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Abstract

Difficulty regulating positive mood and energy is a feature that cuts across different pediatric

psychiatric disorders. Yet, little is known regarding the neural mechanisms underlying differ-

ent developmental trajectories of positive mood and energy regulation in youth. Recent

studies indicate that machine learning techniques can help elucidate the role of neuroimag-

ing measures in classifying individual subjects by specific symptom trajectory. Cortical thick-

ness measures were extracted in sixty-eight anatomical regions covering the entire brain in

115 participants from the Longitudinal Assessment of Manic Symptoms (LAMS) study and

31 healthy comparison youth (12.5 y/o;-Male/Female = 15/16;-IQ = 104;-Right/Left handed-

ness = 24/5). Using a combination of trajectories analyses, surface reconstruction, and

machine learning techniques, the present study aims to identify the extent to which mea-

sures of cortical thickness can accurately distinguish youth with higher (n = 18) from those

with lower (n = 34) trajectories of manic-like behaviors in a large sample of LAMS youth

(n = 115; 13.6 y/o; M/F = 68/47, IQ = 100.1, R/L = 108/7). Machine learning analyses

revealed that widespread cortical thickening in portions of the left dorsolateral prefrontal

cortex, right inferior and middle temporal gyrus, bilateral precuneus, and bilateral paracen-

tral gyri and cortical thinning in portions of the right dorsolateral prefrontal cortex, left
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ventrolateral prefrontal cortex, and right parahippocampal gyrus accurately differentiate

(Area Under Curve = 0.89;p = 0.03) youth with different (higher vs lower) trajectories of posi-

tive mood and energy dysregulation over a period up to 5years, as measured by the Parent

General Behavior Inventory-10 Item Mania Scale. Our findings suggest that specific pat-

terns of cortical thickness may reflect transdiagnostic neural mechanisms associated with

different temporal trajectories of positive mood and energy dysregulation in youth. This

approach has potential to identify patterns of neural markers of future clinical course.

Introduction

Difficulty regulating positive mood and energy is a feature not only of pediatric bipolar

spectrum disorders (BPSD),[1–3] but also of other psychiatric disorders in youth, including

other mood disorders,[2, 4–6] attention deficit hyperactivity disorder (ADHD)[4, 7–10] and

oppositional defiant disorders (ODD).[4, 11] It is also present in youth without a psychiatric

diagnosis.[12–14] Yet, little is known regarding the neural mechanisms underlying different

developmental trajectories of positive mood and energy regulation over time, and how these

trajectories predispose youth to specific future psychiatric disorders. Elucidating these neural

mechanisms would provide objective neural markers to help identify youth most at risk of a

specific future psychiatric disorder.

The Longitudinal Assessment of Manic Symptoms (LAMS) study[15, 16] is an ongoing lon-

gitudinal follow-up of youth who were aged 6–12 years upon study entry. They were recruited

via nine outpatient mental health clinics and selected based on emotional and behavioral dys-

regulation, regardless of diagnosis. Paralleling the NIMH’s Research Domain Criteria (RDoC)

initiative on transdiagnostic studies of psychiatric illness,[17–19] the LAMS study has assessed

mood symptoms and related behaviors every six months over five or more years in youth with

different psychiatric disorders, including BPSD, depression, anxiety, attention deficit hyperac-

tivity disorder (ADHD), oppositional defiant disorder (ODD) or conduct disorder (CD). One

of the clinical rating scales periodically administered is the 10-item Parental General Behav-

ioral Inventory (PGBI-10M),[20] a parental report of the child’s difficulty regulating positive

mood and energy. In LAMS youth, having a higher PGBI-10M score (�12) at study entry was

associated with high risk of developing BPSD,[21] as well as other severe psychopathology[2,

22] and disorders[15, 16] in the future.

The LAMS study also includes assessments of neuroimaging correlates of different trajecto-

ries of symptom dimensions in a subgroup (LAMS: n = 103; healthy peers: n = 40). Here, spe-

cific patterns of activity and functional connectivity in emotional regulation circuitry were

associated with different pre-imaging PGBI-10M trajectories. Specifically, LAMS youth with

initially high PGBI-10M trajectories showed decreased dorsolateral prefrontal cortical activity

during a task measuring attentional control over emotional distracters, and decreased func-

tional connectivity between ventrolateral prefrontal cortex and amygdala, relative to LAMS

youth with lower PGBI-10M trajectories.[23] These findings indicate associations between pat-

terns of functional abnormalities in emotional regulation circuitry and previous clinical course

in youth with different psychiatric disorders.

