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Abstract

To evaluate if plasma kisspeptin concentrations are associated with insulin secretion, as

suggested by recent in vitro studies, independently of confounders. 261 nondiabetic sub-

jects were stratified into tertiles according to kisspeptin values. Insulin secretion was

assessed using indexes derived from oral glucose tolerance test (OGTT). After adjusting for

age, gender, and BMI, subjects in the highest (tertile 3) kisspeptin group exhibited signifi-

cantly lower values of insulinogenic index, corrected insulin response (CIR30), and Stumvoll

indexes for first-phase and second-phase insulin release as compared with low (tertile 1) or

intermediate (tertile 2) kisspeptin groups. Univariate correlations between kisspeptin con-

centration and metabolic variables showed that kisspeptin concentration was significantly

and positively correlated with age, blood pressure, and 2-h post-load glucose, and inversely

correlated with BMI, and waist circumference. There was an inverse relationship between

kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion. A mul-

tivariable regression analysis in a model including all the variables significantly correlated

with kisspeptin concentration showed thar age (β = -0.338, P<0.0001), BMI (β = 0.272,

P<0.0001), 2-h post-load glucose (β = -0.229, P<0.0001), and kisspeptin (β = -0.105, P =

0.03) remained associated with insulinogenic index. These factors explained 34.6% of the

variance of the insulinogenic index. In conclusion, kisspeptin concentrations are associated

with insulin secretion independently of important determinants of glucose homeostasis such

as gender, age, adiposity, 2-h post-load glucose, and insulin sensitivity.

Introduction

Kisspeptins are a family of peptides encoded by the KISS1 gene [1–3]. KISS1 was originally

identified as a human metastasis suppressor gene (also named metastin) that had the ability to

suppress melanoma and breast cancer metastasis [1]. The KISS1 gene encodes for a hydropho-

bic 145-amino acid protein that is C-terminally amidated and proteolytically processed to

form a 54-amino acid protein, named kisspeptin 54 (KP54) [1,2] as well as shorter peptides

with the referred to with respect to their size–kisspeptin 10 (KP10), kisspeptin 13 (KP13) and

kisspeptin 14 (KP14), respectively [4]. All these peptides share the same C-terminal 10 amino
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acid amidated sequence. Subsequent studies have shown that kisspeptins exert their action

through binding to and activating a specific Gq/G11 protein-coupled receptor (GPCR) [3,5].

The GPCR GPR54 (also known as AXOR-12, and later renamed the kisspeptin 1 receptor,

KISS1R) was identified to bind to and transmit the cellular action of secreted kisspeptins [3]. Kis-

speptin-10, the common C-terminal decapeptide shared by all kisspeptin forms, is the minimum

sequence necessary for GPR54 receptor activation [3,5]. In addition to the involvement in inhib-

iting cancer metastasis, kisspeptin-GPR54 signaling has an important role in the neuroendocrine

control of the gonadotropin axis, and has an important role in the onset of puberty [6–11]. Kis-

speptin has also been found to be associated with body mass index and indices of insulin resis-

tance in women with polycystic ovary syndrome [12]. In addition, both kisspeptin and its

receptor gene are expressed in placenta [1, 2, 5], and kisspeptin concentrations are elevated dur-

ing pregnancy [12,13], suggesting that kisspeptin might play a role in restraining trophoblast

invasion and regulating implantation and subsequent placental development [14–16].

Interestingly, a few studies have pointed to a potential role of the kisspeptin system in insu-

lin secretion [17–21]. It has been shown that kisspeptin and GPR54 mRNAs are expressed in

murine and human pancreatic islets, and in MIN6 pancreatic β-cell line [17]. However, the

effects of kisspetins on insulin secretion have led to conflicting results. While some investiga-

tors reported that kisspeptin at nanomolar concentrations inhibits glucose-stimulated insulin

secretion [18–20], others reported that micromolar kisspeptin concentrations stimulate glu-

cose-stimulated insulin secretion [17, 20, 21]. Notably, in pancreatic islets isolated from mice

lacking pancreatic KISS1R treatment with kisspeptin at nanomolar concentrations was unable

to suppress glucose-stimulated insulin secretion as observed in control islets [20]. By contrast,

kisspeptin at micromolar concentrations enhanced glucose-stimulated insulin secretion even

in the absence of KISS1R, thus suggesting that kisspeptin at supraphysiologic concentrations

stimulates insulin secretion independently of its specific receptor via unknown mechanism.

