marine vertebrates and

invertebrates. In: Billon-Bruyat J-P, Marty D, Costeur L, Meyer CA, Thüring B, editors. 5th International

Symposium on Lithographic Limestone and Plattenkalk—Abstracts and Field Guides. Porrentruy:
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sils: a uniform approach. Lethaia. 2006; 39: 265–286. https://doi.org/10.1080/00241160600787890

120. Myers TS, Fiorillo AR. Evidence for gregarious behavior and age segregation in sauropod dinosaurs.

Palaeogeogr Palaeoclimatol Palaeoecol. 2009; 274: 96–104. https://doi.org/10.1016/j.palaeo.2009.

01.002

121. Genise JF, Melchor RN, Archangelsky M, Bala LO, Straneck R, de Valais S. Application of neoichnolo-

gical studies to behavioural and taphonomic interpretation of fossil bird-like tracks from lacustrine set-

tings: The Late Triassic–Early Jurassic? Santo Domingo Formation, Argentina. Palaeogeogr

Palaeoclimatol Palaeoecol. 2009; 272: 143–161. https://doi.org/10.1016/j.palaeo.2008.08.014

122. Malafaia E, Ortega F, Escaso F, Silva B. New evidence of Ceratosaurus (Dinosauria: Theropoda)

from the Late Jurassic of the Lusitanian Basin, Portugal. Hist Biol. 2014; 27: 938–946. https://doi.org/

10.1080/08912963.2014.915820
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dinosaurio ornitópodo en la Formación Villar del Arzobispo (tránsito Jurásico-Cretácico): yacimiento
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