The advance of surface-based methods for neuroimaging analyses has enabled measure-

ment of regional thickness and surface area across the cerebral cortical mantle with submilli-

meter accuracy.[24–28] Interestingly, using dynamic mapping in 32 youth with emotional

dysregulation disorders and/or behavioral developmental disorders, Gogtay et al. tracked gray
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matter cortical changes preceding the onset of their first manic episode.[29] A gradual increase

over time in gray matter volume was shown in youth who converted to BPSD, relative to

healthy control youth. Specifically, increased gray matter volume was shown in bilateral

temporal cortices and in left ventrolateral prefrontal cortex in youth who converted to BPSD.

[29] Global cortical thickness abnormalities were also reported in youth with ADHD in a lon-

gitudinal study of 163 youth with ADHD and 166 healthy controls.[30] Here, developmental

trajectory analyses revealed a stable reduction over 5.7 years of left medial prefrontal cortical

thickness in youth with ADHD who developed a worse clinical course than those with a better

course (and controls).[31] Cortical abnormalities have also been reported in the superior tem-

poral gyrus in youth with CD.[32] Together, these findings suggest that cortical thickness pat-

terns may predispose to the development of specific psychiatric disorders in youth with

emotional and/or behavioral developmental disorders. Yet, the extent to which patterns of cor-

tical thickness can help distinguish youth with symptom trajectories, cutting across diagnoses,

[33] remains unknown.

Machine learning is an area of artificial intelligence concerned with the development of

algorithms and techniques able to automatically extract information from the data.[34] Recent

evidence indicates that the combination of machine learning and neuroimaging techniques

may help classify individuals, case by case, into different diagnostic groups or characterize

individuals by different clinical course trajectories.[33]

In the present study, we aimed to use a combination of structural neuroimaging, specifically

surface reconstruction, latent class analysis and machine learning to identify the extent to

which patterns of cortical thickness could be used to accurately classify youth with different

symptoms at the individual level. Specifically, we focused on trajectories of PGBI-10M scores,

given the important relationships that we previously observed between PGBI-10M scores and

development of future psychiatric disorders in LAMS youth (see above). The absence of prior
studies combining such approaches precluded formulation of specific hypotheses regarding the
precise nature of cortical thickness patterns that would be the best classifiers of previous clinical
course. We thus examined 68 parcellated regions covering the cerebral cortical mantle, and

aimed to determine the extent to which patterns of cortical thickness could differentiate youth

with different clinical profiles. Specifically, this approach holds promise as a strategy to identify

transdiagnostic pathophysiologic mechanisms of positive mood and energy dysregulation in

youth with different emotional and/or behavioral developmental disorders.

Method and materials

Participants

The study received institutional review board approval at all scan sites (Case Western Reserve

University [9–10–28], Cincinnati Children’s Hospital Medical Center [2010–3347], and Uni-

versity of Pittsburgh Medical Center [PRO10090442]). Parents or guardians provided written

informed consent, and children provided written informed assent prior to study participation.

Participants received monetary compensation and a framed picture of their structural neuro-

imaging scan. One-hundred-twenty-eight youth, recruited from the LAMS cohort of 685, and

thirty-four newly recruited healthy comparison youth (HC) participated in the neuroimaging

component of the LAMS study as follows: Case Western Reserve University (n = 32 LAMS;

n = 14 HC); Cincinnati Children’s Hospital (n = 48 LAMS; 6 HC); and University of Pitts-

burgh Medical Center (n = 48 LAMS; 14 HC). All HC were recruited using local advertising at

the three sites, and were free of any psychiatric disorder. Their first-degree relatives were free

of mood disorders and psychosis, and their second-degree relatives were free of BPSD and any
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psychosis. Inclusion and exclusion criteria for LAMS youth have been previously described at

length [22, 35] and synthesized in the S1 Materials and Table A in S1 Materials.