Finally, using both animal and cellular models, it has been shown that glucagon stimulates

hepatic expression of kisspeptin, which acts on pancreatic β-cell to suppress glucose-stimulated

insulin secretion [20]. Whether these preclinical findings hold true in humans is unsettled. To

the best of our knowledge, there is no information on the independent association between

plasma kisspeptin concentrations and glucose-stimulated insulin secretion after adjustments

for potential confounders. To address this issue, we examined the relationship between plasma

kisspeptin concentrations and insulin secretion measured during an oral glucose tolerance test

(OGTT) in a cohort of nondiabetic adult individuals.

Materials and methods

Study population

The study group consisted of 261 adult nondiabetic White individuals participating in the

CAtanzaro MEtabolic RIsk factors (CATAMERI) study, an observational study assessing car-

dio-metabolic risk factors in individuals carrying at least one risk factor including overweight/

obesity, hypertension, dyslipidemia, dysglycemia and family history for type 2 diabetes [22].

Exclusion criteria for the study population were: history of type 1 or type 2 diabetes melli-

tus, pregnancy status, end-stage renal disease, history of any malignant disease, gastrointestinal

diseases associated with bleeding or malabsorption, chronic pancreatitis, history of alcohol or

drug abuse, immunological diseases, acute infections or positivity for antibodies to hepatitis C

virus (HCV) or hepatitis B surface antigen (HBsAg), and treatments able to modify glucose

metabolism and inflammatory markers levels including corticosteroids, aspirin, glucose-low-

ering, lipid-lowering and antihypertensive therapy. All participants underwent anthropometri-

cal evaluation and readings of clinic blood pressure obtained in the sitting position, after five
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minutes of quiet rest. After 12-h fasting, a 75g OGTT was performed with 0, 30, 60, 90 and 120

min sampling for plasma glucose and insulin. The study was approved by the local ethics com-

mittee (Comitato Etico Azienda Ospedaliera “Mater Domini”). Written informed consent was

obtained from each subject in accordance with principles of the Declaration of Helsinki.

Biochemical assays

Plasma kisspeptin concentration was measured with KISS 1 (112–121) Amide/Kisspeptin 10/

Measin [45–54] Amide (Human) EIA KIT (EK-048-56, Phoenix Pharmaceuticals, Inc. Burlin-

game, CA, USA). Intra-assay variation was<10%; inter-assay variation was <15%, with mini-

mum detectable concentration = 0.05 ng/ml.

Glucose, triglycerides, total and high density lipoprotein (HDL) cholesterol concentrations

were determined by enzymatic methods (Roche, Basel, Switzerland). Plasma insulin concen-

tration was measured with a chemiluminescence-based assay (Immulite1, Siemens Healthcare

GmbH, Erlangen, Germany), and total serum IGF-1 was assayed by one-step sandwich chemi-

luminescence immunoassay (CLIA) after prior separation of IGF-1 from binding proteins on

the Liaison1 autoanalyzer (DiaSorin, Saluggia, Italy).

Calculations

Insulin sensitivity estimated by the Matsuda index of insulin sensitivity (ISI) was calculated as

follows: 10.000/square root of [FPG x fasting insulin] x [mean glucose x mean insulin during

OGTT] [23]. Four indexes of glucose-stimulated insulin secretion were calculated from the

OGTT data. Early phase of insulin secretion during an OGTT was estimated by the insulino-

genic index as follows: Ins30-Ins0/Gluc30-Gluc0 (ΔIns30/ΔGluc30) where Insy and Glucy repre-

sent insulin and glucose values, respectively, at time y min during the OGTT. Stumvoll indexes

for first and second phase insulin release were calculated using measurement of plasma glucose,

and insulin every 30 min during an OGTT according to the formulas: first-phase = 1283 +

1.829 x Ins30–138.7 x Gluc30 + 3.772 x Ins0, and second-phase = 287 + 0.4164 x Ins30–26.07 x

Gluc30 + 0.9226 x Ins0, respectively [24]. The corrected insulin response (CIR30) according to

the formula: Ins30/(Gluc30 x (Gluc30−70)) [25]. To evaluate β-cell function the so-called disposi-

tion index was calculated as ΔIns30/ΔGluc30 x the Matsuda index.

