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Abstract

Network models, in which psychopathological disorders are conceptualized as a complex

interplay of psychological and biological components, have become increasingly popular in

the recent psychopathological literature (Borsboom, et. al., 2011). These network models

often contain significant numbers of unknown parameters, yet the sample sizes available in

psychological research are limited. As such, general assumptions about the true network

are introduced to reduce the number of free parameters. Incorporating these assumptions,

however, means that the resulting network will lead to reflect the particular structure

assumed by the estimation method—a crucial and often ignored aspect of psychopathologi-

cal networks. For example, observing a sparse structure and simultaneously assuming a

sparse structure does not imply that the true model is, in fact, sparse. To illustrate this point,

we discuss recent literature and show the effect of the assumption of sparsity in three simu-

lation studies.

Introduction

Recent psychological literature has focused on a network approach to model many different

psychological phenomena [1]. Such networks can be high-dimensional structures (i.e., the

number of unknown parameters is much larger than the available data), which are hard to esti-

mate without making general assumptions about the underlying true model structure. If the

true model is assumed to be sparse, thus containing a small number of connections relative to

the number of nodes, a methodology can be applied that potentially returns a sparse network

structure. In other words, assuming a sparse network structure results in estimating a sparse

network structure, which means that certain conclusions cannot be drawn from observing

such a structure. In this paper, we argue that care should be taken in interpreting the obtained

network structure because the estimation procedure may pollute the results. We will illustrate

this by showing examples of networks obtained when sparse networks are estimated even

when the true network structure is dense.

Network psychometrics

The network approach has been particularly promising in the field of psychopathology. Within

this framework, symptoms (e.g., insomnia, fatigue, and concentration problems) are no longer
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treated as interchangeable indicators of some latent mental disorder (e.g., depression).

Instead, symptoms play an active causal role. For example, insomnia leads to fatigue, fatigue

leads to concentration problems, and so forth [2]. Psychopathological disorders, then, are

not interpreted as the common cause of observed symptoms but rather as emergent behaviors

that result from a complex interplay of psychological and biological components. To

grasp such a complex structure, a network model can be used in which variables such as symp-

toms or moods are represented by nodes. Nodes are connected by edges that indicate associa-

tions between nodes. This line of research has led to intuitive new insights about various

psychopathological concepts such as comorbidity [3, 4], the impact of life events [5, 6], and

sudden life transitions (e.g., sudden onset of a depressive episode; [7, 8]). For an overview of

network modeling applied to psychopathology, we refer the reader to a recent review of Fried

et al. [9].

The growing popularity of the network perspective on psychological phenomena has culmi-

nated in the emergence of a new branch of psychology dedicated to the estimation of network

structures on psychological data—network psychometrics [10]. This field focuses on tackling

the problem of estimating network structures involving large numbers of parameters in high-

dimensional models. When cross-sectional data are analyzed, the most popular models that

are used are the Gaussian Graphical Model (GGM; [11]) for continuous data and the Ising

model [12] for binary data. Both the GGM and the Ising model fall under a general class of

models called Markov Random Fields. These models represent variables as nodes which are

connected by edges but only if the variables are conditionally independent. The strength of an

edge (i.e., its absolute deviance from zero) demonstrates the strength of the association

between two variables after conditioning on all other variables in the network; this is also

termed concentration [13]. In the GGM, edges directly correspond to partial correlation coeffi-

cients. The Ising model does not allow for such standardization, but edge weights can be simi-

larly interpreted. A more detailed introduction of network models is beyond the scope of this

paper, but we recommend [10] and [14] for further reading on the subject.