Clinical assessment

Semi-annual parent/guardian’s assessments of PGBI-10M score,[20, 36] semi-annual parent

and child assessments of anxiety symptoms using the Screen for Child Anxiety Related Emo-

tional Disorders(SCARED),[37] and annual assessments of manic and depressive symptom

severity using respectively the Schedule for Affective Disorders and Schizophrenia for School-

Age Children(K-SADS) Mania Rating Scale (KMRS),[38] and Depression Rating Scale

(KDRS),[39] were performed. Additionally, SCARED, KDRS, and KMRS were repeated on

scan day. Exclusion criteria were: systemic medical illnesses, neurological disorders, history of

trauma with loss of consciousness, use of central nervous system effecting medications, IQ<70

assessed by the Wechsler Abbreviated Scale of Intelligence (WASI), positive drug and/or alco-

hol screen on the day of MR scan, alcohol/substance abuse in the past 3 months (determined

by the Schedule for Affective Disorders and Schizophrenia for School Age Children, Present

and Lifetime Version; K-SADS-PL-W), significant visual disturbance, non-English speaker,

history of physical/sexual abuse, autistic spectrum disorders/developmental delays, pregnancy,

claustrophobia, and metal in the body.

Neuroimaging protocol and surface reconstruction analysis

Structural acquisition. Data were acquired using an axial 3D MPRAGE sequence

(TE/TI/TR = 3.29ms /900ms/2200ms, flip angle = 9, isotropic 1mm3 voxel, 192 axial slices,

matrix size = 256x192; time: 7’02”).

Surface reconstruction analysis. Surface Reconstruction Analysis and quantification of

thickness measurements were performed in 34 parcellated regions covering the cerebral corti-

cal mantle in each hemisphere (Fig 1) using FreeSurfer software package (version-5.3; https://

surfer.nmr.mgh.harvard.edu). This method has been extensively described in previous meth-

odological papers [24–26] and is briefly described in the S1 Materials.

Statistical analysis

Longitudinal trajectory analysis. Longitudinal Trajectory Analysis of PGBI-10M Scores

was performed on the Statistical Analysis System (SAS) platform using ‘Proc Traj’ software

package, freely available at http://www.andrew.cmu.edu/user/bjones/index.html. Proc Traj is a

specialized group-based mixture method that identifies distinct homogenous clusters (classes)

of trajectories in a given population, over time.[40, 41]Trajectories of behaviors associated

with difficulty regulating positive mood and energy were thereby determined in the 115 LAMS

youth with usable neuroimaging data, using the semi-annual PGBI-10M ratings collected for

up to 5 years. Previously employed to describe trajectories of depressive symptoms,[42, 43] the

employment of Proc Traj in the present study allowed fitting two components simultaneously:

1. a censoring normal mixture model of the PGBI-10M score as a polynomial function of time,

and 2. a latent class model using the multinomial logistic regression of the trajectory classifica-

tion. The number of trajectories was determined based on (a) Bayesian Information Criterion,

(b) posterior probabilities of group membership,[44] and (c) presence of a minimum of 10%

of participants per trajectory. Trajectories were tested for linear, quadratic, and cubic trends.

Z-scores, and associated p-values were then derived to determine the differences between

A LAMS study
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Fig 1. Panel A. Isosurface view of cortical surface reconstruction and cortical parcellation in one of our

participants. Panel B. 3D view of cortical thickness of parcellated regions in the same participant. Here, few

parcellated regions are displayed in native space, in accordance with the Freesurfer color-coding convention,

and overimposed on the anatomical (mprage) image of the same participant.

https://doi.org/10.1371/journal.pone.0180221.g001
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slopes of main class-trajectories, using the following formula[45]:

z ¼
b j � b i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSE

b j
2þSE b i

2Þ
q :

Between-class differences in demographic and clinical variables were examined using inde-

pendent two-tailed t-tests or chi2 tests, as appropriate (Table B in the S1 Materials). Gender,

age at scan, handedness, socioeconomic status (SES), site, signal to noise, BPSD diagnosis at

scan (yes/no), depressive spectrum disorder diagnosis at scan (yes/no), ADHD diagnosis at

scan (yes/no), and disruptive behavior disorder diagnosis (CD, ODD) at scan (yes/no) were

entered as covariates of no-interest in this analysis. For a detailed description of how neuroim-

aging data were combined across site, see the S1 Materials.