Statistical analysis

Variables with skewed distribution including triglycerides, and fasting insulin were natural log

transformed for statistical analyses. Continuous data are expressed as means ± SD. Categorical

variables were compared by χ2 test. ANOVA were used to compare differences of continuous

variables between groups, as appropriate. Individuals were stratified into tertiles according

to their plasma kisspeptin concentrations, and anthropometric and metabolic differences

amongst groups were tested after adjusting for confounders using a general linear model. A

multivariable linear regression analysis was performed in order to evaluate the independent

contributions of plasma kisspeptin and other metabolic factors to insulin secretion. The vari-

ance inflection factor (VIF) was less than 2 in all the analyses indicating that multicollinearity

among variables was not a problem in the multiple regression models. Two-sided P value

<0.05 was considered statistically significant. All analyses were performed using the statistical

package SPSS 22.0 for Windows (SPSS, IBM1, Chicago, IL).

A power calculation was performed at http://www.statisticalsolutions.net/pssZtest_calc.php

and revealed a 90% power of detecting a 2.8 μU/ml per mg/dl difference in insulinogenic

index or a 170 pmol/l difference in Stumvoll 1st phase index between two groups, with a two-

sided test at a 5% significance level.
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Results

The mean age of the whole study sample was 47±13 years, 137 (52.5%) individuals were male,

and mean BMI was 30.0±7.5 kg/m2. Biochemical and clinic features of the study sample strati-

fied according to tertiles of kisspeptin value are shown in Table 1.

We observed no significant differences in geneder distribution across the three study

groups. Subjects in the highest (tertile 3) kisspeptin group were older and tended to be leaner

than individuals with low (tertile 1) or intermediate (tertile 2) kisspeptin groups. No significant

differences among the three groups were observed for systolic blood pressure, total and HDL

cholesterol, triglycerides, plasma IGF-1 levels, fasting and 2-h post-load glucose, fasting insu-

lin, and insulin sensitivity as assessed by the Matsuda index (Table 1). The proportion of sub-

jects with impaired glucose tolerance (IGT) did not differ between the three groups. Subjects

in the highest (tertile 3) kisspeptin group exhibited significantly higher diastolic blood pressure

as compared with low (tertile 1) or intermediate (tertile 2) kisspeptin groups when corrected

for age, gender, and BMI,.

Glucose-stimulated insulin secretion

Differences between the three study groups in glucose-stimulated insulin secretion assessed by

OGTT-derived indexes are presented in Table 2.

After adjusting for age, gender, and BMI, subjects in the highest (tertile 3) kisspeptin group

exhibited significantly lower values of insulinogenic index, corrected insulin response (CIR30),

Table 1. Anthropometric and metabolic characteristics of the study subjects stratified according to tertiles of plasma kisspeptin values.

Whole cohort Tertile 1 Tertile 2 Tertile 3 P

(1) (2) (3) 1 vs 2 1 vs 3 2 vs 3

Kisspeptin (ng/ml) 0.92±0.76 0.33

±0.07

0.62

±0.14

1.8±0.71 <0.0001 <0.0001 <0.0001 <0.0001

Gender (Male/Female) 137/124 43/44 48/39 46/41 0.74 0.54 0.76 0.88

Age (years) 47.7±13.2 43.4

±13.6

48.5

±13.4

51.4

±11.2

<0.0001 0.01 <0.0001 0.13

BMI (kg/m2) 30.1±7.6 30.7±8.9 30.8±8.1 28.4±4.8 0.15a 0.72 a 0.14 a 0.06a

Waist circumference (cm) 101.9±17 102±19 104±18 98±12 0.06 a 0.36 a 0.16 a 0.02 a

Systolic blood pressure (mmHg) 128±17 124±17 128±15 131±17 0.16 0.60 0.06 0.16

Diastolic blood pressure (mmHg) 79±10 76±10 79±10 82±10 0.006 0.20 0.002 0.04

Total cholesterol (mg/dl) 198±37 198±36 196±35 200±39 0.67 0.38 0.78 0.55

HDL (mg/dl) 51±14 51±13 51±15 51±13 0.68 0.70 0.63 0.38

Triglycerides (mg/dl) 122±72 114±55 122±74 127±82 0.62 0.91 0.44 0.36

Fasting Glucose (mg/dl) 97±14 95±13 97±13 99±14 0.70 0.87 0.43 0.51

2-h post-load glucose (mg/dl) 131±37 124±36 131±33 136±40 0.53 0.90 0.30 0.35

Glucose tolerance status (NGT/IGT) 159/102 55/32 54/33 50/37 0.71 0.88 0.53 0.63

Fasting Insulin (μU/ml) 11±6 11±6 11±8 9±4 0.61 0.54 0.73 0.33

IGF-1(ng/ml) 164±59 170±63 164±59 158±54 0.80 0.80 0.68 0.51

Matsuda insulin sensitivity index (mg x L2 x mmol-1 x mU-1 x

min-1)