In these models, we must estimate a weight matrix that contains P(P − 1)/2 number of

parameters, where P is the number of nodes, in order to encode the network structure. These

parameters encompass the conditional relationship between two nodes after conditioning on

all other nodes in the network and can be shown to be quite instable with relatively low sample

sizes [14]. “Relatively low sample sizes,” is a loose description and has not yet been well-

defined. A general rule would be to have at least as many observations as the number of param-

eters. But, as will be shown later, this general rule still results in unstable estimates. A common

solution to overcome the problem of estimating many parameters is to reduce this number by

using some form of regularization or penalization. A particularly promising technique is to

apply the ‘least absolute shrinkage and selection operator’ (LASSO; [15]) to the edge weights of

the network. The LASSO penalizes the sum of absolute parameter values such that the esti-

mated values shrink to zero. That is, the absolute parameter estimates will be small and will

often equal exactly zero. Therefore, the resulting model is almost always sparse; only a rela-

tively few number of parameters will be estimated to be nonzero. The use of LASSO typically

leads to better performance in cross-validations (i.e., overfitting is prevented) and results in

more easily interpretable models compared to nonregularized Ising models. Most important is

that if the true network structure is sparse, the LASSO performs well in estimating this network

structure and, more specifically, in estimating fewer edges to be nonzero that are actually zero

in the true network (i.e., fewer false positives).

The LASSO uses a tuning parameter that controls the sparsity, which can be chosen to min-

imize some criterion such as the Extended Bayesian Information Criterion (EBIC; [16]). This

methodology has been shown to work well for both the GGM [17] and the Ising model [18,
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19], has been implemented in easy-to-use software [20, 21], and has been utilized in an increas-

ing number of publications [22–29]. For a more thorough introduction to this methodology,

we recommend reading Epskamp and Fried [30] and van Borkulo et al. [19].

Sparse network models of psychopathology

It has now been routinely observed that network models based on symptoms of different disor-

ders show network structures in which symptoms representative of a disorder strongly cluster

together (e.g., [28, 29, 31, 32]). Commonly, a DSM diagnosis requires an individual to have X

out of Y symptoms, regardless of which specific symptoms. This means that two people with

vastly different symptoms can be assigned the same diagnosis. This interchangeability results

from an underlying causal notion of unobserved diseases causing symptoms rather than symp-

toms having an active causal role on each other—a notion more formally known as the com-

mon cause model [1]. If the common cause model is true, we would expect clustering in the

networks much like the clustering found in the literature [10, 33, 34]. These networks, how-

ever, do differ on some key aspects as can be expected from interchangeable symptoms: the

networks are sparse (contain missing edges), and the number of connections differ per symp-

tom. Furthermore, sometimes negative connections are present where one would expect posi-

tive connections. Observing such a structure might lead one to conclude that symptoms are

not interchangeable.

Although we do not necessarily disagree with the notion that symptoms play an active

causal role in psychopathology, we wish to point out that the conclusion that symptoms are

not interchangeable is difficult to ascertain from a sparse approximated network structure

alone. This is because the LASSO relies on the assumption that the true network structure is

sparse; the LASSO will always search for a model in which relatively few edges and paths

explain the co-occurrence of all nodes. As a result, the LASSO can have a low sensitivity (i.e.,

not all true edges are detected) but always has a high specificity (i.e., few false positives) [19]. It

is this reason why network analysts prefer the LASSO; edges that are estimated by the LASSO

are likely to represent true edges. Moreover, the LASSO returns a possible explanation of the

data using only a few connections that can be interpreted as causal pathways [11, 35]. That the

LASSO yields a possible explanation, however, does not mean that the LASSO provides the

only explanation, nor does it indicate that other explanations are false. The sparse explanations

found by the LASSO can give great insight regarding a possible way in which psychopathologi-

cal symptoms interact with each other. However, merely finding a sparse structure does not

mean that other explanations (e.g., a common cause with interchangeable symptoms) are dis-

proved. Simply stated, using the LASSO returns a sparse structure, that is what the LASSO

does.

The bet on sparsity

The LASSO is capable of retrieving the true underlying structure but only if that true structure

is sparse. Any regularization method makes the assumption that the true structure can be sim-

plified in some way (e.g., is sparse) because otherwise too many observations are needed to

estimate the network structure. This principle has been termed the bet on sparsity [36]. But

what if the truth is not sparse, but dense?