Regularized linear logistic regression and machine learning analyses. Regularized Lin-

ear Logistic Regression and Machine Learning Analyses were performed on neuroimaging

data after surface reconstruction analysis using glmnet and caret libraries, implemented in the

R source package.[46] Glmnet is a freely available library (https://cran.r-project.org/web/

packages/glmnet/index.html).[46] This includes fast algorithms for estimation of penalty

terms (i.e., ℓ1 in least absolute shrinkage and selection operator (LASSO), ℓ2 in ridge regres-

sion and ℓ1- ℓ2 mixtures in elastic-net) for regularized linear regression models using cyclical

coordinate descent, computed along a regularization path. Penalization techniques, such as

ridge regression,[47] LASSO[48] and elastic-net[49] regression, have gained popularity over

classical ordinary least squares estimates, allowing for the testing of a relatively large number

of variables relative to the number of study participants, while minimizing the risk of inflating

model error or overfitting. For example, ridge regression[47] minimizes the residual sum of

squares, subject to a bound on the ℓ2-norm of the coefficients. As a continuous shrinkage

method, ridge regression achieves its better prediction performance through a bias—variance

trade-off, yet maintaining all the predictors in a given model. A more parsimonious alterna-

tive, namely the LASSO was proposed by Tibshirani.[48] By imposing an ℓ1-penalty on the

regression coefficients, LASSO involves both continuous shrinkage and automatic variable

selection, and simultaneously removes irrelevant predictors in a given model. While both tech-

niques represent a valid approach in variable selection, LASSO is much more appealing due to

its parsimoniousness. Yet, in the context of a dataset with highly inter-correlated variables, the

selection of one variable over another is arbitrary. To overcome this limitation, a new regulari-

zation technique, namely elastic-net, has been recently proposed.[49] Elastic-net linearly com-

bines the ℓ1 and ℓ2 penalty terms of ridge and LASSO methods. Thus, similar to ridge and

LASSO, elastic-net simultaneously does automatic variable selection and continuous shrink-

age, further adding a group-selection feature for highly correlated variables. All these tech-

niques belong to the same family of regularized regression models where a scalar value (from

0 to 1) of the alpha parameter defines the weight of LASSO(ℓ1) versus ridge (ℓ2) optimization,

where alpha = 1 represents LASSO regression, alpha close to 0 approaches ridge regression,

and in-between alpha values represent elastic-net optimization. Thus, depending on the char-

acteristics of a given dataset, one technique might be more appropriate than another. To iden-

tify the best model for our data, the Classification And REgression Training (caret; caret.r-

forge.r-project.org) package was used. In caret, a set of functions relevant to machine learning,

such as data splitting, pre-processing, feature selection, model tuning using resampling, vari-

able importance estimation, and more, are available. In the present study, the combined use of

caret and glmnet allowed for the identification of the optimal values of alpha (ridge vs elastic-

net vs lasso) and lambda parameters. Elastic-net resulted to be the optimal model for our data

(see results section). In brief, caret was used to: 1. stratify a random split of the data in

A LAMS study
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training-test samples (60% and 40%, respectively using the createDataPartition function); 2.

evaluate the effect of model tuning alpha and lambda parameters on performance (expand.

grid function); 3. choose the “optimal” regularized regression model across these parameters

from a training set (trainContol function; 10-fold cross-validation); and 4. estimate model per-

formance in the training and test sample (summaryFunction, classProbs and predict func-

tions). To this end, dROC library was used to provide measures of performance (sensitivity,

specificity, accuracy; area under the curve; PPV and NPV) of this classification analysis. Specif-

ically, ROC analysis provides tools to select optimal models and to discard suboptimal ones

independently from (and prior to specifying) the cost context or the class distribution in diag-

nostic decision making.[50] Thus, 34 cortical thickness measures for each hemisphere (68 in

total) were used as independent variables, with PGBI-10M trajectory classes, defined as

described above, as dependent (outcome) variables. Gender, age at scan, handedness, IQ, SES,

site, signal to noise ratio (see below), different diagnoses at scan including BPSD (yes/no),

depressive spectrum disorder (yes/no), ADHD (yes/no), and disruptive behavior disorder

(CD, ODD; yes/no), and 6 medication classes in the day of the scan, including mood stabilizer

(ON/OFF), stimulant (ON/OFF), non-stimulant (ON/OFF), antidepressant (ON/OFF), anti-

psychotic (ON/OFF) and anxiolytic (ON/OFF) medications were entered as additional poten-

tial predictors in this analysis. Cortical thickness by age (or gender) interaction was also

modelled in this analysis. The optimal regularized regression model was then used to derive

the variable importance selection, based on the magnitude of the parameter estimates (i.e.,

betas). The sign (positive or negative) of the betas were used for interpretation the directional-

ity of a given predictor (e.g., cortical thinning in a given brain region was derived by a negative

beta).