81±46 80±46 76±47 86±44 0.88 0.73 0.87 0.62

Data are means ± SD. Insulin, triglycerides and hsCRP levels were log transformed for statistical analysis, but values in the table represent a back

transformation to the original scale. Categorical variables were compared by χ2 test. Comparisons among the three groups were performed using a general

linear model. P values refer to results after analyses with adjustment for age, gender, and BMI; aP values refer to results after analyses with adjustment for

age, and gender. BMI = body mass index; HDL = high density lipoprotein; NGT = normal glucose tolerance; IGT = impaired glucose tolerance;IGF-

1 = insulin-like growth factor 1.

https://doi.org/10.1371/journal.pone.0179834.t001
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and 1st and 2nd-phase insulin release estimated by Stumvoll indexes, as compared with low

(tertile 1) or intermediate (tertile 2) kisspeptin groups (Table 2). Because the ability of β-cells

to respond to an increment in glucose levels is affected by insulin sensitivity, we calculated the

disposition index (ΔIns30/ΔGluc30 x the Matsuda index), and adjusted insulin secretion levels,

assessed by the insulinogenic index, for the degree of insulin sensitivity, represented by the

Matsuda index, in order to obtain a more precise measure of β-cell function. Subjects in the

highest (tertile 3) kisspeptin group exhibited a significantly lower disposition index value as

compared with low (tertile 1) or intermediate (tertile 2) kisspeptin groups (Table 2), when the

data were adjusted for age, gender, and BMI,

Univariate correlations between kisspeptin concentration and anthropometric and meta-

bolic variables in the whole study group are presented in Table 3.

Kisspeptin concentration was significantly and positively correlated with age, diastolic

blood pressure, and 2-h post-load glucose, and inversely correlated with BMI, and waist cir-

cumference (Table 3). There was an inverse relationship between plasma kisspeptin levels and

OGTT-derived indexes of glucose-stimulated insulin secretion including the insulinogenic

index, the corrected insulin response (CIR30), the Stumvoll indexes for first-phase and second-

phase insulin release, and the disposition index (Table 3). The inverse relationship between

plasma kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion

was also maintained when subjects with normal glucose tolerance or impaired glucose toler-

ance (IGT) were analyzed separately (Table 3).

To evaluate the independent contribution of circulating kisspeptin levels to glucose-stimu-

lated insulin secretion estimated by the insulinogenic index or by the disposition index, we

built a model of a multivariable regression including all the above variables significantly corre-

lated with kisspeptin concentration (Table 4).

Comparison of standardized coefficients allowed the determination of the relative strength

of each trait’s association with the insulinogenic index (listed from strongest to weakest):

age (β = -0.338, P<0.0001), BMI (β = 0.272, P<0.0001), 2-h post-load glucose (β = -0.229,

P<0.0001), and kisspeptin (β = -0.105, P = 0.03) (Table 4). These factors explained 34.6% of

the variance of the insulinogenic index.

The variables independently associated with the disposition index were: 2-h post-load glu-

cose (β = -0.365, P<0.0001), age (β = -0.148, P = 0.01), and kisspeptin (β = -0.119, P = 0.03)

(Table 4). These factors explained 27.6% of the variance of the disposition index (Table 4).

Discussion

Recently, a few preclinical research studies have hypothesized that kisspeptin may be involved

in the regulation of insulin secretion [17–21]. However, these in vitro studies have led to

Table 2. Insulin secretion indexes of the study subjects stratified according to tertiles of plasma kisspeptin values.