Such a case would precisely arise if the true model were a common cause model in which

one or several latent variables contribute to scores on completely interchangeable indicators.

This is a feasible alternative because the Ising model can be shown to be mathematically equiv-

alent to a certain type of latent variable model: the multidimensional item response model

(MIRT; [37]), with posterior normal distributions on the latent traits [10, 33]. The
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corresponding Ising model is a low-rank network that will often be dense (i.e., all possible

edges are present). Intuitively, this makes sense because the Ising model parameterizes condi-

tional dependencies between items after conditioning on all other items, and no two items can

be made conditionally independent if the common cause model is true. A low-rank weighted

network will show indicators of a latent variable as clusters of nodes that are all strongly con-

nected with each other. Therefore, if a common cause model is the true origin of the co-

occurrences in the dataset, the corresponding Ising model should show the indicators to clus-

ter together. Then if LASSO regularization is used, the corresponding network would likely

feature sparsity but the nodes would still be clustered together—much like the results in the

literature.

It is this relationship between the Ising model and MIRT that has led researchers to estimate

the Ising model using a different form of regularization, by estimating a low-rank approxima-

tion of the network structure [33]. Such a structure is strikingly different than the sparse struc-

ture returned by LASSO estimation. Whereas the LASSO leads to many edge parameters to be

exactly zero, a low-rank approximation generally estimates no edge to be exactly zero. Thus a

low-rank approximation will typically yield a dense network. On the other hand, this dense

network is highly constrained by the eigenvector structure, leading many edge parameters to

be roughly equivalent to each other rather than compared to the strongly varying edge parame-

ters LASSO estimation allows. For example, the data can always be recoded such that a Rank 1

approximation only has positive connections. These are key points that cannot be ignored

when estimating a network structure. Regardless of the true network structure that underlies

the data, the LASSO will always return a sparse network structure. Similarly, a low-rank

approximation will always return a dense low-rank network structure. Both methods tackle

the bet on sparsity in their own way—sparsity in the number of nonzero parameters or sparsity

in the number of nonzero eigenvalues—and both can lose the bet.

Estimating an Ising model when the truth is dense

Here we illustrate the effect that the estimation procedure has on the resulting Ising model in

two examples. First, we simulated 1,000 observations from the true models shown in Fig 1.

The first model is called a Curie-Weiss model [38], which is fully connected and in which all

edges have the same strength (here set to 0.2). This network is a true Rank 1 network, which

has been shown to be equivalent to a unidimensional Rasch model [33]. The Rasch model is a

latent variable model in which all indicators are interchangeable. Fig 2 shows the results using

three different estimation methods—sequential univariate logistic regressions for unregular-

ized estimation [10], LASSO estimation using the IsingFit R package [21] (all LASSO analyses

in this paper make use the default setup of IsingFit, using a hyperparameter (γ) value of 0.25 as

well as the AND-rule), and a Rank 2 approximation [33]—on the first n number of rows in the

simulated dataset. It can be seen that the unregularized estimation shows many spurious dif-

ferences in edge strength, including many negative edges. The LASSO performs better but esti-

mates a sparse model in which edge weights vary and in which many edges are estimated to be

exactly zero. The Rank 2 approximation works best in capturing the model, which is not sur-

prising because the true model is a Rank 1 network. At high sample sizes, all methods perform

well in obtaining the true network structure.

The second model in Fig 1 corresponds to a sparse network in which 20% of randomly cho-

sen edge strengths are set to 0.2 and in which the remaining edge strengths are set to 0 (indicat-

ing no edge). As Fig 3 shows, the LASSO now performs very well in capturing the true

underlying structure. Because both the unregularized estimation and the Rank 2 approxima-

tion estimate a dense network, they have a very poor specificity (i.e., many false-positive
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Fig 2. Examples of estimated network structures when the true network is a Curie-Weiss network, using different sample sizes and estimation

methods. Graphs were drawn using the qgraph package without setting a maximum value (i.e., the strongest edge in each network has full saturation and

width).