Exploratory analyses. Two Multivariate Analyses of Variance (MANOVAs; one for pat-

terns of cortical thickening and one for patterns of cortical thinning) were used to examine

relationships between cortical thickness in brain regions that accurately distinguished the two

extreme PGBI-10M trajectories and: KMRS, KDRS, SCARED scores in LAMS youth.

Results

Trajectory analysis

Due to data loss or failure to meet our data quality control criteria (see the S1 Materials), 13

participants were excluded from analyses (Table B in the S1 Materials), leaving 115 LAMS par-

ticipants (13.6 y/o; M/F = 68/47;IQ = 100.1;R/L = 108/7) and 31 HC (12.5 y/o; M/F = 15/16;

IQ = 104;R/L = 24/5). On the scan day, only one of the 115 LAMS youth did not have any diag-

nosis, 22 had a single diagnosis, and the other 92 had two or more comorbid diagnoses. 50.4%

of LAMS youth were taking one or more medications on the scan date, including antidepres-

sants, antipsychotics, mood stabilizers, stimulants, and/or non-stimulant ADHD medications.

Demographic and clinical characteristics of the sample are reported in Table 1 (entire sample)

and in Table B in the S1 Materials (main class-Trajectories).

Longitudinal Trajectory Analysis of PGBI-10M identified three (1. β0 = 16.2, β1 = -3.0;

p = 0.05; 2. β0 = 6.6, β1 = -5.0; p<0.001; 3. β0 = 0.3, β1 = 0.3, β2 = 3.6; p = 0.07) main pre-imag-

ing PGBI-10M class-trajectories in the 115 LAMS youth included in the study (Z(class 1. vs class 2.)

score = -3.24, p = 0.002; Z(class 1. vs class 3.) score = 4.3, p<0.001; and Z(class 2. vs class 3.) score = 4.8,

p<0.001). Specifically, there were 18 youth (mean age[SD] = 14[2.2], gender ratio = 11/7

[F/M], handedness = 18/0, mean IQ[SD] = 98[17.3] SES = 33) with higher scores at study

entry followed mostly by a stable course (i.e., PGBI-10M score�12 at all times in 6 out of 18

youth and in at least 50% of times in 17 out of 18 youth). Only 1 out of 18 youth showed an

unstable course (i.e., PGBI-10M score<12 for more than 50% of the times); 61 youth (mean

A LAMS study
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Table 1. Demographic and clinical variable in 3 LAMS sites (Cleveland, Cincinnati and Pittsburgh).

SITE N Mean[SD] Stats. Sig. (2-sided)

Age at Scan CASE 44 13.3 [2.4] F = 0.1 .934

CINCI 45 13.3 [2.3]

PITT 57 13.5 [2.1]

Base IQ CASE 44 100.2 [17.8] F = 0.5 .600

CINCI 45 102.9 [13.6]

PITT 57 100.1 [15.2]

KMRS CASE 44 2.1 [4.8] F = 2.6 .076

CINCI 45 5.1 [7.4]

PITT 57 3.2 [6.2]

KDRS CASE 44 1.8 [4.1] F = 2.7 .071

CINCI 45 3.6 [4.0]

PITT 57 3.6 [4.7]

SCARED ^* CASE 44 9.2 [10.0] F = 0.6 .527

CINCI 40 11.2 [9.6]

PITT 57 11.4 [11.0]

Gender [M/F] CASE 44 0.5 [0.5] F = 0.9 .413

CINCI 45 0.4 [0.5]

PITT 57 0.4 [0.5]

SES [higher vs lower] $ CASE 44 1.5 [0.5] F = 1.0 .371

CINCI 45 1.5 [0.5]

PITT 57 1.4 [0.5]