Tertile 1 Tertile 2 Tertile 3 P

(1) (2) (3) 1 vs 2 1 vs 3 2 vs 3

Insulinogenic index (ΔIns30/ΔGluc30) (μU/ml per mg/dl) 19.2±10.1 18.1±10.2 10.4±6.0 0.01 0.48 0.04 0.006

Stumvoll 1st phase index (pmol/l) 1281±724 1227±844 798±370 0.04 0.42 0.05 0.01

Stumvoll 2nd phase index (pmol/l) 338±191 327±193 230±81 0.03 0.36 0.06 0.01

CIR30 0.0066±0.007 0.0056±0.0004 0.0031±0.0019 0.03 0.88 0.03 0.02

Disposition index (ΔIns30/ΔGluc30 x Matsuda index) 1346±914 1177±917 831±575 0.05 0.92 0.04 0.03

Data are means ± SD. Comparisons among the three groups were performed using a general linear model. P values refer to results after analyses with

adjustment for age, gender, and BMI. CIR30 = corrected insulin response

https://doi.org/10.1371/journal.pone.0179834.t002
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mixed results with some studies showing an inhibitory effects of kisspeptin on glucose-stimu-

lated insulin secretion [18–20] and others showing a stimulatory effects [17, 20, 21]. It is likely

that these divergent findings are due the concentrations for kisspeptin used in the various

experiments with kisspeptin concentrations in the nanomolar range acting as a suppressor of

glucose-stimulated insulin secretion whereas micromolar kisspeptin concentrations acting as a

stimulator of insulin secretion. To settle these controversies we decided to investigate the rela-

tionship between plasma kisspeptin levels and insulin secretion in a cross-sectional observa-

tional study including 261 nondiabetic volunteers Herein we provide evidences that kisspeptin

Table 3. Univariate correlations between kisspeptin concentration and anthropometric and metabolic variables.

Whole study group Subjects with NGT

(N = 159)

Subjects with IGT

(N = 102)

Kisspeptin Kisspeptin Kisspeptin

r P r P r P

Age (years) 0.18 0.007 0.17 0.01 0.07 0.22

BMI (kg/m2) -0.12 0.04 -0.13 0.04 -0.11 0.11

Waist circumference (cm) -0.12 0.04 -0.10 0.10 -0.13 0.08

Systolic blood pressure (mmHg) 0.09 0.09 0.07 0.16 0.05 0.30

Diastolic blood pressure (mmHg) 0.17 0.007 0.15 0.02 0.10 0.16

Total cholesterol (mg/dl) 0.08 0.10 0.03 0.36 0.12 0.11

HDL cholesterol (mg/dl) -0.01 0.48 -0.06 0.19 -0.13 0.09

Triglycerides (mg/dl) 0.07 0.15 0.10 0.09 0.06 0.29

Fasting glucose (mg/dl) 0.07 0.14 0.05 0.27 0.01 0.49

2-h glucose (mg/dl) 0.12 0.03 0.12 0.06 0.01 0.49

Fasting insulin (μU/ml) -0.10 0.06 -0.16 0.02 -0.01 0.37

IGF-1(ng/ml) -0.09 0.10 -0.10 0.11 -0.04 0.34

Matsuda Insulin Sensitivity index (mg x L2 x mmol-1 x mU-1 x min-1) 0.01 0.41 0.05 0.23 0.01 0.48

Insulinogenic index (ΔIns30/ΔGluc30)(μU/ml per mg/dl) -0.24 <0.0001 -0.25 0.001 -0.17 0.04

Stumvoll 1st phase index (pmol/l) -0.21 0.001 -0.22 0.003 -0.16 0.05

Stumvoll 2nd phase index (pmol/l) -0.20 0.002 -0.21 0.004 -0.15 0.05

CIR30 -0.23 <0.0001 -0.25 0.001 -0.16 0.05

Disposition index (ΔIns30/ΔGluc30 x Matsuda index) -0.20 0.002 -0.22 0.003 -0.17 0.05

NGT = normal glucose tolerance; IGT = impaired glucose tolerance; BMI = body mass index; HDL = high density lipoprotein; IGF-1 = insulin-like growth

factor 1; CIR30 = corrected insulin response.

https://doi.org/10.1371/journal.pone.0179834.t003

Table 4. Multiple regression analysis with insulinogenic index of insulin secretion or disposition index as dependent variable.

Independent

contributors

Standardized Coefficient

β
P

Model includes kisspeptin, gender, age, BMI, diastolic blood pressure, and 2-h post-

load glucose.

Age -0.338 <0.0001

BMI 0.272 <0.0001

2-h post-load glucose -0.229 <0.0001

Kisspeptin -0.105 0.03

Independent

contributors

Standardized Coefficient

β
P

Model includes kisspeptin, gender, age, BMI, diastolic blood pressure, and 2-h post-

load glucose.