https://doi.org/10.1371/journal.pone.0179891.g002

Fig 1. True network structures used in simulation study. The first network is a Curie-Weiss network: a fully connected network in which all edges have

the same strength. The second network is a random sparse network. All edge weights are 0.2.

https://doi.org/10.1371/journal.pone.0179891.g001
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edges). In addition, the Rank 2 approximation retains spurious connections even at high sam-

ple sizes (choosing a higher rank will lead to a better estimation). Thus, this example serves to

show that the LASSO and low-rank approximations only work well when the assumptions on

the true underlying model are met. In particular, using a low-rank approximation when the

truth is sparse will result in many false positives, whereas using a LASSO when the truth is

dense will result in many false negatives. Even when the true model is one in which every node

represents an interchangeable symptom, the LASSO would still return a model in which nodes

could be interpreted to not be interchangeable.

For the second example, we simulated data under the latent variable model as shown in

Fig 4, using an MIRT model [37]. In this model, the symptoms for dysthymia and generalized

anxiety disorder (GAD) were taken from the supplementary materials of Boschloo et al. [28],

with the exception of the GAD symptom “sleep disturbance,” which we split in two: insomnia

and hypersomnia. The item discriminations of each symptom were set to 1, indicating that

symptoms are interchangeable, and item difficulties were set to 0. All latent variables were sim-

ulated to be normally distributed with a standard deviation of 1, and the correlation between

dysthymia and GAD was set to 0.55—similar to the empirically estimated comorbidity [39].

Nodes 2 and 3 in dysthymia and nodes 6 and 7 in GAD are mutually exclusive, which we mod-

eled by adding orthogonal factors with slightly higher item discriminations of 1.1 and -1.1.

Furthermore, nodes 7, 8, 9, and 10 of dysthymia are identical to nodes 6, 7, 8, and 9 of GAD

respectively, which we modeled by adding orthogonal factors with item discriminations of

0.75. These nodes may not be identical because a skip structure can be imposed on the ques-

tionnaire (e.g., [2, 28]). That is, if someone does not exhibit the symptom “low mood,” that

person is never asked about insomnia in the depression scale because he or she is assumed to

Fig 3. Examples of estimated network structures when the true network is sparse, using different sample sizes and estimation methods.

Graphs were drawn using the qgraph package without setting a maximum value (i.e., the strongest edge in each network has full saturation and width).

https://doi.org/10.1371/journal.pone.0179891.g003
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not have this symptom. We did not impose a skip structure to keep the simulation study sim-

ple. Such shared symptoms are termed bridge symptoms in network analysis because they are

assumed to connect the clusters of disorders and explain comorbidity [3, 4]. In sum, the model

shown in Fig 4 generates data that are plausible given the latent disease conceptualization of

psychopathology.

Fig 5 shows the simulated and recovered network structures. First we simulated 10 million

observations from this model and estimated the corresponding Ising model using nonregular-

ized estimation by framing the Ising model as a log-linear model [10, 40] (the estimation was

done using the IsingSampler package, [41]). Panel A shows the results, which give a good proxy

of the true corresponding Ising structure. It can be seen that the true model is dense, meaning

that indicators of the disorders cluster together. Two negative connections are formed between

the mutually exclusive indicators, and bridging connections are formed between the shared

indicators. Next, we simulated 1,000 observations from the model in Fig 4 and estimated the

Ising model in various ways. Panel B shows unregularized estimation via a log-linear model

and shows many spurious strong connections, including many more negative connections

than present in the true model. As such, Panel B highlights our need to regularize—even in a

sizable dataset of 1,000 observations for a 19-node network. The simulated data has 22.2 obser-

vations for every parameter, Thus, even with a high sample size and even when more subjects

are measured than there are parameters present, it can still be advisable to use some form of

regularization. Panel C shows the result from using the LASSO, using the IsingFit package