Handedness [L/R] CASE 44 1.1 [0.3] F = 0.3 .747

CINCI 43 1.1 [0.3]

PITT 57 1.1 [0.3]

PGBI-10M # (lower<12 / higher>13) CASE 26/5 — χ2 = 0.8 .658

CINCI 32/7 —

PITT 40/5 —

Bipolar Disorder at Scan [NO/YES] # CASE 18/13 — χ2 = 4.0 .137

CINCI 24/15 —

PITT 35/10 —

Depression at Scan [NO/YES] # CASE 30/1 — χ2 = 1.8 .398

CINCI 35/4 —

PITT 43/2 —

Anxiety at Scan [NO/YES] # CASE 30/1 — χ2 = 6.4 0.041**

CINCI 32/7 —

PITT 43/2 —

ADHD at Scan [NO/YES] # CASE 21/10 — χ2 = 6.9 .140

CINCI 19/20 —

PITT 18/26 —

Conduct-ODD-Disrupt at Scan [NO/YES] # CASE 28/3 — χ2 = 13.5 0.001***

CINCI 19/20 —

PITT 28/17 —

(Continued )
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age[SD] = 13[2.1], gender ratio = 23/38 [F/M], handedness = 57/4, mean IQ[SD] = 97[14.7],

and SES = 29) with ‘intermediate’ trajectories who were clinically more heterogeneous (i.e., 23

out of 61 youth showed PGBI-10M score�12 for at least 30% of the times); and 36 youth

(mean age[SD] = 14[2.0], gender ratio = 12/24 [F/M], handedness = 33/3, mean IQ[SD] = 106

[16.8], and SES = 34) with lower scores at study entry followed by a stable course (i.e., PGBI-

10M score<12 at all times in 34 out of 36 youth. Two youth only reported a PGBI-10M score

of 15 in one of the pre-imaging follow-up times) There were no main differences in total cere-

bral volume or total gray matter volume among the three principal PGBI-10M class-trajecto-

ries. (Fig 2 and Table 1).

Elastic-net linear logistic regression and machine learning analyses

Our main predictive analysis focused on the ability of cortical thickness measures to accurately

classify LAMS youth into those with higher (n = 18) vs. those with lower (n = 36) pre-imaging

PGBI-10M score trajectories. A training-test split (60%) of the sample was done and a 10-fold

cross validation was used in the training phase to create this predictive model. Finally, predic-

tors identified in the training phase were further validated on the test sample (40%) to estimate

the accuracy of this model. Optimized parameters for the main predictive model (higher vs

lower PGBI-10M trajectories) were alpha = 0.1, lambda = 0.1. Alpha values between 0 and 1

represent elastic-net optimization. Here, elastic-net linear logistic regression revealed that pat-
terns of cortical thickening in key regions of the prefrontal cortex (i.e., left caudal middle frontal

gyrus, pars triangularis and opercularis of the left inferior frontal gyrus), temporo-parietal cor-

tex (right inferior and middle temporal gyrus, bilateral precuneus, and bilateral paracentral

gyrus) and left cuneus, but patterns of cortical thinning in key regions of the prefrontal cortex

(i.e., right caudal middle frontal gyrus, pars orbitalis of the left inferior frontal gyrus and left

lateral orbital frontal gyrus) and the right parahippocampal gyrus of the temporal cortex accu-

rately distinguished (statistics of this model upon the test sample: sensitivity = 0.83; specific-

ity = 0.92; accuracy = 0.89; area under the curve = 0.95; Positive Predicted Value = 0.83 and

Negative Predicted Value = 0.92; p = 0.03) youth with higher from those with lower PGBI-

10M trajectories (Fig 3). Taking mood stabilizer medications and having a diagnosis of BPSD

were also relevant predictors in distinguishing LAMS youth with higher, verus those with

lower, pre-imaging PGBI-10M trajectories.

Table 1. (Continued)

SITE N Mean[SD] Stats. Sig. (2-sided)

Substance Dependence at Scan [NO/YES] # CASE 30/1 — χ2 = 2.7 .255

CINCI 39/0 —

PITT 45/0 —

^ Equal variances not assumed

* Missing info in 5 LAMS participants.
# Data available in LAMS participants only
$ Lower SES includes No education, High School, GED, High School Diploma, Some Post-High School w/o degree or certification; Higher SES includes

Associate’s Degree, Other Post-High School certification, Bachelor’s Degree or Higher

** Post-hoc analyses revealed that among LAMS youth included in this study, those recruited in the Cincinnati site had higher rate of Anxiety Disorders than

the LAMS youth recruited from the Cleveland and Pittsburgh sites (p = .029 and p = 028, respectively).