2-h post-load glucose -0.365 <0.0001

Age -0.148 0.01

Kisspeptin -0.119 0.03

BMI = body mass index.

https://doi.org/10.1371/journal.pone.0179834.t004
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is significantly associated with reduced glucose-stimulated insulin secretion. This association

was not affected by the insertion of several potential confounding factors such as age, gender,

adiposity, blood pressure, and 2-h post load glucose levels in the statistical model. When insu-

lin secretion was adjusted for the prevailing degree of insulin sensitivity using the disposition

index (insulin sensitivity x insulin secretion), β-cell function was significantly correlated with

kisspeptin concentrations even after adjusting for age, sex, BMI, blood pressure, and 2-h post

load glucose levels. To the best of our knowledge, this is the first study that unravels the rela-

tionship between plasma kisspeptin concentration and insulin secretion in humans. Impor-

tantly, this relationship was observed at kisspeptin concentrations (nanomolar) that has been

show to inhibit insulin secretion in vitro [20].

A previous study has found an increased levels of kisspeptin in three type diabetic in-

dividuals as compared to three normal control [20] and, another study reported that plasma

kisspeptin levels were negatively correlated with indices of insulin resistance in women with

polycystic ovary syndrome [12]. In the present study, we did not observe any correlation

between kisspeptin concentrations and index of insulin sensitivity. By contrast, we found an

inverse relationship between BMI and kisspeptin concentrations in accord with prior findings

in in women with polycystic ovary syndrome [12]. The mechanism by which kisspeptin affect

body weight is unknown. Interestingly, studies with mice lacking the kisspeptin receptor

(Kiss1r KO mice) have shown that adult Kiss1r KO females maintained on a standard chow

diet displayed a marked increase in body weight as compared with wild type littermates [26].

Subsequent studies have shown that impaired kisspeptin signaling causes lower metabolism

and energy expenditure, which thereby drive increased adiposity Kiss1r KO female mice [27].

Whether increased kisspeptin levels increase energy expenditure in humans is still undefined.

IGF-1 has been reported to induce the expression of KiSS-1 gene in the hypothalamus [28]

allowing the speculation that differences in plasma IGF-1 levels would be responsible for

changes in kisspeptin levels. This finding that plasma IGF-1 did not differ amongst the tertile

groups argue against this possibility.

Our study is fairly solid because of the relatively large sample size, the demographically

homogeneous group of European ancestry, which equally comprised male and female individ-

uals, all not affected by diabetes mellitus nor undergoing treatments able to modify glucose

homeostasis. All study subjects have been subjected to an OGTT, thus we obtained both fasting

and 2-hour post-load glucose values, which are required to assess glucose tolerance status. The

biochemical determination of hormonal and metabolic variables has been performed in fresh

blood samples rather than in stored samples,.

Notwithstanding, this study also suffers some limitations. Firstly, we did not have access to

direct measures of β-cell function (using, for example, hyperglycemic clamp study or iv glucose

tolerance tests). Instead, we used detailed, extensively validated proxy measures of insulin

secretion which are derived using insulin and glucose levels from multiple time points during

an oral glucose challenge, and thus encompass the contribution of of the incretin effect to insu-

lin release. Furthermore, all the participants enrolled in our study were individuals carrying at

least 1 risk factor for type 2 diabetes, who collectively represent a highly predisposed category

of people for whom international guidelines recommend the adoption of preventive measures

and testing for diabetes. In addition to this, our measurements of kisspeptin have been per-

formed on fasting serum samples; which might not fully capture the plethora of kisspeptin

effects on insulin secretion. Finally, because of the cross-sectional nature of the present study

we do not have the power to draw conclusions about the causal relationship between kisspep-

tin concentrations and insulin secretion or to speculate the contribution of kisspeptin to the

defects observed in the context of overt type 2 diabetes. Though the association between kis-

speptin concentrations and glucose-stimulated insulin secretion was independent of age,
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adiposity, glucose tolerance, and insulin sensitivity, which are reportedly recognized as the

main factors affecting insulin secretion, it is not possible for us to exclude the involvement of

other mechanisms, which might simultaneously affect insulin secretion and be responsible for

the elevation of circulating kisspeptin levels.

Conclusion

Kisspeptin levels are inversely associated with insulin secretion. The results presented in this

study are novel and we propose that the mechanisms linking kisspeptin and insulin secretion

are independent from other major modulators of glucose homeostasis, including gender, age,

adiposity, glucose tolerance and insulin sensitivity. For future research purposes, we look for-

ward to longitudinal studies that will be able to reveal whether kisspeptin has the potential to

contribute to the etiopathogenesis of type 2 diabetes, independently of confounding factors.
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