[19]. In this model, the clustering is generally retrieved—two of the bridging connections are

retrieved and one negative connection is retrieved. However, the resulting structure is much

more sparse than the true model, and interpreting this structure could lead one to conclude

that the number of connections differed across symptoms, connection strengths varied consid-

erably across symptoms, and relatively few connections connected the two disorders. Finally,

Panel D shows the result of a Rank 2 approximation, which is equivalent to a two-factor

model. Here, it can be seen that although a dense structure is retrieved that shows the correct

Fig 4. A multidimensional IRT model (MIRT) used in simulating data. All latent variables were normally distributed with standard deviation of 1 and all

symptoms were binary. The edges in this model correspond to item discrimination parameters.

https://doi.org/10.1371/journal.pone.0179891.g004
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clustering, violations of the clustering (the negative and bridging edges) are not retrieved. The

supplementary S2 File show that with a higher sample size (n = 5,000) the estimation is more

accurate and that the unregularized and LASSO estimations result in similar network

structures.

Fig 5. Estimated network structures based on data generated by the MIRT model in Fig 4.

https://doi.org/10.1371/journal.pone.0179891.g005
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Different estimation techniques

In light of the examples discussed in this paper, researchers may wonder when they should

and should not use a particular estimation method. For example, low-rank estimation is more

suited in the example demonstrated in Fig 2, whereas LASSO estimation fits better in the

example shown in Fig 3. These conclusions, however, depend on knowing the true network

structure as shown in Fig 1—something a researcher will not know in reality. The choice of

estimation method, therefore, is not trivial. Choosing the estimation method depends on three

criteria: (1) the prior expectation of the true network structure, (2) the relative importance the

researcher attributes to sensitivity (discovery) and specificity (caution), and (3) the practical

applicability of an estimation procedure. When a researcher expects the true network to be low

rank (e.g., due to latent variables), low-rank estimation should be preferred over LASSO regu-

larization. On the other hand, when a researcher expects the network to be sparse, LASSO reg-

ularization should be used. In addition, LASSO regularization should be preferred when a

researcher aims to have high specificity (i.e., to refrain from estimating an edge that is missing

in the true model). Finally, practical arguments can play a role in choosing an estimation pro-

cedure as well. LASSO, particularly in combination with EBIC model selection, is relatively

fast even with respect to large datasets. As a result, researchers could apply bootstrapping

methods to the estimation procedure to further investigate the accuracy of parameter estima-

tion [14], which may not be feasible for slower estimation procedures.

We focused the argumentation on LASSO regularization and low-rank approximation

because these are the main methodologies that have been applied in psychological literature

and present two extreme cases of a range of different network structures that can be estimated.

Because these methods lie on the extreme ends of sparsity relative to dense networks, they best

exemplify the main point of this paper: In small sample sizes, some assumptions of the true

model must be made (e.g., the true model is sparse), and these assumptions influence the

resulting network structure (e.g., the obtained network is sparse). This does not mean that

LASSO and low-rank approximation are the only methods available. An alternative, for exam-

ple, is to use elastic-net estimation, which mixes LASSO regularization with ridge regression

(penalizing the sum of squared coefficients). The elasticIsing package [42] can be used to

accomplish this; it uses cross-validation in selecting the tuning parameters. The supplementary

S2 File show an example of elastic-net applied to the data analyzed in Fig 5. It is noteworthy

that the elastic-net procedure selected a dense network (i.e., ridge regression) over LASSO reg-

ularization, indicating that data-driven evidence can be garnered to argue whether or not

LASSO regularization should be used. The obtained network, like the unregularized network

in Fig 5 (Panel B), also shows many connections which were falsely estimated to be negative;

this raises the question of whether its result should or should not be preferred over LASSO reg-

ularized estimation. The supplementary S2 File also contain examples of LASSO regularization

using different tuning arguments (e.g., BIC selection instead of EBIC selection), which

improves sensitivity (i.e., more edges are detected) in this particular case. Doing so, however,

will result in less specificity when the true model is sparse [19]. Finally, promising methodol-

ogy has been proposed to combine latent variable and network modeling, allowing one to

combine sparse and low-rank network approximation [43–46].