*** Post-hoc analyses revealed that among LAMS youth included in this study, those recruited in the Cleveland site had lower rate of Conduct Disorder-

Disruptive or Oppositional Defiant Disorders than the LAMS youth recruited from Cincinnati and Pittsburgh sites (p<0.001 and p = 009, respectively).

https://doi.org/10.1371/journal.pone.0180221.t001
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Two additional analyses determined the extent to which cortical thickness could accurately

classify LAMS youth with higher PGB-10M trajectories vs. control youth (n = 31) and LAMS

youth with lower PGB-10M trajectories vs. control youth (see additional results, Figure A and

Figure B in the S1 Materials).

Exploratory analyses

In the 18 LAMS youth with higher PGBI-10M trajectories and the 36 LAMS youth with lower

PGBI-10M trajectories, there were no significant relationships among clinical variables,

including KMRS, KDRS, SCARED scores on the day of the scan and cortical thickness in any

of the regions that discriminated the two extreme PGBI-10M trajectories (for patterns of corti-

cal thickening, see Table C in the S1 Materials; for patterns of cortical thinning, see Table D in

the S1 Materials).

Discussion

Our main findings revealed that patterns of widespread cortical thickening in portions of the

left dorsolateral prefrontal cortex (including the caudal middle frontal gyrus and pars triangu-

laris of the inferior frontal gyrus), medial parietal (left and right precuneus) cortex and lateral

portions of the right temporal cortex, but cortical thinning in the right dorsolateral prefrontal

Fig 2. Line plot shows main class-trajectories identified in the 115 LAMS youth study participants. The red line represents the

class-trajectory of LAMS youth with initially high and subsequently improving PGBI-10M scores, the blue line represents the class-

trajectory of LAMS youth with intermediate PGBI-10 M scores and the green line represents the class-trajectory of LAMS youth with

initially low and subsequently improving PGBI-10M scores in the pre-imaging follow-up period (5 years). The pink area represents the

clinically significant range of PGBI-10M (>12).

https://doi.org/10.1371/journal.pone.0180221.g002
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Fig 3. Left Panel. Bar plot represents cortical regions having from-higher-to-lower rank of importance in

contributing to PGBI-10M trajectory-classification, i.e., differentiating LAMS youth with higher, from LAMS

youth with lower, PGBI-10M trajectory. Blue bars represent regions in which greater cortical thickness

contributed to this classification, while red bars represent regions in which lower cortical thickness contributed

to this classification. Variable importance is also represented on the anatomical (mprage) image of one of our

participant where color map reflects the relative contribution of each brain region using beta values, in

accordance with the color-coding convention of the bar plot. Gray areas represent brain regions that did not

contribute into the model. Right Panel. AUC plot.

https://doi.org/10.1371/journal.pone.0180221.g003
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cortex(including the caudal middle frontal gyrus), left ventrolateral prefrontal cortex (includ-

ing the lateral orbitofrontal gyrus and the pars orbitalis of the inferior frontal gyrus) and right

parahippocampal gyrus accurately distinguished LAMS youth with higher, from those with

lower, PGBI-10M trajectories.

These findings parallel previous findings of predominantly increased cortical volumes in a

sample of 32 youth with emotional dysregulation and/or behavioral disorders who converted

to BPSD (relative to healthy youth).[29] Importantly, in the present study we did not focus on

single diagnoses, but rather looked at different trajectories of positive mood and energy dysre-

gulation up to five years that cut across diagnoses. This might in part explain the differences in

findings of the present study with those observed in Gogtay et al. Decreases in frontal cortical

thickness in adolescents with BPSD relative to healthy control youth were also reported,[51]

but only generic measures of cortical thickness for frontal, temporal and parietal lobes were

provided in this latter study. Thus, further speculations are not possible. Recent studies

reported increased prefrontal cortical thickness (inferior frontal gyrus) in youth at high genetic

risk of mood disorders who subsequently developed depressive symptoms.[52] In these youth,

reduced cortical thickness in the right parahippocampal(50) (and right fusiform gyri)[52, 53]

were also reported. Together, these findings indicate that combinations of increased and

decreased cortical thickness are associated with presence of, and/or risk for future, psychiatric

disorders, and partially parallel findings in the present study.