Conclusion

Network estimation has grown increasingly popular in psychopathological research. The esti-

mation of network structures, such as the Ising model, is a complicated problem due to the fast

growing number of parameters to be estimated. As a result, the sample size typically used in

psychological science may be insufficient to capture the true underlying model. Although a
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large sample size network estimation typically goes well regardless of the estimation method

used (see S2 File), Figs 2, 3 and 5 show that estimating an Ising model with sample sizes com-

monly used in psychological research results in poor estimates without the use of some form

of constraint on the parameter space. Two such constraints involve limiting the size and num-

ber of nonzero parameters (LASSO) or reducing the rank of a network (low-rank approxima-

tion). It is important to realize that using such estimation methods makes an assumption on

the underlying true model structure: The LASSO assumes a sparse structure whereas low-rank

approximation assumes a dense but low-rank structure. Investigating the results of the estima-

tion methods cannot validate these assumptions. The LASSO always yields a sparse structure,

which does not mean that the true underlying structure could not have been dense. On the

other hand, low-rank approximations rarely produce sparse structures, but that does not mean

that the true underlying structure could not have been sparse.

Fig 2 illustrates this point by showing that LASSO estimation when the true network struc-

ture is a Curie-Weiss model still results in a sparse structure. This means that observing any of

the sparse structures shown in Fig 2 does not mean that the nodes in the network could not

represent interchangeable indicators of a single latent trait. Fig 5 illustrates this point again in

a plausible scenario in psychopathology and also shows that when the true network structure

is complicated and neither sparse nor low rank, as is the case here, all regularization methods

partly fail even when using a relatively large sample size. As such, interpreting the sparsity of

such a structure is questionable; the LASSO resulting in a sparse model gives us little evidence

for the true model being sparse because a low-rank approximation returning a dense model

seems to indicate that the true model is dense. Those characteristics from the networks we

obtain are a consequence of the method used to estimate a network structure (specifically the

assumptions made by the employed method about the data-generating network structure) and

often pollute the resulting estimated model [47].

Recently it has been demonstrated that three, statistically indistinguishable, representations

of the Ising model exist that explain observed associations between binary variables either

through a common cause (latent variable), through the reciprocal effect between variables

(network), or through the conditioning on a common effect (collider variable) [10, 33, 34].

Consequently, when a model from one of these frameworks can sufficiently describe the asso-

ciative structure of the measured variables, there exists an alternative representation for other

frameworks that can also accurately represent the structure of the data. For example, spare net-

work structures [28, 29, 31, 32], resulting from the LASSO being applied to the data, can also

be described by a multidimensional latent variable model (with a single latent variable for each

clique in the network) and residual correlations. As such, obtaining sufficient fit for a statistical

network model cannot be regarded as evidence for the theoretical model, where a network

structure acts as the causal mechanism from which associations between variables emerge. We

therefore advise, in general, to tread carefully when drawing inferences about the theoretical

causal mechanisms that generate the data from statistical model fit.

Network models show great promise in mapping out and visualizing relationships present

in the data and are useful to comprehend high-dimensional multivariate relationships. In addi-

tion, network models can be powerful tools to estimate the backbones of potential causal rela-

tionships—if those relationships are assumed to exist. Using the LASSO to estimate such

network structures is a powerful tool in performing fast high-dimensional model selection that

results in fewer false positives, and interpreting network structures obtained from the LASSO

can illuminate the strong relationships present in the dataset. Important to realize is that using

LASSO estimation will result in a sparse structure, and similarly, using a low-rank approxima-

tion will result in a dense low-rank result. Our aim here is not to argue against using the

LASSO or to argue that estimating network structures is wrong. Our aim is to clarify that
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choosing the estimation method is not trivial and can greatly impact both the estimated struc-

ture as well as any conclusions drawn from that structure.

Supporting information

S1 File. R codes. R codes of the simulated examples.

(R)

S2 File. Estimated networks. This PDF file shows more estimated networks based on the

model of Fig 4.

(PDF)
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