There are also some remarkable parallels between findings from the present study and our

previous LAMS neuroimaging studies. For example, we previously showed a positive correla-

tion between PGBI-10M-score at scan and left middle prefrontal cortical activity to win trials

during a reward paradigm in LAMS youth.[54] Our present finding of greater cortical thick-

ness in the left caudal middle frontal gyrus in LAMS youth with higher PGBI-10M trajectories

than in LAMS youth with lower PGBI-10M trajectories parallel this finding, and suggest that

cortical abnormalities in the left middle frontal gyrus may underline heightened reward sensi-

tivity and greater attention to reward stimuli in emotionally and behaviorally dysregulated

youth, regardless of diagnosis.

There are limitations. 1. Specifically, trajectories were based on pre-imaging clinical assess-

ments and only one neuroimaging scan was acquired. Future studies with post-imaging clini-

cal trajectories and more than one neuroimaging measure are needed to determine the

relationship between developmental changes in neuroimaging measures and how these

changes can predict future symptom trajectories. 2. In this study, we focused on the two

extreme (higher and lower) PGBI-10M classes. These two classes are clinically distinct, and

therefore appropriate for the identification of a discriminant algorithm. It is worth mentioning

that these classes resemble the two main PGBI-10M classes that were previously reported in

the entire LAMS sample (n = 707) using 24-month trajectories (see Table E in S1 Materials).

[23, 35] To take advantage of the unique longitudinal design, in the present study we focused

on the subsample of LAMS youth with neuroimaging data who were clinically characterized

for up to 5 years. This is the only study that combines such a long longitudinal design and neu-

roimaging. The number of youth within these classes is, however, relatively small and this rep-

resents a limitation of the study. Yet, the Positive and Negative Predicted Values (PPV = 0.83

and NPV = 0.92, respectively) were high and indicated that the neuroimaging patterns identi-

fied in the training sample were able to accurately classify 5 out of 6 youth with higher (PPV)

and 12 out of 13 youth with lower (NPV) PGBI-10M trajectories in the independent (i.e., ran-

domly selected a priori) testing sample. 3. The 5-year trajectories were based on the PGBI-

10M, which is a parental report of the child’s difficulty regulating positive mood and energy.

While parental reports are largely employed in research settings as a way to collect clinically

relevant information based on mile-stone assessments of observed behaviors (i.e., the
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observation of the child’s ‘performance’ in a natural setting), these instruments might lack of

norm-reference (i.e., limitation of a parent in comparing the functioning of his own child in

relation to other children). 4. Cortical subregions were parcellated using FreeSurfer, which

offers a fully automated parcellation method. Parcellated regions were then visually inspected

for gross artifacts. In addition, a data quality protocol was used, in accordance with the proto-

col proposed by the ENIGMA project (http://enigma.ini.usc.edu/protocols/imaging-protocols;

see the S1 Materials). While a recent study comparing measures of manually edited vs. uned-

ited FreeSurfer cortical regions did not find significant between-method differences,[55] inac-

curacies can occur in automated parcellation methods and further studies may be needed to

quantify the accuracy of these measures.

Importantly, the present study indicates for the first time how the combined use of cortical

thickness measures, symptom trajectory analysis and machine learning can identify clusters of

neural regions that accurately classify individual youth into groups defined by symptom trajec-

tories over time, specifically trajectories of observed behaviors associated with positive mood

and energy regulation, in a large sample of youth recruited transdiagnostically. This approach

holds promise as a strategy to identify objective neural markers reflecting pathophysiologic

mechanisms underlying emotional dysregulation that can classify individual youth, case by

case, in terms of clinical course. Future studies can use such an approach to identify patterns

of neural markers that predict future clinical course.

Supporting information

S1 Materials. Additional information concerning neuroimaging acquisition and quality

control procedure in neuroimaging data analyses, additional results in LAMS Youth with

Higher (or Lower) PGBI-10M Trajectories vs typically developing youth, supplemental

tables (i.e., Table A-D) and figures (i.e., Figure A-B).
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